
Chapter 9

Social Networks

Distributed computing is applicable in various contexts. This lecture exemplar-
ily studies one of these contexts, social networks, an area of study whose origins
date back a century. To give you a first impression, consider Figure 9.1.
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4Figure 9.1: This graph shows the social relations between the members of a
karate club, studied by anthropologist Wayne Zachary in the 1970s. Two people
(nodes) stand out, the instructor and the administrator of the club, both happen
to have many friends among club members. At some point, a dispute caused
the club to split into two. Can you predict how the club partitioned? (If not,
just search the Internet for Zachary and Karate.)
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9.1 Small World Networks

Back in 1929, Frigyes Karinthy published a volume of short stories that pos-
tulated that the world was “shrinking” because human beings were connected
more and more. Some claim that he was inspired by radio network pioneer
Guglielmo Marconi’s 1909 Nobel Prize speech. Despite physical distance, the
growing density of human “networks” renders the actual social distance smaller
and smaller. As a result, it is believed that any two individuals can be connected
through at most five (or so) acquaintances, i.e., within six hops.

The topic was hot in the 1960s. For instance, in 1964, Marshall McLuhan
coined the metaphor “Global Village”. He wrote: “As electrically contracted,
the globe is no more than a village”. He argues that due to the almost instanta-
neous reaction times of new (“electric”) technologies, each individual inevitably
feels the consequences of his actions and thus automatically deeply participates
in the global society. McLuhan understood what we now can directly observe –
real and virtual world are moving together. He realized that the transmission
medium, rather than the transmitted information is at the core of change, as
expressed by his famous phrase “the medium is the message”.

This idea has been followed ardently in the 1960s by several sociologists,
first by Michael Gurevich, later by Stanley Milgram. Milgram wanted to know
the average path length between two “random” humans, by using various ex-
periments, generally using randomly chosen individuals from the US Midwest
as starting points, and a stockbroker living in a suburb of Boston as target.
The starting points were given name, address, occupation, plus some personal
information about the target. They were asked to send a letter to the target.
However, they were not allowed to directly send the letter, rather, they had to
pass it to somebody they knew on first-name basis and that they thought to
have a higher probability to know the target person. This process was repeated,
until somebody knew the target person, and could deliver the letter. Shortly
after starting the experiment, letters have been received. Most letters were lost
during the process, but if they arrived, the average path length was about 5.5.
The observation that the entire population is connected by short acquaintance
chains got later popularized by the terms “six degrees of separation” and “small
world”.

Statisticians tried to explain Milgram’s experiments, by essentially giving
network models that allowed for short diameters, i.e., each node is connected
to each other node by only a few hops. Until today there is a thriving research
community in statistical physics that tries to understand network properties
that allow for “small world” effects.

The world is often fascinated by graphs with a small radius. For example,
movie fanatics study the who-acted-with-whom-in-the-same-movie graph. For
this graph it has long been believed that the actor Kevin Bacon has a partic-
ularly small radius. The number of hops from Bacon even got a name, the
Bacon Number. In the meantime, however, it has been shown that there are
“better” centers in the Hollywood universe, such as Sean Connery, Christopher
Lee, Rod Steiger, Gene Hackman, or Michael Caine. The center of other social
networks has also been explored, Paul Erdös for instance is well known in the
math community.

One of the keywords in this area are power-law graphs, networks where node
degrees are distributed according to a power-law distribution, i.e., the number
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of nodes with degree δ is proportional to δ−α, for some α > 1. Such power-
law graphs have been witnessed in many application areas, apart from social
networks also in the web, or in biology or physics.

Obviously, two power-law graphs might look and behave completely differ-
ently, even if α and the number of edges is exactly the same.

One well-known model towards this end is the Watts-Strogatz model. Watts
and Strogatz argued that social networks should be modeled by a combination of
two networks: As the basis we take a network that has a large cluster coefficient
. . .

Definition 9.1. The cluster coefficient of a network is defined by the probability
that two friends of a node are likely to be friends as well, averaged over all the
nodes.

. . . , then we augment such a graph with random links, every node for in-
stance points to a constant number of other nodes, chosen uniformly at random.
This augmentation represents acquaintances that connect nodes to parts of the
network that would otherwise be far away.

Remarks:

• Without further information, knowing the cluster coefficient is of ques-
tionable value: Assume we arrange the nodes in a grid. Technically,
if we connect each node to its four closest neighbors, the graph has
cluster coefficient 0, since there are no triangles; if we instead connect
each node with its eight closest neighbors, the cluster coefficient is 3/7.
The cluster coefficient is quite different, even though both networks
have similar characteristics.

This is interesting, but not enough to really understand what is going on. For
Milgram’s experiments to work, it is not sufficient to connect the nodes in a
certain way. In addition, the nodes themselves need to know how to forward
a message to one of their neighbors, even though they cannot know whether
that neighbor is really closer to the target. In other words, nodes are not just
following physical laws, but they make decisions themselves.

Let us consider an artificial network with nodes on a grid topology, plus some
additional random links per node. In a quantitative study it was shown that the
random links need a specific distance distribution to allow for efficient greedy
routing. This distribution marks the sweet spot for any navigable network.

Definition 9.2 (Augmented Grid). We take n = m2 nodes (i, j) ∈ V =

{1, . . . ,m}2 that are identified with the lattice points on an m × m grid. We
define the distance between two nodes (i, j) and (k, `) as d

(
(i, j), (k, `)

)
= |k −

i| + |` − j| as the distance between them on the m × m lattice. The network
is modeled using a parameter α ≥ 0. Each node u has a directed edge to ev-
ery lattice neighbor. These are the local contacts of a node. In addition, each
node also has an additional random link (the long-range contact). For all u
and v, the long-range contact of u points to node v with probability proportional
to d(u, v)−α, i.e., with probability d(u, v)−α/

∑
w∈V \{u} d(u,w)−α. Figure 9.2

illustrates the model.
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Figure 9.2: Augmented grid with m = 6

Remarks:

• The network model has the following geographic interpretation: nodes
(individuals) live on a grid and know their neighbors on the grid.
Further, each node has some additional acquaintances throughout the
network.

• The parameter α controls how the additional neighbors are distributed
across the grid. If α = 0, long-range contacts are chosen uniformly at
random (as in the Watts-Strogatz model). As α increases, long-range
contacts become shorter on average. In the extreme case, if α → ∞,
all long-range contacts are to immediate neighbors on the grid.

• It can be shown that as long as α ≤ 2, the diameter of the resulting
graph is polylogarithmic in n (polynomial in log n) with high proba-
bility. In particular, if the long-range contacts are chosen uniformly
at random (α = 0), the diameter is O(log n).

Since the augmented grid contains random links, we do not know anything
for sure about how the random links are distributed. In theory, all links could
point to the same node! However, this is almost certainly not the case. Formally
this is captured by the term with high probability.

Definition 9.3 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p ≥ 1 −
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1/nc, where c is a constant. The constant c may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Remarks:

• For instance, a running time bound of c log n or ec! log n+ 5000c with
probability at least 1− 1/nc would be O(log n) w.h.p., but a running
time of nc would not be O(n) w.h.p. since c might also be 50.

• This definition is very powerful, as any polynomial (in n) number
of statements that hold w.h.p. also holds w.h.p. at the same time,
regardless of any dependencies between random variables!

Theorem 9.4. The diameter of the augmented grid with α = 0 is O(log n) with
high probability.

Proof Sketch. For simplicity, we will only show that we can reach a target node
t starting from some source node s. However, it can be shown that (essentially)
each of the intermediate claims holds with high probability, which then by means
of the union bound yields that all of the claims hold simultaneously with high
probability for all pairs of nodes (see exercises).

Let Ns be the dlog ne-hop neighborhood of source s on the grid, containing
Ω(log2 n) nodes. Each of the nodes in Ns has a random link, probably leading
to distant parts of the graph. As long as we have reached only o(n) nodes, any
new random link will with probability 1− o(1) lead to a node for which none of
its grid neighbors has been visited yet. Thus, in expectation we find almost |Ns|
new nodes whose neighbors are “fresh”. Using their grid links, we will reach
(4−o(1))|Ns| more nodes within one more hop. If bad luck strikes, it could still
happen that many of these links lead to a few nodes, already visited nodes, or
nodes that are very close to each other. But that is very unlikely, as we have
lots of random choices! Indeed, it can be shown that not only in expectation,
but with high probability (5− o(1))|Ns| many nodes are reached this way (see
exercises).

Because all the new nodes have (so far unused) random links, we can repeat
this reasoning inductively, implying that the number of nodes grows by (at least)
a constant factor for every two hops. Thus, after O(log n) hops, we will have
reached n/ log n nodes (which is still small compared to n). Finally, consider the
expected number of links from these nodes that enter the (log n)-neighborhood
of some target node t with respect to the grid. Since this neighborhood consists
of Ω(log2 n) nodes, in expectation Ω(log n) links come close enough to target
t. This is large enough to almost guarantee that this happens (see exercises).
Summing everything up, we still used merely O(log n) hops in total to get from
s to t.

This shows that for α = 0 (and in fact for all α ≤ 2), the resulting network
has a small diameter. Recall however that we also wanted the network to be
navigable. For this, we consider a simple greedy routing strategy (Algorithm 38).

Lemma 9.5. In the augmented grid, Algorithm 38 finds a routing path of length
at most 2(m− 1) ∈ O(

√
n).
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Algorithm 38 Greedy Routing

1: while not at destination do
2: go to a neighbor which is closest to destination (considering grid distance

only)
3: end while

Proof. Because of the grid, there is always a neighbor which is closer to the
destination. Since with each hop we reduce the distance to the target at least
by one in one of the two grid dimensions, we will reach the destination within
2(m− 1) steps.

This is not really what Milgram’s experiment promises. We want to know
how much the additional random links speed up the process. To this end, we
first need to understand how likely it is that the random link of node u points
to node v, in terms of their grid distance d(u, v), the number of nodes n, and
the constant parameter α.

Lemma 9.6. Node u’s random link points to a node v with probability

• Θ(1/(d(u, v)αm2−α)) if α < 2.

• Θ(1/(d(u, v)2 log n)) if α = 2,

• Θ(1/d(u, v)α) if α > 2.

Moreover, if α > 2, the probability to see a link of length at least d is in
Θ(1/dα−2).

Proof. For a constant α 6= 2, we have that

∑

w∈V \{u}

1

d(u,w)α
∈

m∑

r=1

Θ(r)

rα
= Θ

(∫ m

r=1

1

rα−1
dr

)
= Θ

([
r2−α

2− α

]m

1

)
.

If α < 2, this gives Θ(m2−α), if α > 2, it is in Θ(1). If α = 2, we get

∑

w∈V \{u}

1

d(u,w)α
∈

m∑

r=1

Θ(r)

r2
= Θ(1) ·

m∑

r=1

1

r
= Θ(logm) = Θ(log n).

Multiplying with d(u, v)α yields the first three bounds. For the last statement,
compute

∑

v∈V
d(u,v)≥d

Θ(1/d(u, v)α) = Θ

(∫ m

r=d

r

rα
dr

)
= Θ

([
r2−α

2− α

]m

d

)
= Θ(1/dα−2).
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Remarks:

• If α > 2, according to the lemma, the probability to see a random link
of length at least d = m1/(α−1) is Θ(1/dα−2) = Θ(1/m(α−2)/(α−1)).
In expectation we have to take Θ(m(α−2)/(α−1)) hops until we see a
random link of length at least d. When just following links of length
less than d, it takes more than m/d = m/m1/(α−1) = m(α−2)/(α−1)

hops. In other words, in expectation, either way we need at least
m(α−2)/(α−1) = mΩ(1) hops to the destination.

• If α < 2, there is a (slightly more complicated) argument. First we
draw a border around the nodes in distance m(2−α)/3 to the target.
Within this border there are about m2(2−α)/3 many nodes in the tar-
get area. Assume that the source is outside the target area. Start-
ing at the source, the probability to find a random link that leads
directly inside the target area is according to the lemma at most
m2(2−α)/3 · Θ(1/m2−α)) = Θ(1/m(2−α)/3). In other words, until we
find a random link that leads into the target area, in expectation,
we have to do Θ(m(2−α)/3) hops. This is too slow, and our greedy
strategy is probably faster, as thanks to having α < 2 there are many
long-range links. However, it means that we will probably enter the
border of the target area on a regular grid link. Once inside the tar-
get area, again the probability of short-cutting our trip by a random
long-range link is Θ(1/m(2−α)/3), so we probably just follow grid links,
m(2−α)/3 = mΩ(1) many of them.

• In summary, if α 6= 2, our greedy routing algorithm takes mΩ(1) =
nΩ(1) expected hops to reach the destination. This is polynomial in
the number of nodes n, and the social network can hardly be called a
“small world”.

• Maybe we can get a polylogarithmic bound on n if we set α = 2?

Definition 9.7 (Phase). Consider routing from source s to target t and assume
that we are at some intermediate node w. We say that we are in phase j at node
w if the lattice distance d(w, t) to the target node t is between 2j < d(w, t) ≤
2j+1.

Remarks:

• Enumerating the phases in decreasing order is useful, as notation be-
comes less cumbersome.

• There are dlogme ∈ O(log n) phases.

Lemma 9.8. Assume that we are in phase j at node w when routing from s
to t. The probability for getting (at least) to phase j − 1 in one step is at least
Ω(1/ log n).

Proof. Let Bj be the set of nodes x with d(x, t) ≤ 2j . We get from phase j to
(at least) phase j − 1 if the long-range contact of node w points to some node
in Bj . Note that we always make progress while following the greedy routing
path. Therefore, we have not seen node w before and the long-range contact of
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w points to a random node that is independent of anything seen on the path
from s to w.

For all nodes x ∈ Bj , we have d(w, x) ≤ d(w, t) + d(x, t) ≤ 2j+1 + 2j < 2j+2.
Hence, for each node x ∈ Bj , the probability that the long-range contact of w
points to x is Ω(1/22j+4 log n). Further, the number of nodes in Bj is at least
(2j)2/2 = 22j−1. Hence, the probability that some node in Bj is the long range
contact of w is at least

Ω

(
|Bj | ·

1

22j+4 log n

)
= Ω

(
22j−1

22j+4 log n

)
= Ω

(
1

log n

)
.

Theorem 9.9. Consider the greedy routing path from a node s to a node t on
an augmented grid with parameter α = 2. The expected length of the path is
O(log2 n).

Proof. We already observed that the total number of phases is O(log n) (the
distance to the target is halved when we go from phase j to phase j − 1). At
each point during the routing process, the probability of proceeding to the next
phase is at least Ω(1/ log n). Let Xj be the number of steps in phase j. Because
the probability for ending the phase is Ω(1/ log n) in each step, in expectation
we need O(log n) steps to proceed to the next phase, i.e., E[Xj ] ∈ O(log n). Let
X =

∑
j Xj be the total number of steps of the routing process. By linearity of

expectation, we have

E[X] =
∑

j

E[Xj ] ∈ O(log2 n).

Remarks:

• One can show that the O(log2 n) result also holds w.h.p.

• In real world social networks, the parameter α was evaluated experi-
mentally. The assumption is that you are connected to the geograph-
ically closest nodes, and then have some random long-range contacts.
For Facebook grandpa LiveJournal it was shown that α is not really
2, but rather around 1.25.

9.2 Propagation Studies

In networks, nodes may influence each other’s behavior and decisions. There are
many applications where nodes influence their neighbors, e.g., they may impact
their opinions, or they may bias what products they buy, or they may pass on
a disease.

On a beach (modeled as a line segment), it is best to place an ice cream
stand right in the middle of the segment, because you will be able to “control”
the beach most easily. What about the second stand, where should it settle?
The answer generally depends on the model, but assuming that people will buy
ice cream from the stand that is closer, it should go right next to the first stand.

Rumors can spread surprisingly fast through social networks. Tradition-
ally this happens by word of mouth, but with the emergence of the Internet
and its possibilities new ways of rumor propagation are available. People write
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email, use instant messengers or publish their thoughts in a blog. Many factors
influence the dissemination of rumors. It is especially important where in a net-
work a rumor is initiated and how convincing it is. Furthermore the underlying
network structure decides how fast the information can spread and how many
people are reached. More generally, we can speak of diffusion of information in
networks. The analysis of these diffusion processes can be useful for viral mar-
keting, e.g., to target a few influential people to initiate marketing campaigns.
A company may wish to distribute the rumor of a new product via the most
influential individuals in popular social networks such as Facebook. A second
company might want to introduce a competing product and has hence to select
where to seed the information to be disseminated. Rumor spreading is quite
similar to our ice cream stand problem.

More formally, we may study propagation problems in graphs. Given a
graph, and two players. Let the first player choose a seed node u1; afterwards
let the second player choose a seed node u2, with u2 6= u1. The goal of the game
is to maximize the number of nodes that are closer to one’s own seed node.

In many graphs it is an advantage to choose first. In a star graph for instance
the first player can choose the center node of the star, controlling all but one
node. In some other graphs, the second player can at least score even. But is
there a graph where the second player has an advantage?

Theorem 9.10. In a two player rumor game where both players select one node
to initiate their rumor in the graph, the first player does not always win.

Proof. See Figure 9.3 for an example where the second player will always win,
regardless of the decision the first player. If the first player chooses the node x0

in the center, the second player can select x1. Choice x1 will be outwitted by x2,
and x2 itself can be answered by z1. All other strategies are either symmetric,
or even less promising for the first player.

x1x2

y2

y1

z1

x0

y2

z2

Figure 9.3: Counter example.
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Chapter Notes

A simple form of a social network is the famous stable marriage problem [DS62]
in which a stable matching bipartite graph has to be found. There exists a great
many of variations which are based on this initial problem, e.g., [KC82, KMV94,
EO06, FKPS10, Hoe11]. Social networks like Facebook, Twitter and others have
grown very fast in the last years and hence spurred interest to research them.
How users influence other users has been studied both from a theoretical point
of view [KKT03] and in practice [CHBG10]. The structure of these networks
can be measured and studied [MMG+07]. More than half of the users in social
networks share more information than they expect to [LGKM11].

The small world phenomenon that we presented in this chapter is analyzed
by Kleinberg [Kle00]. A general overview is in [DJ10].

This chapter has been written in collaboration with Michael Kuhn.
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