Principles of Distributed Computing Exercise 14: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

$$
M^{D I S J}=\left(\begin{array}{r|ccccccccc}
\text { DISJ } & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 & \leftarrow x \\
\hline 000 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
001 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \\
010 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & \\
011 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \\
100 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \\
101 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \\
110 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \\
111 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\uparrow y & & & & & & & & &
\end{array}\right) .
$$

b) When $k=3$, a fooling set of size 4 for DISJ is, e.g.,

$$
S_{1}:=\{(111,000),(110,001),(101,010),(100,011)\} .
$$

Entries in $M^{D I S J}$ corresponding to elements of S_{1} are marked dark gray. However, a fooling set does not always need to be on a diagonal of the matrix. An example for such a set is

$$
S_{2}:=\{(001,110),(010,001),(011,100),(100,010)\}
$$

and marked light gray in $M^{D I S J}$.
c) In general, $S:=\left\{(x, \bar{x}) \mid x \in\{0,1\}^{k}\right\}$ is a fooling set for $D I S J$. To prove this, we note: If $y>\bar{x}$ then there is always an index i such that $x_{i}=y_{i}=1$ and we conclude $\operatorname{DISJ}(x, y)=0$. Second, we note for any two elements $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ of any fooling set that $x_{1} \neq x_{2}$. Otherwise it was $\left(x_{1}, y_{j}\right)=\left(x_{2}, y_{j}\right)$ for $j \in\{1,2\}$ and thus $f\left(x_{2}, y_{1}\right)=f\left(x_{1}, y_{2}\right)=f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)=$: z which contradicts the definition of a fooling set. Similarly it is $y_{1} \neq y_{2}$.

- For any $(x, y) \in S$ it is $\operatorname{DISJ}(x, y)=1$.
- Now consider any $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right) \in S$. Since $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$, we conclude that either $y_{2}>\overline{x_{1}}$, in which case $\operatorname{DISJ}\left(x_{1}, y_{2}\right)=0$, or $y_{1}>\overline{x_{2}}$ causing $\operatorname{DISJ}\left(x_{2}, y_{1}\right)=0$.

2 Distinguishing Diameter 2 from 4

a) - Choosing $v \in L$ takes $O(D)$: Use any leader election protocol from the lecture. E.g., the node with smallest ID in L can be elected as a leader. Then this node will be v.

- Computing a BFS tree from a vertex usually takes $O(D)$. Since in our setting all graphs are guaranteed to have constant diameter, the time required for this is $O(1)$. As node v is in L, at most $\left|N_{1}(v)\right| \leq s$ executions of BFS are performed. These can be started one after each other and yield a complexity of $O(s)$.
- The comment states: Computing an H-dominating set $\mathcal{D O M}$ takes time $O(D)=O(1)$.
- Since $|\mathcal{D} O M| \leq \frac{n \log n}{s}$, the time complexity of computing all BFS trees from each vertex in $\mathcal{D} O M$ (one after each other) is $O\left(\frac{n \log n}{s}\right)$.
- Checking whether all trees have depth of at most 2 can be done in $O(D)=O(1)$ as well: Each node knows its depth in any of the computed trees. If its depth is 3 or 4 , it floods "diameter is 4 " to the graph. If a node gets such a message from several neighbors, it only forwards it to those from which it did not receive it yet. If any node did not receive message "diameter is 4 " after 4 rounds, it decides that the diameter is 2. Otherwise it decides that the diameter is 4 . This decision will be consistent among all nodes.
- By adding all these runtimes, we conclude that the total time complexity of Algorithm 2 -vs-4 is $O\left(s+\frac{n \log n}{s}\right)$.
b) By deriving $O\left(s+\frac{n \log n}{s}\right)$ as a function of s we can argue that $O\left(s+\frac{n \log n}{s}\right)$ is minimal for $s=\sqrt{n \log n}$. Thus the runtime of the Algorithm is $O(\sqrt{n \log n})$.
c) Since in this case no BFS tree can have depth larger than 2 the algorithm returns "diameter is 2 ".
d) Using the triangle inequality we obtain that $d(w, v) \geq d(u, v)-d(u, w)=3$ thus the BFS tree of w has at least depth 3. Therefore Algorithm 2-vs-4 decides "diameter is 4 ".
e) Let w be the leader elected in step 2 of Algorithm 2-vs-4. If the BFS started in w has depth at least 3 , we are done. In the other case it is $d(u, w) \leq 2$. Using d) we conclude that $d(u, w)=2$. Let w^{\prime} be a node that connects u to w. Since $w^{\prime} \in N_{1}(w)$, Algorithm 2-vs-4 executes a BFS from w^{\prime}. Then we apply d) using that $w^{\prime} \in N_{1}(u)$.
f) Since $\mathcal{D} O M$ is a dominating set for $H=V \backslash L=V$, it follows immediately that the algorithm executes a BFS from a node $w \in \mathcal{D} O M \cap N_{1}(u) \neq \emptyset$. Now apply d).
g) A careful look into the construction of family \mathcal{G} reveals that we essentially showed an $\Omega(n / \log n)$ lower bound to distinguish diameter 2 from 3 . Since the graphs considered here cannot have diameter 3 , the studied algorithm does not contradict this lower bound.
h) Consider a clique (with n nodes, n large enough) and remove an arbitrary edge (u, v). Since $d(u, v)=2$, the graph has diameter 2 . We have $L=\emptyset$ and $\{w\}$ is an H-dominating set for all $u \neq w \neq v$. If $\mathcal{D} O M=\{w\}$, then Algorithm 2-vs-4 executes exactly one BFS (from w) which has depth 1 which disproves the claim. Note that this proof works for all $s \leq n-2$.

