DDA 2010, lecture 3:
Ramsey’s theorem

e A generalisation of the pigeonhole principle

e Frank P. Ramsey (1930):
“On a problem of formal logic”

e “ .. In the course of this investigation It IS necessary
to use certain theorems on combinations which have
an independent interest...”



DDA 2010, lecture 3a:
Introduction to Ramsey’s theorem

e Notation of Ramsey numbers
from Radziszowski (2009)



Basic definitions

N=4,k=3,c=2

e Assign a colour from {1, 2, ..., c} | 1,23 {1,2,4
to each k-subset of {1, 2, ..., N} 1,34} {2.3.4)

N=6,k=2,c=2

N=13,k=1,c=3| |{1,2} {1,3} {1,4} {1,5} {1,6}

1}y 2} 38 4 12,3} 12,4} 12,5} 12,6}
1y {6} 17} 18} 13,4} 13,5} 13,6}
19 110} {11} {12} 4,5} 14,6}

{13} {5,6}




Basic definitions

e Assign a colour from {1, 2, ..., ¢}
to each k-subset of {1, 2, ..., N}

N=6,k=2,c=2

{1,2} {1,3} {1.4} {1,5} {1,6}
{2,3} {2,4} {2,5} {2,6}
{3,4} {3,5} {3,6}

{4,5} {4,6}

19,6}




Basic definitions

e X c {1, 2, ..., N} Is a monochromatic subset
If all k-subsets of X have the same colour

N=6,k=2,c=2

11,2} {13} {14} {1,5} {1.6}
{2,3t {2.4 {2,5} {2.6}

3,4y {3,5} {3.6}

{4,5} {4,6}

{5,6}




Ramsey’s theorem

e Assign a colour from {1, 2, ..., ¢}
to each k-subset of {1, 2, ..., N}
e X c {1, 2, ..., N} Is a monochromatic subset

If all k-subsets of X have the same colour

e Ramsey’s theorem: For all c, k, and n
there is a finite N such that any c-colouring
of k-subsets of {1, 2, ..., N} contains
a monochromatic subset with n elements



Ramsey’s theorem

e Assign a colour from {1, 2, ..., ¢}
to each k-subset of {1, 2, ..., N}
e X c {1, 2, ..., N} Is a monochromatic subset

If all k-subsets of X have the same colour

e Ramsey’s theorem: For all c, k, and n
there is a finite N such that any c-colouring
of k-subsets of {1, 2, ..., N} contains
a monochromatic subset with n elements
<[ Ramsey J

e The smallest such N is denoted by R¢(n; k) numbers




Ramsey’s theorem: k=1

e k = 1: pigeonhole principle

e [f we put N Iitems into c slots,
then at least one of the slots
has to contain at least n items

e Colour of the 1-subset {i} = slot of the element |
e Clearly holdsif N>c(n-1) +1

e Does not necessarily hold if N < ¢(n - 1)

e Re(N; 1) =c(n-1) +1




Ramsey’s theorem: k=2, ¢ =2

e Complete graphs, red and blue edges

e |f the graph is large enough, there
will be a monochromatic clique

e For example, R2(2; 2) = 2,
R2(3; 2) = 6, and Rz(4; 2) = 18

e A graph with 2 nodes contains
a monochromatic edge

e A graph with 6 nodes contains
a monochromatic triangle




Ramsey’s theorem: k=2, ¢ =2

e Of course, we can equally well have:
e red/blue edges

e existing/missing edges

10



Ramsey’s theorem: k=2, ¢ =2

e Another Interpretation: graphs
e {u,v} red: edge {u,v} present
e {u,v} blue: edge {u,v} missing

e Large monochromatic subset:

e Large clique (red) or
large independent set (blue)

e Any graph with 6 nodes
contains a clique with 3 nodes or
an independent set with 3 nodes
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Ramsey’s theorem: k=2, ¢ =2

e Sufficiently large graphs
(N nodes) contain large
Independents sets (n nodes)
or large cliques (n nodes)

e You can avoid one of these,
out not both

e However, Ramsey numbers are
large: here N Is exponential in n
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DDA 2010, lecture 3Db:
Proof of Ramsey’s theorem

e Following Nesetril (1995)
e Notation from Radziszowski (2009)
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Definitions
3

\--/

e X c{l, 2, ..., N} Is a monochromatic subset:

If A and B are k-subsets of X,
then A and B have the same colour

e Xc{l, 2, ..., N} Isagood subset:

IT A and B are k-subsets of X and min(A) = min(B),
then A and B have the same colour

e An example with ¢ =2 and k = 2:
{1,2,3,5} I1s good but not monochromatic in the colouring

{1,2}, {1,3}, {1.,4}, {1,5}, {2,3}, {2.4}, {2,5}, {3,5}, {4.,5
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Definitions

e X c{l, 2, ..., N} Is a monochromatic subset:

If A and B are k-subsets of X,
then A and B have the same colour

e Xc{l, 2, ..., N} Is a good subset:
IT A and B are k-subsets of X and min(A) = min(B),
then A and B have the same colour

e R¢(n; k) = smallest N s.t. 3 monochromatic n-subset

e G¢(n; k) =smallest N s.t. 3 good n-subset
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Proof outline

e Re(n; k) = smallest N s.t. 3 monochromatic n-subset
e G¢(Nn; k) = smallest N s.t. 3 good n-subset

e Theorem: Re(n; K) is finite for all c, n, k

(i) Re(n; 1) is finite for all n ™
. e c Is fixed
(i) IfRe(n; k-1) Is f_ln_lte for all n throughout

then G¢(n; k) is finite for all n the proof

A

(111) Re(n; K) < Ge(e(n - 1) +1; k) for all n, k
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Ramsey

Re(n; K) vn, k

step (I): k=1

Re(n; K) vn

for each c

Induction on k

k>1, n=Kk

step (i): k>1

if Re(x; k- 1) wx
then G¢(n; k)

k>1

if Re(n; k-1) vn
then G¢(n; k) vn

%ﬂduction onn

if Re(n; k-1) vn
then Rc¢(n; k) vn

%

k>1,n>k

step (ii): k> 1

If Gc(n; k) vin
then R¢(n; k) vn

if Re(X; k — 1) vx
and G¢(n - 1; k)
then G¢(n; k)




Proof: step (i)

e Lemma: Re¢(n; 1) is finite for all n
e Proof:

e Pigeonhole principle
e Re(n; 1)=c(n-1)+1
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Proof: step (i1) — outline

e Lemma: if Re(n; k = 1) is finite for all n
then Gc(n; k) 1s finite for all n
e Proof:
e |nduction on n
e Basis: Ge(k; k) 1s finite
e |[nductive step: Assume that M = G¢(n - 1; K) Is finite
e Then we also have a finite R.(M; k - 1)
e Enough to show that G¢(n; k) <1+ R¢(M; k - 1)
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Proof: step (11) |f:

{1,2,3} {1,2,4} {1,3,4} {2,3,4}
{2,3} {2,4} {3,4}

e Ge(n; k) <1+ Re(M; k-1)

where M = G¢(n - 1; k)

e Llet N=1+ R¢(M; k - 1), consider any
colouring f of k-subsets of {1, 2, ..., N}

e Delete element 1:

colouring f’ of (k - 1)-subsets of {2, 3, ..., N}

e Find an f’-monochromatic M-subset X c {2, 3, ..., N}

e Find an f-good (n - 1)-subset Y c X

e {1} u Y Is an f-good n-subset of {1, 2, ..., N}
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Proof: step (i)

-

In real life, these constants
would be much larger...

~

)

1/

/

e A fictional example: N=7, M=5,n=5,k=3

e Original colouring f: {1,2,3}, {1,2,4}, {1,2,5},
{1,2,6}, {1,2,7}, ..., {1,6,7}, {2,3,4}, ..., {5,6,7}

e Colouring f’: {2,3}, {2,4}, {2,5}, {2,6}, {2,7}, ..., {6,7}

e f’-monochromatic M-subset {2,3,4,5,7} of {2,3,..., N}:
{2,3}, {2,4}, {2,5}, {2,7}, ..., {b,7}

e f-good (n-1)-subset {2,4,5,7}: {2,4,5}, {2,4,7}, {4,5,7}

e {1,2,4,5,7}Is f-good: {1,2,4}, {1,2,5}, {1,2,7}, ...,
{1,5,7}, {2,4,5}, {2,4,7}, {4,5,7}
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Proof: step (i)

e A fictional example: N = 7,

e Original colouring f: {1,2,3}/{1,2,4}, {//,2,5},
{1,2,6}, {1,2,7}, ..., {1,6,7) {2,3,4}, /., {5,6,7}

- Colouring f': {2,3}, {2,4},£2,5%, (2,6}, (2,73, ..., (6,7}

e f’-monochromatic M-subset {2,3,4,h,7} of {2,3,...,N}:
{2,3}, {2,4}, {2,5}, {2,7}, ..., {5,7}

e f-good (n-1)-subset {2,4,5,7}: {2,4,5}, {2,4,7}, {4,5,7}

e {1,2,4,5,7}Is f-good: {1,2,4}, {1,2,5}, {1,2,7}, ...,
{1,5,7}, {2,4,5}, {2,4,7}, {4,5,7}
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Proof: step (i1) — summary

e Lemma: if Re(n; k = 1) is finite for all n
then G¢(n; k) Is finite for all n
e Proof:
e |[nduction on n
e Gc(k; k) is finite

e We have shown that if Ge(n - 1; k) Is finite
then G¢(n; k) is finite

e Trick: show that G¢(n; k) <1 + Re(Ge(n - 1; k); k-=1)
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Proof: step (i)
3

e Lemma: R¢(n; K) < Ge(c(n - 1) + 1; k) for all n, k

e Proof:

e IfN=Ge(c(n-1) +1; k), we can find
a good subset X with c(n - 1) + 1 elements

e |f k-subset A of X has colour 1, put min(A) into slot |

e E.9.: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}:
put 1 and 3 to slot blue, 2 to slot green, 5 to any slot

e Each slot Is monochromatic and
at least one slot contains n elements (pigeonhole)!
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Ramsey’s theorem: proof summary

e Re(n; k) = smallest N s.t. 3 monochromatic n-subset
e G¢(Nn; k) = smallest N s.t. 3 good n-subset
e Theorem: Re(n; K) is finite for all c, n, k

(i) Re(n; 1) is finite for all n
[c IS fixedj

(i) If Re(n; k = 1) 1s finite for all n
then G¢(n; k) is finite for all n

e Induction: G¢(n; k) < 1 + Re(Ge(n - 1; K); k - 1)
(iii) Re(n; k) < Ge(c(n - 1) +1; k) for all n, k
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