
Chapter 11

Synchronization

So far, we have mainly studied synchronous algorithms. Generally, asynchro-
nous algorithms are more difficult to obtain. Also it is substantially harder
to reason about asynchronous algorithms than about synchronous ones. For in-
stance, computing a BFS tree (Chapter 2) efficiently requires much more work in
an asynchronous system. However, many real systems are not synchronous, and
we therefore have to design asynchronous algorithms. In this chapter, we will
look at general simulation techniques, called synchronizers, that allow running
synchronous algorithms in asynchronous environments.

11.1 Basics

A synchronizer generates sequences of clock pulses at each node of the network
satisfying the condition given by the following definition.

Definition 11.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Given a mechanism that generates the clock pulses, a synchronous algorithm
is turned into an asynchronous algorithm in an obvious way: As soon as the ith

clock pulse is generated at node v, v performs all the actions (local computations
and sending of messages) of round i of the synchronous algorithm.

Theorem 11.2. If all generated clock pulses are valid according to Definition
11.1, the above method provides an asynchronous algorithm that behaves exactly
the same way as the given synchronous algorithm.

Proof. When the ith pulse is generated at a node v, v has sent and received
exactly the same messages and performed the same local computations as in
the first i− 1 rounds of the synchronous algorithm.

The main problem when generating the clock pulses at a node v is that v can-
not know what messages its neighbors are sending to it in a given synchronous
round. Because there are no bounds on link delays, v cannot simply wait “long
enough” before generating the next pulse. In order satisfy Definition 11.1, nodes
have to send additional messages for the purpose of synchronization. The total
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120 CHAPTER 11. SYNCHRONIZATION

complexity of the resulting asynchronous algorithm depends on the overhead
introduced by the synchronizer. For a synchronizer S, let T (S) and M(S) be
the time and message complexities of S for each generated clock pulse. As we
will see, some of the synchronizers need an initialization phase. We denote the
time and message complexities of the initialization by Tinit(S) and Minit(S),
respectively. If T (A) and M(A) are the time and message complexities of the
given synchronous algorithm A, the total time and message complexities Ttot
and Mtot of the resulting asynchronous algorithm then become

Ttot = Tinit(S)+T (A)·(1+T (S)) and Mtot = Minit(S)+M(A)+T (A)·M(S),

respectively.

Remarks:

• Because the initialization only needs to be done once for each network,
we will mostly be interested in the overheads T (S) and M(S) per
round of the synchronous algorithm.

Definition 11.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

Lemma 11.4. If all neighbors of a node v are safe with respect to the current
clock pulse of v, the next pulse can be generated for v.

Proof. If all neighbors of v are safe with respect to a certain pulse, v has received
all messages of the given pulse. Node v therefore satisfies the condition of
Definition 11.1 for generating a valid next pulse.

Remarks:

• In order to detect safety, we require that all algorithms send acknowl-
edgements for all received messages. As soon as a node v has received
an acknowledgement for each message that it has sent in a certain
pulse, it knows that it is safe with respect to that pulse. Note that
sending acknowledgements does not increase the asymptotic time and
message complexities.

11.2 The Local Synchronizer α

Algorithm 11.5 Synchronizer α (at node v)

1: wait until v is safe
2: send SAFE to all neighbors
3: wait until v receives SAFE messages from all neighbors
4: start new pulse

Synchronizer α is very simple. It does not need an initialization. Using
acknowledgements, each node eventually detects that it is safe. It then reports
this fact directly to all its neighbors. Whenever a node learns that all its neigh-
bors are safe, a new pulse is generated. Algorithm 11.5 formally describes the
synchronizer α.
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Theorem 11.6. The time and message complexities of synchronizer α per syn-
chronous round are

T (α) = O(1) and M(α) = O(m).

Proof. Communication is only between neighbors. As soon as all neighbors of
a node v become safe, v knows of this fact after one additional time unit. For
every clock pulse, synchronizer α sends at most four additional messages over
every edge: Each of the nodes may have to acknowledge a message and reports
safety.

Remarks:

• Synchronizer α was presented in a framework, mostly set up to have
a common standard to discuss different synchronizers. Without the
framework, synchronizer α can be explained more easily:

1. Send message to all neighbors, include round information i and
actual data of round i (if any).

2. Wait for message of round i from all neighbors, and go to next
round.

• Although synchronizer α allows for simple and fast synchronization,
it produces awfully many messages. Can we do better? Yes.

11.3 The Global Synchronizer β

Algorithm 11.7 Synchronizer β (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all its children in T
3: if v 6= ` then
4: send SAFE message to parent in T
5: wait until PULSE message received from parent in T
6: end if
7: send PULSE message to children in T
8: start new pulse

Synchronizer β needs an initialization that computes a leader node ` and a
spanning tree T rooted at `. As soon as all nodes are safe, this information is
propagated to ` by a convergecast. The leader then broadcasts this information
to all nodes. The details of synchronizer β are given in Algorithm 11.7.

Theorem 11.8. The time and message complexities of synchronizer β per syn-
chronous round are

T (β) = O(diameter(T )) ≤ O(n) and M(β) = O(n).

The time and message complexities for the initialization are

Tinit(β) = O(n) and Minit(β) = O(m+ n log n).
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Proof. Because the diameter of T is at most n − 1, the convergecast and the
broadcast together take at most 2n − 2 time units. Per clock pulse, the syn-
chronizer sends at most 2n− 2 synchronization messages (one in each direction
over each edge of T ).

With the improved variant of the GHS algorithm (Algorithm 2.18) men-
tioned in Chapter 2, it is possible to construct an MST in time O(n) with
O(m + n log n) messages in an asynchronous environment. Once the tree is
computed, the tree can be made rooted in time O(n) with O(n) messages.

Remarks:

• We now got a time-efficient synchronizer (α) and a message-efficient
synchronizer (β), it is only natural to ask whether we can have the
best of both worlds. And, indeed, we can. How is that synchronizer
called? Quite obviously: γ.

11.4 The Hybrid Synchronizer γ

Figure 11.9: A cluster partition of a network: The dashed cycles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges

Synchronizer γ can be seen as a combination of synchronizers α and β. In the
initialization phase, the network is partitioned into clusters of small diameter.
In each cluster, a leader node is chosen and a BFS tree rooted at this leader
node is computed. These trees are called the intracluster trees. Two clusters
C1 and C2 are called neighboring if there are nodes u ∈ C1 and v ∈ C2 for
which (u, v) ∈ E. For every two neighboring clusters, an intercluster edge is
chosen, which will serve for communication between these clusters. Figure 11.9
illustrates this partitioning into clusters. We will discuss the details of how to
construct such a partition in the next section. We say that a cluster is safe if
all its nodes are safe.
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Synchronizer γ works in two phases. In a first phase, synchronizer β is
applied separately in each cluster by using the intracluster trees. Whenever
the leader of a cluster learns that its cluster is safe, it reports this fact to all
the nodes in the clusters as well as to the leaders of the neighboring clusters.
Now, the nodes of the cluster enter the second phase where they wait until
all the neighboring clusters are known to be safe and then generate the next
pulse. Hence, we essentially apply synchronizer α between clusters. A detailed
description is given by Algorithm 11.10.

Algorithm 11.10 Synchronizer γ (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all children in intracluster tree
3: if v is not cluster leader then
4: send SAFE message to parent in intracluster tree
5: wait until CLUSTERSAFE message received from parent
6: end if
7: send CLUSTERSAFE message to all children in intracluster tree
8: send NEIGHBORSAFE message over all intercluster edges of v
9: wait until v receives NEIGHBORSAFE messages from all adjacent inter-

cluster edges and all children in intracluster tree
10: if v is not cluster leader then
11: send NEIGHBORSAFE message to parent in intracluster tree
12: wait until PULSE message received from parent
13: end if
14: send PULSE message to children in intracluster tree
15: start new pulse

Theorem 11.11. Let mC be the number of intercluster edges and let k be the
maximum cluster radius (i.e., the maximum distance of a leaf to its cluster
leader). The time and message complexities of synchronizer γ are

T (γ) = O(k) and M(γ) = O(n+mC).

Proof. We ignore acknowledgements, as they do not affect the asymptotic com-
plexities. Let us first look at the number of messages. Over every intraclus-
ter tree edge, exactly one SAFE message, one CLUSTERSAFE message, one
NEIGHBORSAFE message, and one PULSE message is sent. Further, one
NEIGHBORSAFE message is sent over every intercluster edge. Because there
are less than n intracluster tree edges, the total message complexity therefore
is at most 4n+ 2mC = O(n+mC).

For the time complexity, note that the depth of each intracluster tree is at
most k. On each intracluster tree, two convergecasts (the SAFE and NEIGH-
BORSAFE messages) and two broadcasts (the CLUSTERSAFE and PULSE
messages) are performed. The time complexity for this is at most 4k. There
is one more time unit needed to send the NEIGHBORSAFE messages over the
intercluster edges. The total time complexity therefore is at most 4k + 1 =
O(k).



124 CHAPTER 11. SYNCHRONIZATION

11.5 Network Partition

We will now look at the initialization phase of synchronizer γ. Algorithm 11.12
describes how to construct a partition into clusters that can be used for syn-
chronizer γ. In Algorithm 11.12, B(v, r) denotes the ball of radius r around v,
i.e., B(v, r) = {u ∈ V : d(u, v) ≤ r} where d(u, v) is the hop distance between
u and v. The algorithm has a parameter ρ > 1. The clusters are constructed
sequentially. Each cluster is started at an arbitrary node that has not been
included in a cluster. Then the cluster radius is grown as long as the cluster
grows by a factor more than ρ.

Algorithm 11.12 Cluster construction

1: while unprocessed nodes do
2: select an arbitrary unprocessed node v;
3: r := 0;
4: while |B(v, r + 1)| > ρ|B(v, r)| do
5: r := r + 1
6: end while
7: makeCluster(B(v, r)) // all nodes in B(v, r) are now processed
8: end while

Remarks:

• The algorithm allows a trade-off between the cluster diameter k (and
thus the time complexity) and the number of intercluster edges mC

(and thus the message complexity). We will quantify the possibilities
in the next section.

• Two very simple partitions would be to make a cluster out of every
single node or to make one big cluster that contains the whole graph.
We then get synchronizers α and β as special cases of synchronizer γ.

Theorem 11.13. Algorithm 11.12 computes a partition of the network graph
into clusters of radius at most logρ n. The number of intercluster edges is at
most (ρ− 1) · n.

Proof. The radius of a cluster is initially 0 and does only grow as long as it
grows by a factor larger than ρ. Since there are only n nodes in the graph, this
can happen at most logρ n times.

To count the number of intercluster edges, observe that an edge can only
become an intercluster edge if it connects a node at the boundary of a cluster
with a node outside a cluster. Consider a cluster C of size |C|. We know that
C = B(v, r) for some v ∈ V and r ≥ 0. Further, we know that |B(v, r + 1)| ≤
ρ · |B(v, r)|. The number of nodes adjacent to cluster C is therefore at most
|B(v, r+ 1) \B(v, r)| ≤ ρ · |C| − |C|. Because there is only one intercluster edge
connecting two clusters by definition, the number of intercluster edges adjacent
to C is at most (ρ − 1) · |C|. Summing over all clusters, we get that the total
number of intercluster edges is at most (ρ− 1) · n.

Corollary 11.14. Using ρ = 2, Algorithm 11.12 computes a clustering with
cluster radius at most log2 n and with at most n intercluster edges.
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Corollary 11.15. Using ρ = n1/k, Algorithm 11.12 computes a clustering with
cluster radius at most k and at most O(n1+1/k) intercluster edges.

Remarks:

• Algorithm 11.12 describes a centralized construction of the partition-
ing of the graph. For ρ ≥ 2, the clustering can be computed by an
asynchronous distributed algorithm in time O(n) with O(m+n log n)
(reasonably sized) messages (showing this will be part of the exer-
cises).

• It can be shown that the trade-off between cluster radius and number
of intercluster edges of Algorithm 11.12 is asymptotically optimal.
There are graphs for which every clustering into clusters of radius at
most k requires n1+c/k intercluster edges for some constant c.

The above remarks lead to a complete characterization of the complexity of
synchronizer γ.

Corollary 11.16. The time and message complexities of synchronizer γ per
synchronous round are

T (γ) = O(k) and M(γ) = O(n1+1/k).

The time and message complexities for the initialization are

Tinit(γ) = O(n) and Minit(γ) = O(m+ n log n).

Remarks:

• In Chapter 2, you have seen that by using flooding, there is a very
simple synchronous algorithm to compute a BFS tree in time O(D)
with message complexity O(m). If we use synchronizer γ to make this
algorithm asynchronous, we get an algorithm with time complexity
O(n+D log n) and message complexityO(m+n log n+D·n) (including
initialization).

• The synchronizers α, β, and γ achieve global synchronization, i.e.
every node generates every clock pulse. The disadvantage of this is
that nodes that do not participate in a computation also have to
participate in the synchronization. In many computations (e.g. in a
BFS construction), many nodes only participate for a few synchronous
rounds. In such scenarios, it is possible to achieve time and message
complexity O(log3 n) per synchronous round (without initialization).

• It can be shown that if all nodes in the network need to generate all
pulses, the trade-off of synchronizer γ is asymptotically optimal.

• Partitions of networks into clusters of small diameter and coverings
of networks with clusters of small diameters come in many variations
and have various applications in distributed computations. In particu-
lar, apart from synchronizers, algorithms for routing, the construction
of sparse spanning subgraphs, distributed data structures, and even
computations of local structures such as a MIS or a dominating set
are based on some kind of network partitions or covers.
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11.6 Clock Synchronization

“A man with one clock knows what time it is – a man with two is never sure.”

Synchronizers can directly be used to give nodes in an asynchronous network a
common notion of time. In wireless networks, for instance, many basic protocols
need an accurate time. Sometimes a common time in the whole network is
needed, often it is enough to synchronize neighbors. The purpose of the time
division multiple access (TDMA) protocol is to use the common wireless channel
as efficiently as possible, i.e., interfering nodes should never transmit at the
same time (on the same frequency). If we use synchronizer β to give the nodes
a common notion of time, every single clock cycle costs D time units!

Often, each (wireless) node is equipped with an internal clock. Using this
clock, it should be possible to divide time into slots, and make each node send
(or listen, or sleep, respectively) in the appropriate slots according to the media
access control (MAC) layer protocol used.

However, as it turns out, synchronizing clocks in a network is not trivial.
As nodes’ internal clocks are not perfect, they will run at speeds that are time-
dependent. For instance, variations in temperature or supply voltage will affect
this clock drift. For standard clocks, the drift is in the order of parts per million,
i.e., within a second, it will accumulate to a couple of microseconds. Wireless
TDMA protocols account for this by introducing guard times. Whenever a node
knows that it is about to receive a message from a neighbor, it powers up its
radio a little bit earlier to make sure that it does not miss the message even
when clocks are not perfectly synchronized. If nodes are badly synchronized,
messages of different slots might collide.

In the clock synchronization problem, we are given a network (graph) with
n nodes. The goal for each node is to have a logical clock such that the logical
clock values are well synchronized, and close to real time. Each node is equipped
with a hardware clock, that ticks more or less in real time, i.e., the time between
two pulses is arbitrary between [1− ε, 1 + ε], for a constant ε� 1. Similarly as
in our asynchronous model, we assume that messages sent over the edges of the
graph have a delivery time between [0, 1]. In other words, we have a bounded
but variable drift on the hardware clocks and an arbitrary jitter in the delivery
times. The goal is to design a message-passing algorithm that ensures that the
logical clock skew of adjacent nodes is as small as possible at all times.

Theorem 11.17. The global clock skew (the logical clock difference between any
two nodes in the graph) is Ω(D), where D is the diameter of the graph.

Proof. For a node u, let tu be the logical time of u and let (u → v) denote a
message sent from u to a node v. Let t(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then all the messages sent by u and v at time
i according to the clock of the sender arrive at time i + 1/2 according to the
clock of the receiver.

Then consider the following cases

• tu = tv + 1/2, t(u→ v) = 1, t(v → u) = 0

• tu = tv − 1/2, t(u→ v) = 0, t(v → u) = 1,
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where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time i according to the clock of the sender arrive at time i + 1/2 according
to the logical clock of the receiver. Therefore, for nodes u and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes l, r cannot
distinguish tl = tr +D/2 from tl = tr −D/2.

Remarks:

• From Theorem 11.17, it directly follows that all the clock synchro-
nization algorithms we studied have a global skew of Ω(D).

• Many natural algorithms manage to achieve a global clock skew of
O(D).

As both the message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift between neighboring
nodes. As synchronizer α pays most attention to the local synchronization, we
take a look at a protocol inspired by the synchronizer α. A pseudo-code repre-
sentation for the clock synchronization protocol α is given in Algorithm 11.18.

Algorithm 11.18 Clock synchronization α (at node v)

1: repeat
2: send logical time tv to all neighbors
3: if Receive logical time tu, where tu > tv, from any neighbor u then
4: tv := tu
5: end if
6: until done

Lemma 11.19. The clock synchronization protocol α has a local skew of Ω(n).

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1, v2, . . . , vD from left to right and the logical clock of node vi by ti. Apart
from the left-most node v1 all hardware clocks run with speed 1 (real time).
Node v1 runs at maximum speed, i.e. the time between two pulses is not 1 but
1− ε. Assume that initially all message delays are 1. After some time, node v1
will start to speed up v2, and after some more time v2 will speed up v3, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t1 = tD +D − 1.

Now we start playing around with the message delays. Let t1 = T . First we
set the delay between the v1 and v2 to 0. Now node v2 immediately adjusts its
logical clock to T . After this event (which is instantaneous in our model) we set
the delay between v2 and v3 to 0, which results in v3 setting its logical clock to T
as well. We perform this successively to all pairs of nodes until vD−2 and vD−1.
Now node vD−1 sets its logical clock to T , which indicates that the difference
between the logical clocks of vD−1 and vD is T − (T − (D − 1)) = D − 1.
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Remarks:

• The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown that
any natural clock synchronization algorithm must have a bad local
skew. In particular, a protocol that averages between all neighbors
is even worse than the introduced α algorithm. This algorithm has a
clock skew of Ω(D2) in the linked list, at all times.

• It was shown that the local clock skew is Θ(logD), i.e., there is a pro-
tocol that achieves this bound, and there is a proof that no algorithm
can be better than this bound!

• Note that these are worst-case bounds. In practice, clock drift and
message delays may not be the worst possible, typically the speed of
hardware clocks changes at a comparatively slow pace and the mes-
sage transmission times follow a benign probability distribution. If we
assume this, better protocols do exist.

Chapter Notes

The idea behind synchronizers is quite intuitive and as such, synchronizers α and
β were implicitly used in various asynchronous algorithms [Gal76, Cha79, CL85]
before being proposed as separate entities. The general idea of applying syn-
chronizers to run synchronous algorithms in asynchronous networks was first
introduced by Awerbuch [Awe85a]. His work also formally introduced the syn-
chronizers α and β. Improved synchronizers that exploit inactive nodes or hy-
percube networks were presented in [AP90, PU87].

Naturally, as synchronizers are motivated by practical difficulties with local
clocks, there are plenty of real life applications. Studies regarding applications
can be found in, e.g., [SM86, Awe85b, LTC89, AP90, PU87]. Synchronizers in
the presence of network failures have been discussed in [AP88, HS94].

It has been known for a long time that the global clock skew is Θ(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Ω(logD/ log logD) for the local skew. The first algorithm providing a non-
trivial local skew of O(

√
D) was given in [LW06]. Later, matching upper and

lower bounds of Θ(logD) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKS03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRW07, SW09, LSW09, FW10, FZTS11].
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[MKSL04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
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