Chapter 8

Locality Lower Bounds

In Chapter 1, we looked at distributed algorithms for coloring. In particular,
we saw that rings and rooted trees can be colored with 3 colors in log* n+O(1)
rounds.

8.1 Model

In this chapter, we will reconsider the distributed coloring problem. We will look
at a classic lower bound that shows that the result of Chapter 1 is tight: Coloring
rings (and rooted trees) indeed requires Q(log" n) rounds. In particular, we will
prove a lower bound for coloring in the following setting:

e We consider deterministic, synchronous algorithms.
e Message size and local computations are unbounded.
o We assume that the network is a directed ring with n nodes.

e Nodes have unique labels (identifiers) from 1 to n.

Remarks:

e A generalization of the lower bound to randomized algorithms is pos-
sible.

e Except for restricting to deterministic algorithms, all the conditions
above make a lower bound stronger: Any lower bound for synchronous
algorithms certainly also holds for asynchronous ones. A lower bound
that is true if message size and local computations are not restricted
is clearly also valid if we require a bound on the maximal message
size or the amount of local computations. Similarly, assuming that
the ring is directed and that node labels are from 1 to n (instead of
choosing IDs from a more general domain) also strengthens the lower
bound.

Instead of directly proving that 3-coloring a ring needs Q(log"n)
rounds, we will prove a slightly more general statement. We will con-
sider deterministic algorithms with time complexity r (for arbitrary

85

86 CHAPTER 8. LOCALITY LOWER BOUNDS

Algorithm 8.1 Synchronous Algorithm: Canonical Form
1: In r rounds: send complete initial state to nodes at distance at most r

2: // do all the communication first
3: Compute output based on complete information about r-neighborhood
4: // do all the computation in the end

r) and derive a lower bound on the number of colors that are needed if
we want to properly color an n-node ring with an r-round algorithm.
A 3-coloring lower bound can then be derived by taking the smallest
r for which an r-round algorithm needs 3 or fewer colors.

8.2 Locality

Let us for a moment look at distributed algorithms more generally (i.e., not
only at coloring and not only at rings). Assume that initially, all nodes only
know their own label (identifier) and potentially some additional input. As
information needs at least r rounds to travel r hops, after r rounds, a node v
can only learn about other nodes at distance at most r. If message size and local
computations are not restricted, it is in fact not hard to see, that in 7 rounds,
a node v can exactly learn all the node labels and inputs up to distance 7.
As shown by the following lemma, this allows to transform every deterministic
r-round synchronous algorithm into a simple canonical form.

Lemma 8.2. If message size and local computations are not bounded, every
deterministic, synchronous r-round algorithm can be transformed into an algo-
rithm of the form given by Algorithm 8.1 (i.e., it is possible to first communicate
for r rounds and then do all the computations in the end).

Proof. Consider some r-round algorithm .A. We want to show that A can be
brought to the canonical form given by Algorithm 8.1. First, we let the nodes
communicate for r rounds. Assume that in every round, every node sends its
complete state to all of its neighbors (remember that there is no restriction on
the maximal message size). By induction, after ¢ rounds, every node knows the
initial state of all other nodes at distance at most 7. Hence, after r rounds, a
node v has the combined initial knowledge of all the nodes in its r-neighborhood.
We want to show that this suffices to locally (at node v) simulate enough of
Algorithm A to compute all the messages that v receives in the » communication
rounds of a regular execution of Algorithm A.

Concretely, we prove the following statement by induction on ¢. For all
nodes at distance at most » — i + 1 from v, node v can compute all messages
of the first ¢ rounds of a regular execution of A. Note that this implies that v
can compute all the messages it receives from its neighbors during all r rounds.
Because v knows the initial state of all nodes in the r-neighborhood, v can
clearly compute all messages of the first round (i.e., the statement is true for
i =1). Let us now consider the induction step from 7 to i + 1. By the induction
hypothesis, v can compute the messages of the first ¢ rounds of all nodes in
its (r — 7 4+ 1)-neighborhood. It can therefore compute all messages that are
received by nodes in the (r — i)-neighborhood in the first ¢ rounds. This is of

8.2. LOCALITY 87

course exactly what is needed to compute the messages of round i + 1 of nodes
in the (r — ¢)-neighborhood. O

Remarks:

o It is straightforward to generalize the canonical form to randomized
algorithms: Every node first computes all the random bits it needs
throughout the algorithm. The random bits are then part of the initial
state of a node.

Definition 8.3 (r-hop view). We call the collection of the initial states of all
nodes in the r-neighborhood of a node v, the r-hop view of v.

Remarks:

e Assume that initially, every node knows its degree, its label (identi-
fier) and potentially some additional input. The r-hop view of a node
v then includes the complete topology of the r-neighborhood (exclud-
ing edges between nodes at distance r) and the labels and additional
inputs of all nodes in the r-neighborhood.

Based on the definition of an r-hop view, we can state the following corollary
of Lemma 8.2.

Corollary 8.4. A deterministic r-round algorithm A is a function that maps
every possible r-hop view to the set of possible outputs.

Proof. By Lemma 8.2, we know that we can transform Algorithm A to the
canonical form given by Algorithm 8.1. After r communication rounds, every
node v knows exactly its r-hop view. This information suffices to compute the
output of node v. O

Remarks:

e Note that the above corollary implies that two nodes with equal r-hop
views have to compute the same output in every r-round algorithm.

e For coloring algorithms, the only input of a node v is its label. The
r-hop view of a node therefore is its labeled r-neighborhood.

If we only consider rings, r-hop neighborhoods are particularly simple.
The labeled r-neighborhood of a node v (and hence its r-hop view) in
an oriented ring is simply a (27 + 1)-tuple ((—p, 0_py1,..., %o, ... L")
of distinct node labels where £, is the label of v. Assume that for
i > 0, {; is the label of the i clockwise neighbor of v and /_; is
the label of the i counterclockwise neighbor of v. A deterministic
coloring algorithm for oriented rings therefore is a function that maps
(2r 4 1)-tuples of node labels to colors.

Consider two r-hop views V, = ({—,,...,¢,) and V. = (¢_.,...,0).
If 0 = liq for —r <@ <r—1andif £}, # ¢; for —r < i <, the r-hop
view V! can be the r-hop view of a clockwise neighbor of a node with
r-hop view V,. Therefore, every algorithm A that computes a valid
coloring needs to assign different colors to V, and V,.. Otherwise, there
is a ring labeling for which A assigns the same color to two adjacent
nodes.

88 CHAPTER 8. LOCALITY LOWER BOUNDS

8.3 The Neighborhood Graph

We will now make the above observations concerning colorings of rings a bit
more formal. Instead of thinking of an r-round coloring algorithm as a function
from all possible r-hop views to colors, we will use a slightly different perspective.
Interestingly, the problem of understanding distributed coloring algorithms can
itself be seen as a classical graph coloring problem.

Definition 8.5 (Neighborhood Graph). For a given family of network graphs
G, the r-neighborhood graph N,.(G) is defined as follows. The node set of N,.(G)
is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views).
There is an edge between two labeled r-neighborhoods V, and V.. if V, and V..
can be the r-hop views of two adjacent nodes.

Lemma 8.6. For a given family of network graphs G, there is an r-round al-
gorithm that colors graphs of G with ¢ colors iff the chromatic number of the
neighborhood graph is x(N;-(G)) < c.

Proof. We have seen that a coloring algorithm is a function that maps every
possible r-hop view to a color. Hence, a coloring algorithm assigns a color to
every node of the neighborhood graph N,.(G). If two r-hop views V, and V. can
be the r-hop views of two adjacent nodes u and v (for some labeled graph in
G), every correct coloring algorithm must assign different colors to V, and V.
Thus, specifying an r-round coloring algorithm for a family of network graphs
G is equivalent to coloring the respective neighborhood graph N.(G). O

Instead of directly defining the neighborhood graph for directed rings, we de-
fine directed graphs By, that are closely related to the neighborhood graph. The
node set of By, contains all k-tuples of increasing node labels ([n] = {1,...,n}):

VIBr] = {(oa,...,0m) t s €[n],i <j— oy <oy} (8.1)

For a = (ay,...,ax) and § = (B1,..., k) there is a directed edge from a to 3
iff
Vie{l,...,k—1}: 3 = ajq1. (8.2)

Lemma 8.7. Viewed as an undirected graph, the graph Ba,i1 is a subgraph of
the r-neighborhood graph of directed n-node rings with node labels from [n].

Proof. The claim follows directly from the observations regarding r-hop views
of nodes in a directed ring from Section 8.2. The set of k-tuples of increasing
node labels is a subset of the set of k-tuples of distinct node labels. Two nodes
of Bay4+1 are connected by a directed edge iff the two corresponding r-hop views
are connected by a directed edge in the neighborhood graph. Note that if there
is an edge between a and f in By, a1 # B because the node labels in o and 3
are increasing. N d

To determine a lower bound on the number of colors an r-round algorithm
needs for directed n-node rings, it therefore suffices to determine a lower bound
on the chromatic number of By,41. To obtain such a lower bound, we need the
following definition.

8.3. THE NEIGHBORHOOD GRAPH 89

Definition 8.8 (Diline Graph). The directed line graph (diline graph) DL(G)
of a directed graph G = (V, E) is defined as follows. The node set of DL(G) is
VIDL(G)] = E. There is a directed edge ((w,), (y,z)) between (w,x) € E and
(y,2) € E iff x =y, i.e., if the first edge ends where the second one starts.

Lemma 8.9. Ifn > k, the graph Bjii1 can be defined recursively as follows:
Bi41 = DL(By).

Proof. The edges of By, are pairs of k-tuples a = (a1, ..., ax) and 8 = (81, ..., Bk)
that satisfy Conditions (8.1) and (8.2). Because the last k — 1 labels in o are
equal to the first k& — 1 labels in j, the pair (a,3) can be represented by a
(k+1)-tuple vy = (y1, ..., Yks1) With 43 = a1, 7 = Bi_1 = o for 2 < i < k, and
Yi+1 = Bk Because the labels in a and the labels in 3 are increasing, the labels
in v are increasing as well. The two graphs By, and DL(By) therefore have
the same node sets. There is an edge between two nodes (a, B,) and (ay, B,) of
DL(By) if B | = @y. This is equivalent to requiring that the two corresponding
(k +1)-tuples v, and 7, are neighbors in Bj.11, i.e., that the last & labels of 7,
are equal to the first k& labels of V- O

The following lemma establishes a useful connection between the chromatic
numbers of a directed graph G and its diline graph DL(G).

Lemma 8.10. For the chromatic numbers x(G) and x(DL(G)) of a directed
graph G and its diline graph, it holds that

x(DL(G)) > log, (x(G))-

Proof. Given a c-coloring of DL(G), we show how to construct a 2¢ coloring of G.
The claim of the lemma then follows because this implies that x(G) < 2X(P£(G)),

Assume that we are given a c-coloring of DL(G). A c-coloring of the diline
graph DL(G) can be seen as a coloring of the edges of G such that no two
adjacent edges have the same color. For a node v of G, let S, be the set of
colors of its outgoing edges. Let u and v be two nodes such that G contains a
directed edge (u,v) from u to v and let z be the color of (u,v). Clearly, x € S,
because (u,v) is an outgoing edge of u. Because adjacent edges have different
colors, no outgoing edge (v, w) of v can have color z. Therefore z ¢ S,. This
implies that S, # S,. We can therefore use these color sets to obtain a vertex
coloring of G, i.e., the color of u is S, and the color of v is S,. Because the
number of possible subsets of [¢] is 2¢, this yields a 2°-coloring of G. O

Let log("’) z be the i-fold application of the base-2 logarithm to x:
logM & = log, z, log™*+ D z = log, (log@ z).
Remember from Chapter 1 that
log"z =1ifz <2, log*z=1+min{i:log®a <2}.
For the chromatic number of By, we obtain

Lemma 8.11. For all n > 1, x(B1) = n. Further, forn > k > 2, x(Bx) >
log(k’l) n.

90 CHAPTER 8. LOCALITY LOWER BOUNDS

Proof. For k = 1, By, is the complete graph on n nodes with a directed edge
from node ¢ to node j iff ¢ < j. Therefore, x(B1) = n. For k > 2, the claim
follows by induction and Lemmas 8.9 and 8.10. O

This finally allows us to state a lower bound on the number of rounds needed
to color a directed ring with 3 colors.

Theorem 8.12. Fvery deterministic, distributed algorithm to color a directed
ring with 3 or less colors needs at least (log" n)/2 — 1 rounds.

Proof. Using the connection between By, and the neighborhood graph for di-
rected rings, it suffices to show that x(Bay41) > 3 for all r < (log"n)/2 — 1.
From Lemma 8.11, we know that x(Bay4+1) > log(%) n. To obtain log(Qr) n <2,
we need 7 > (log" n)/2 — 1. Because log, 3 < 2, we therefore have log®)n >3
if r <log"n/2 - 1. O

Corollary 8.13. Every deterministic, distributed algorithm to compute an MIS
of a directed ring needs at least log" n/2 — O(1) rounds.

Remarks:

o It is straightforward to see that also for a constant ¢ > 3, the number
of rounds needed to color a ring with ¢ or less colors is log" n/2—O(1).

e There basically (up to additive constants) is a gap of a factor of 2
between the log” n+O(1) upper bound of Chapter 1 and the log* n/2—
O(1) lower bound of this chapter. It is possible to show that the lower
bound is tight, even for undirected rings (for directed rings, this will
be part of the exercises).

Alternatively, the lower bound can also be presented as an application
of Ramsey’s theory. Ramsey’s theory is best introduced with an ex-
ample: Assume you host a party, and you want to invite people such
that there are no three people who mutually know each other, and no
three people which are mutual strangers. How many people can you
invite? This is an example of Ramsey’s theorem, which says that for
any given integer ¢, and any given integers ni,...,n., there is a Ram-
sey number R(nq,...,n.), such that if the edges of a complete graph
with R(n1,...,n.) nodes are colored with ¢ different colors, then for
some color ¢ the graph contains some complete subgraph of color i of
size n;. The special case in the party example is looking for R(3, 3).

Ramsey theory is more general, as it deals with hyperedges. A normal
edge is essentially a subset of two nodes; a hyperedge is a subset of
k nodes. The party example can be explained in this context: We
have (hyper)edges of the form {7,j}, with 1 < ,j < n. Choosing n
sufficiently large, coloring the edges with two colors must exhibit a
set S of 3 edges {i,j} C {v1,v2,v3}, such that all edges in S have the
same color. To prove our coloring lower bound using Ramsey theory,
we form all hyperedges of size k = 2r+1, and color them with 3 colors.
Choosing n sufficiently large, there must be a set S = {vy,...,vp41}
of k + 1 identifiers, such that all k¥ + 1 hyperedges consisting of k

8.3. THE NEIGHBORHOOD GRAPH 91
nodes from S have the same color. Note that both {vq,...,v;} and
{v2,..., 0541} are in the set S, hence there will be two neighboring

views with the same color. Ramsey theory shows that in this case
n will grow as a power tower (tetration) in k. Thus, if n is so large
that k is smaller than some function growing like log™ n, the coloring
algorithm cannot be correct.

The neighborhood graph concept can be used more generally to study
distributed graph coloring. It can for instance be used to show that
with a single round (every node sends its identifier to all neighbors) it
is possible to color a graph with (1+0(1))A? Inn colors, and that every
one-round algorithm needs at least Q(A2/log? A + loglogn) colors.

One may also extend the proof to other problems, for instance one
may show that a constant approximation of the minimum dominating
set problem on unit disk graphs costs at least log-star time.

Using r-hop views and the fact that nodes with equal r-hop views have
to make the same decisions is the basic principle behind almost all lo-
cality lower bounds (in fact, we are not aware of a locality lower bound
that does not use this principle). Using this basic technique (but a
completely different proof otherwise), it is for instance possible to show
that computing an MIS (and many other problems) in a general graph
requires at least Q(y/logn/loglogn) and Q(log A/loglog A) rounds.

Chapter Notes

The lower bound proof in this chapter is by Linial [Lin92], proving asymptotic
optimality of the technique of Chapter 1. This proof can also be found in
Chapter 7.5 of [Pel00]. An alternative proof that omits the neighborhood graph
construction is presented in [LS14]. The lower bound is also true for randomized
algorithms [Nao91]. Recently, this lower bound technique was adapted to other
problems [CHWO08, LW08]. In some sense, Linial’s seminal work raised the
question of what can be computed in O(1) time [NS93], essentially starting
distributed complexity theory.

More recently, using a different argument, Kuhn et al. [KMW04, KMW16]
managed to show more substantial lower bounds for a number of combinatorial
problems including minimum vertex cover (MVC), minimum dominating set
(MDS), maximal matching, or maximal independent set (MIS). More concretely,
Kuhn et al. showed that all these problems need polylogarithmic time (for a
polylogarithmic approximation, in case of approximation problems such as MVC
and MDS). For recent surveys regarding locality lower bounds we refer to e.g.
[Suol2, KMW16].

Ramsey theory was started by Frank P. Ramsey with his 1930 article called
“On a problem of formal logic” [Ram30]. For an introduction to Ramsey theory
we refer to e.g. [NR90, LRO3].

92 CHAPTER 8. LOCALITY LOWER BOUNDS

Bibliography

[CHWO08] A. Czygrinow, M. Haiickowiak, and W. Wawrzyniak. Fast Distrib-
uted Approximations in Planar Graphs. In Proceedings of the 22nd
International Symposium on Distributed Computing (DISC), 2008.

[KMWO04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In Proceedings of the 23rd ACM Symposium on
Principles of Distributed Computing (PODC), July 2004.

[KMW16] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local
Computation: Lower and Upper Bounds. In Journal of the ACM
(JACM), 2016.

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1)(1):193-201, February 1992.

[LRO3] Bruce M. Landman and Aaron Robertson. Ramsey Theory on the
Integers. American Mathematical Society, 2003.

[LS14] Juhana Laurinharju and Jukka Suomela. Brief Announcement:
Linial’s Lower Bound Made Easy. In Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC ’14,
pages 377-378, New York, NY, USA, 2014. ACM.

[LWO08

Christoph Lenzen and Roger Wattenhofer. Leveraging Linial’s Lo-
cality Limit. In 22nd International Symposium on Distributed Com-
puting (DISC), Arcachon, France, September 2008.

[Nao91

Moni Naor. A Lower Bound on Probabilistic Algorithms for Distribu-
tive Ring Coloring. SIAM J. Discrete Math., 4(3):409-412, 1991.

Jaroslav Nesetril and Vojtech Rodl, editors. Mathematics of Ramsey
Theory. Springer Berlin Heidelberg, 1990.

[NR9O

[NS93

Moni Naor and Larry Stockmeyer. What can be Computed Locally?
In Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, STOC 93, pages 184-193, New York, NY, USA, 1993.
ACM.

[Pel00

David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[Ram30] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math.
Soc. (3), 30:264-286, 1930.

[Suo12] Jukka Suomela. Survey of Local Algorithms.
http://www.cs.helsinki.fi/local-survey/, 2012.

