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Principles of Distributed Computing
Exercise 8: Sample Solution

1 Coloring Rings

a) Let n > 4 be even, and r = n/2 — 2. Consider the r-neighborhood graph N,.(R,,) of the ring
R, with n nodes. Note that for r = n/2 — 2 the r-neighborhood of a node contains all but
three identifiers, ordered according to their occurence.

The ring can be colored legally with two colors in 7 rounds if and only if NV,.(R,,) is bipartite,
i.e., the r-neighborhood graph contains no odd cycle. However, there is one of length n — 1:
(1,...,mn=3),(2,...,n—2),(3,...,n—=1),(4,...,n—=1,1),(5,...,n—1,1,2),...,
(n—1,1,2...,n—4),(1,...,n— 3).

Thus no coloring of the ring with 2 colors is possible in less than n/2 — 1 rounds.

b) Each node informs its two neighbors whether it is in the MIS or not and additionally sends
its identifier. If node v is in the MIS, it sets its color to 1. If v is not in the MIS but both of
its neighbors are, then v sets its color to 2. If v has a neighbor w not in the MIS, v chooses
color 2 if its identifier is larger than w’s identifier, otherwise v chooses the color 3.

The algorithm only needs one communication round. Correctness follows from the fact that
either a node v is in the MIS or at least one of its neigbhors is. Thus, a MIS can at best be
computed one round faster than a 3-coloring, which implies that computing a MIS costs at
least (log" n)/2 — 2 rounds.

2 Ramsey theory

a) Let us fix the edge-color blue for knowing each other and the edge-color red for not knowing
each other. We can also assume p > 2, else already one node would violate the condition.
If any group of three people must contain at least one person that does not know the other
two, then there can be no blue path of length two (else one would take the three nodes from
the path and violate the condition).

If we take 2p — 2 nodes, then we can build a graph that satisfies our conditions: First
maximize the number of blue paths of length one, resulting in a perfect matching where
every node is connected with a blue edge to exactly one other node. We now have p — 1
pairs of people that mutually know each other via a blue edge. Now let us color all other
edges in red. Now at most p — 1 people mutually do not know each other: If p people would
mutually not know each other, then by the pigeonhole principle one blue edge would need
to be removed.

Now let us look at 2p — 1 nodes: Assume there are at most p — 1 people that mutually do
not know each other, because else we would have p people mutually not knowing each other.
Let us look at any such set of p— 1 people that mutually do not know each other: we cannot
add any of the remaining at least (2p-1)-(p-1)=p nodes, because each of them knows exactly
one node of the set. But again, with the pigeonhole principle, one node in the set of size at
most (p-1) must know at least two nodes from the other set of size at least p, violating the
condition.



In summary, this means that there is a solution for 2p — 2 nodes but not for 2p — 1 nodes,
giving us a sharp bound.



