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Introduction

What is Distributed Computing?

In the last few decades, we have experienced an unprecedented growth in the
area of distributed systems and networks. Distributed computing now encom-
passes many of the activities occurring in today’s computer and communications
world. Indeed, distributed computing appears in quite diverse application areas:
Typical “old school” examples are parallel computers, or the Internet. More re-
cent application examples of distributed systems include peer-to-peer systems,
sensor networks, and multi-core architectures.

These applications have in common that many processors or entities (often
called nodes) are active in the system at any moment. The nodes have certain
degrees of freedom: they may have their own hardware, their own code, and
sometimes their own independent task. Nevertheless, the nodes may share com-
mon resources and information, and, in order to solve a problem that concerns
several—or maybe even all-—nodes, coordination is necessary.

Despite these commonalities, a peer-to-peer system, for example, is quite
different from a multi-core architecture. Due to such differences, many differ-
ent models and parameters are studied in the area of distributed computing.
In some systems the nodes operate synchronously, in other systems they oper-
ate asynchronously. There are simple homogeneous systems, and heterogeneous
systems where different types of nodes, potentially with different capabilities,
objectives etc., need to interact. There are different communication techniques:
nodes may communicate by exchanging messages, or by means of shared mem-
ory. Sometimes the communication infrastructure is tailor-made for an applica-
tion, sometimes one has to work with any given infrastructure. The nodes in a
system sometimes work together to solve a global task, occasionally the nodes
are autonomous agents that have their own agenda and compete for common
resources. Sometimes the nodes can be assumed to work correctly, at times they
may exhibit failures. In contrast to a single-node system, distributed systems
may still function correctly despite failures as other nodes can take over the work
of the failed nodes. There are different kinds of failures that can be considered:
nodes may just crash, or they might exhibit an arbitrary, erroneous behavior,
maybe even to a degree where it cannot be distinguished from malicious (also
known as Byzantine) behavior. It is also possible that the nodes follow the rules
indeed, however they tweak the parameters to get the most out of the system;
in other words, the nodes act selfishly.

Apparently, there are many models (and even more combinations of models)
that can be studied. We will not discuss them in greater detail now, but simply
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define them when we use them. Towards the end of the course a general picture
should emerge. Hopefully!

This course introduces the basic principles of distributed computing, high-
lighting common themes and techniques. In particular, we study some of the
fundamental issues underlying the design of distributed systems:

e Communication: Communication does not come for free; often communi-
cation cost dominates the cost of local processing or storage. Sometimes
we even assume that everything but communication is free.

Coordination: How can you coordinate a distributed system so that it
performs some task efficiently?

Fault-tolerance: As mentioned above, one major advantage of a distrib-
uted system is that even in the presence of failures the system as a whole
may survive.

Locality: Networks keep growing. Luckily, global information is not always
needed to solve a task, often it is sufficient if nodes talk to their neighbors.
In this course, we will address the fundamental question in distributed
computing whether a local solution is possible for a wide range of problems.

Parallelism: How fast can you solve a task if you increase your computa-
tional power, e.g., by increasing the number of nodes that can share the
workload? How much parallelism is possible for a given problem?

Symmetry breaking: Sometimes some nodes need to be selected to or-
chestrate the computation (and the communication). This is typically
achieved by a technique called symmetry breaking.

Synchronization: How can you implement a synchronous algorithm in an
asynchronous system?

Uncertainty: If we need to agree on a single term that fittingly describes
this course, it is probably “uncertainty”. As the whole system is distrib-
uted, the nodes cannot know what other nodes are doing at this exact
moment, and the nodes are required to solve the tasks at hand despite the
lack of global knowledge.

Finally, there are also a few areas that we will not cover in this course,
mostly because these topics have become so important that they deserve and
have their own courses. Examples for such topics are distributed programming,
software engineering, as well as security and cryptography.

In summary, in this class we explore essential algorithmic ideas and lower
bound techniques, basically the “pearls” of distributed computing and network
algorithms. We will cover a fresh topic every week.

Have fun!

Chapter Notes

Many excellent text books have been written on the subject. The book closest
to this course is by David Peleg [Pel00], as it shares about half of the material.
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A main focus of Peleg’s book are network partitions, covers, decompositions,
spanners, and labeling schemes, an interesting area that we will only touch in
this course. There exist a multitude of other text books that overlap with one or
two chapters of this course, e.g., [Lei92, Bar96, Lyn96, Tel01, AW04, HKP*05,
CLRS09, Suol2]. Another related course is by James Aspnes [Asp].

Some chapters of this course have been developed in collaboration with (for-
mer) Ph.D. students, see chapter notes for details. Many students have helped
to improve exercises and script. Thanks go to Philipp Brandes, Raphael Ei-
denbenz, Roland Flury, Klaus-Tycho Forster, Stephan Holzer, Barbara Keller,
Fabian Kuhn, Christoph Lenzen, Thomas Locher, Remo Meier, Thomas Mosci-
broda, Regina O’Dell, Yvonne Anne Pignolet, Jochen Seidel, Stefan Schmid,
Johannes Schneider, Jara Uitto, Pascal von Rickenbach (in alphabetical order).
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Chapter 1

Vertex Coloring

1.1 Problem & Model

Vertex coloring is an infamous graph theory problem. It is also a useful toy
example to see the style of this course already in the first lecture. Vertex coloring
does have quite a few practical applications, for example in the area of wireless
networks where coloring is the foundation of so-called TDMA MAC protocols.
Generally speaking, vertex coloring is used as a means to break symmetries, one
of the main themes in distributed computing. In this chapter we will not really
talk about vertex coloring applications, but treat the problem abstractly. At the
end of the class you probably learned the fastest (but not constant!) algorithm
ever! Let us start with some simple definitions and observations.

Problem 1.1 (Vertex Coloring). Given an undirected graph G = (V, E), assign

a color ¢, to each vertex w € V such that the following holds: e = (v,w) €
E = ¢, # cw.

Remarks:
e Throughout this course, we use the terms vertex and node interchangeably.

e The application often asks us to use few colors! In a TDMA MAC protocol,
for example, less colors immediately imply higher throughput. However,
in distributed computing we are often happy with a solution which is sub-
optimal. There is a tradeoff between the optimality of a solution (efficacy),
and the work/time needed to compute the solution (efficiency).

Figure 1.1: 3-colorable graph with a valid coloring.

(3
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Assumption 1.2 (Node Identifiers). Fach node has a unique identifier, e.g.,
its IP address. We usually assume that each identifier consists of only logn bits
if the system has n nodes.

Remarks:

e Sometimes we might even assume that the nodes exactly have identifiers
1,...,n.

e It is easy to see that node identifiers (as defined in Assumption 1.2) solve
the coloring problem 1.1, but not very well (essentially requiring n colors).
How many colors are needed is a well-studied problem.

Definition 1.3 (Chromatic Number). Given an undirected Graph G = (V, E),
the chromatic number x(G) is the minimum number of colors to solve Problem
1.1.

To get a better understanding of the vertex coloring problem, let us first look
at a simple non-distributed (“centralized”) vertex coloring algorithm:

Algorithm 1 Greedy Sequential

1: while 3 uncolored vertex v do

2:  color v with the minimal color (number) that does not conflict with the
already colored neighbors

3: end while

Definition 1.4 (Degree). The number of neighbors of a vertex v, denoted by
0(v), is called the degree of v. The mazimum degree vertex in a graph G defines
the graph degree A(G) = A.

Theorem 1.5 (Analysis of Algorithm 1). The algorithm is correct and termi-
nates in n “steps”. The algorithm uses at most A + 1 colors.

Proof: Correctness and termination are straightforward. Since each node has at
most A neighbors, there is always at least one color free in the range {1,..., A+

1}.
Remarks:
o In Definition 1.7 we will see what is meant by “step”.
e For many graphs coloring can be done with much less than A + 1 colors.
e This algorithm is not distributed at all; only one processor is active at a
time. Still, maybe we can use the simple idea of Algorithm 1 to define a

distributed coloring subroutine that may come in handy later.

Now we are ready to study distributed algorithms for this problem. The fol-
lowing procedure can be executed by every vertex v in a distributed coloring
algorithm. The goal of this subroutine is to improve a given initial coloring.

1.1. PROBLEM & MODEL 7

Procedure 2 First Free

Require: Node Coloring {e.g., node IDs as defined in Assumption 1.2}
Give v the smallest admissible color {i.e., the smallest node color not used by
any neighbor}

Remarks:

e With this subroutine we have to make sure that two adjacent vertices are
not colored at the same time. Otherwise, the neighbors may at the same
time conclude that some small color c is still available in their neighbor-
hood, and then at the same time decide to choose this color c.

Definition 1.6 (Synchronous Distributed Algorithm). In a synchronous al-
gorithm, nodes operate in synchronous rounds. In each round, each processor
ezecutes the following steps:

1. Do some local computation (of reasonable complexity).
2. Send messages to neighbors in graph (of reasonable size).

3. Receive messages (that were sent by neighbors in step 2 of the same round).

Remarks:
e Any other step ordering is fine.

o What does “reasonable” mean in this context? We are somewhat flexible
here, and different model variants exist. Generally, we will deal with algo-
rithms that only do very simple computations (a comparison, an addition,
etc.). Exponential-time computation is usually considered cheating in this
context. Similarly, sending a message with a node ID, or a value is con-
sidered okay, whereas sending really long messages is considered cheating.
We will have more exact definitions later, when we need them.

Algorithm 3 Reduce

Assume that initially all nodes have IDs (Assumption 1.2)
Each node v executes the following code
node v sends its ID to all neighbors
node v receives IDs of neighbors
: while node v has an uncolored neighbor with higher ID do
node v sends “undecided” to all neighbors
node v receives new decisions from neighbors
end while
node v chooses a free color using subroutine First Free (Procedure 2)
node v informs all its neighbors about its choice

O © X NPT W N

=

Definition 1.7 (Time Complexity). For synchronous algorithms (as defined in
1.6) the time complexity is the number of rounds until the algorithm terminates.
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Figure 1.2: Vertex 100 receives the lowest possible color.

Remarks:

e The algorithm terminates when the last processor has decided to termi-
nate.

e To guarantee correctness the procedure requires a legal input (i.e., pairwise
different node IDs).

Theorem 1.8 (Analysis of Algorithm 3). Algorithm 3 is correct and has time
complexity n. The algorithm uses at most A + 1 colors.

Remarks:
e Quite trivial, but also quite slow.
e However, it seems difficult to come up with a fast algorithm.

e Maybe it’s better to first study a simple special case, a tree, and then go
from there.

1.2 Coloring Trees

Lemma 1.9. x(Tree) <2

Constructive Proof: If the distance of a node to the root is odd (even), color
it 1 (0). An odd node has only even neighbors and vice versa. If we assume
that each node knows its parent (root has no parent) and children in a tree, this
constructive proof gives a very simple algorithm:

Algorithm 4 Slow Tree Coloring
1: Color the root 0, root sends 0 to its children
2: Each node v concurrently executes the following code:
3: if node v receives a message z (from parent) then
4:  node v chooses color ¢, =1 —z
5:  mnode v sends ¢, to its children (all neighbors except parent)
6: end if

1.2. COLORING TREES 9
Remarks:
e With the proof of Lemma 1.9, Algorithm 4 is correct.

e How can we determine a root in a tree if it is not already given? We will
figure that out later.

The time complexity of the algorithm is the height of the tree.

If the root was chosen unfortunately, and the tree has a degenerated topol-
ogy, the time complexity may be up to n, the number of nodes.

e Also, this algorithm does not need to be synchronous . ..!

Definition 1.10 (Asynchronous Distributed Algorithm). In the asynchronous
model, algorithms are event driven (“upon receiving message . .., do ...”"). Pro-
cessors cannot access a global clock. A message sent from one processor to
another will arrive in finite but unbounded time.

Remarks:

e The asynchronous model and the synchronous model (Definition 1.6) are
the cornerstone models in distributed computing. As they do not neces-
sarily reflect reality there are several models in between synchronous and
asynchronous. However, from a theoretical point of view the synchronous
and the asynchronous model are the most interesting ones (because every
other model is in between these extremes).

Note that in the asynchronous model, messages that take a longer path
may arrive earlier.

Definition 1.11 (Time Complexity). For asynchronous algorithms (as defined
in 1.6) the time complexity is the number of time units from the start of the
ezecution to its completion in the worst case (every legal input, every execution
scenario), assuming that each message has a delay of at most one time unit.

Remarks:

e You cannot use the maximum delay in the algorithm design. In other
words, the algorithm has to be correct even if there is no such delay upper
bound.

Definition 1.12 (Message Complexity). The message complexity of a syn-
chronous or asynchronous algorithm is determined by the number of messages
exchanged (again every legal input, every execution scenario).

Theorem 1.13 (Analysis of Algorithm 4). Algorithm 4 is correct. If each node
knows its parent and its children, the (asynchronous) time complezity is the tree
height which is bounded by the diameter of the tree; the message complexity is
n — 1 in a tree with n nodes.
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Remarks:

e In this case the asynchronous time complexity is the same as the syn-
chronous time complexity.

e Nice trees, e.g., balanced binary trees, have logarithmic height, that is we
have a logarithmic time complexity.

e This algorithm is not very exciting. Can we do better than logarithmic?

The following algorithm terminates in log” n time. Log-Star?! That’s the num-
ber of logarithms (to the base 2) you need to take to get down to at least 2,
starting with n:

Definition 1.14 (Log-Star).

Ve <2:log"z:=1 Va>2: log"z:=1+log"(logz)

Remarks:

e Log-star is an amazingly slowly growing function. Log-star of all the atoms
in the observable universe (estimated to be 1080) is 5. There are functions
which grow even more slowly, such as the inverse Ackermann function,
however, the inverse Ackermann function of all the atoms is 4. So log-star
increases indeed very slowly!

Here is the idea of the algorithm: We start with color labels that have log n bits.
In each synchronous round we compute a new label with exponentially smaller
size than the previous label, still guaranteeing to have a valid vertex coloring!
But how are we going to do that?

Algorithm 5 “6-Color”
1: Assume that initially the vertices are legally colored. Using Assumption 1.2
each label only has logn bits

2: The root assigns itself the label 0.
3: Each other node v executes the following code (synchronously in parallel)
4: send ¢, to all children
5: repeat
6:  receive ¢, from parent
7. interpret ¢, and ¢, as little-endian bit-strings: c(k), ..., c(1),¢(0)
8:  let 4 be the smallest index where ¢, and ¢, differ
9:  the new label is i (as bitstring) followed by the bit ¢, (i) itself
10:  send ¢, to all children
11: until ¢, € {0,...,5} for all nodes w
Example:

Algorithm 5 executed on the following part of a tree:

Grand-parent 0010110000 — 10010 — ...
Parent 1010010000 — 01010 — 111
Child 0110010000 — 10001 — 001

Theorem 1.15. Algorithm 5 terminates in log™n time.

1.2. COLORING TREES 11

Remarks:

e Colors 11 (in binary notation, i.e., 6 or 7 in decimal notation) will not be
chosen, because the node will then do another round. This gives a total
of 6 colors (i.e., colors 0,..., 5).

Can one reduce the number of colors in only constant steps? Note that
algorithm 3 does not work (since the degree of a node can be much higher
than 6)! For fewer colors we need to have siblings monochromatic!

Before we explore this problem we should probably have a second look at
the end game of the algorithm, the UNTIL statement. Is this algorithm
truly local?! Let’s discuss!

Algorithm 6 Shift Down
1: Root chooses a new (different) color from {0, 1,2}
2: Each other node v concurrently executes the following code:
3: Recolor v with the color of parent

Lemma 1.16 (Analysis of Algorithm 6). Algorithm 6 preserves coloring legality;
also siblings are monochromatic.

Now Algorithm 3 (Reduce) can be used to reduce the number of used colors
from six to three.

Algorithm 7 Six-2-Three
1: Each node v concurrently executes the following code:
2: Run Algorithm 5 for log™ n rounds.
3: for x =5,4,3 do
4:  Perform subroutine Shift down (Algorithm 6)
5. if ¢, = x then
6: choose new color ¢, € {0, 1,2} using subroutine First Free (Algorithm
2)
7. end if
8: end for

Theorem 1.17 (Analysis of Algorithm 7). Algorithm 7 colors a tree with three
colors in time O(log™ n).

Remarks:

e The term O() used in Theorem 1.15 is called “big O” and is often used in
distributed computing. Roughly speaking, O(f) means “in the order of
f, ignoring constant factors and smaller additive terms.” More formally,
for two functions f and g, it holds that f € O(g) if there are constants
and ¢ so that |f(x)| < ¢|g(z)] for all z > zo. For an elaborate discussion
on the big O notation we refer to other introductory math or computer
science classes.
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Figure 1.3: Possible execution of Algorithm 7.

e As one can easily prove, a fast tree-coloring with only 2 colors is more

than exponentially more expensive than coloring with 3 colors. In a tree
degenerated to a list, nodes far away need to figure out whether they are
an even or odd number of hops away from each other in order to get a
2-coloring. To do that one has to send a message to these nodes. This
costs time linear in the number of nodes.

e The idea of this algorithm can be generalized, e.g., to a ring topology. Also

a general graph with constant degree A can be colored with A + 1 colors
in O(log” n) time. The idea is as follows: In each step, a node compares
its label to each of its neighbors, constructing a logarithmic difference-tag
as in 6-color (Algorithm 5). Then the new label is the concatenation of
all the difference-tags. For constant degree A, this gives a 3A-label in
O(log" n) steps. Algorithm 3 then reduces the number of colors to A + 1
in 234 (this is still a constant for constant Al) steps.

e Unfortunately, coloring a general graph is not yet possible with this tech-

nique. We will see another technique for that in Chapter 5. With this
technique it is possible to color a general graph with A 4+ 1 colors in
O(logn) time.

BIBLIOGRAPHY 13

e A lower bound shows that many of these log-star algorithms are asymp-
totically (up to constant factors) optimal. We will also see that later.

Chapter Notes

The basic technique of the log-star algorithm is by Cole and Vishkin [CV86].
The technique can be generalized and extended, e.g., to a ring topology or to
graphs with constant degree [GP87, GPS88, KMWO05]. Using it as a subroutine,
one can solve many problems in log-star time. For instance, one can color so-
called growth bounded graphs (a model which includes many natural graph
classes, for instance unit disk graphs) asymptotically optimally in O(log™ n)
time [SWO8|. Actually, Schneider et al. show that many classic combinatorial
problems beyond coloring can be solved in log-star time in growth bounded and
other restricted graphs.

In a later chapter we learn a Q(log" n) lower bound for coloring and related
problems [Lin92]. Linial’s paper also contains a number of other results on
coloring, e.g., that any algorithm for coloring d-regular trees of radius r that
run in time at most 2r/3 require at least 2(v/d) colors.

For general graphs, later we will learn fast coloring algorithms that use a
maximal independent sets as a base. Since coloring exhibits a trade-off between
efficacy and efficiency, many different results for general graphs exist, e.g., [PS96,
KSOS06, BE09, Kuh09, SW10, BE11b, KP11, BE11lal.

Some parts of this chapter are also discussed in Chapter 7 of [Pel00], e.g.,
the proof of Theorem 1.15.

Bibliography

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta+1)-coloring
in linear (in delta) time. In fIst ACM Symposium On Theory of
Computing (STOC), 2009.

[BE1la] Leonid Barenboim and Michael Elkin. Combinatorial Algorithms for
Distributed Graph Coloring. In 25th International Symposium on
DIStributed Computing, 2011.

[BE11b] Leonid Barenboim and Michael Elkin. Deterministic Distributed Ver-
tex Coloring in Polylogarithmic Time. J. ACM, 58(5):23, 2011.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algo-
rithms. In 18th annual ACM Symposium on Theory of Computing
(STOC), 1986.

[GP87] Andrew V. Goldberg and Serge A. Plotkin. Parallel (A+1)-coloring
of constant-degree graphs. Inf. Process. Lett., 25(4):241-245, June
1987.

[GPS88] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon.
Parallel Symmetry-Breaking in Sparse Graphs. SIAM J. Discrete
Math., 1(4):434-446, 1988.




14 CHAPTER 1. VERTEX COLORING

[KMWO05] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On
the Locality of Bounded Growth. In 24th ACM Symposium on the
Principles of Distributed Computing (PODC), Las Vegas, Nevada,
USA, July 2005.

[KP11

Kishore Kothapalli and Sriram V. Pemmaraju. Distributed graph
coloring in a few rounds. In 30th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), 2011. Orm@.ﬁmﬁ N

[KSOS06] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Christian
Schindelhauer. Distributed coloring in O(y/logn) Bit Rounds. In .
20th international conference on Parallel and Distributed Processing H&@”Q@H mu—mo,ﬁ ”_.o”—.\u.

(IPDPS), 2006.
[Kuh09

Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In 21st ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2009. 2.1 Anonymous Leader Election

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal

S algorithms (e.g. the slow t loring algorithm 4) ask for a special nod
on Computing, 21(1)(1):193-201, February 1992. ome algorithms (e.g. the slow tree coloring algorithm 4) ask for a special node,

a so-called “leader”. Computing a leader is a very simple form of symmetry

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach. breaking. Algorithms based on leaders do generally not exhibit a high degree
Society for Industrial and Applied Mathematics, Philadelphia, PA, of parallelism, and therefore often suffer from poor time complexity. However,
USA. 2000. sometimes it is still useful to have a leader to make critical decisions in an easy
’ (though non-distributed!) way.
[PS96] Alessandro Panconesi and Aravind Srinivasan. On the Complexity of The process of choosing a leader is known as leader election. Although leader
Distributed Network Decomposition. J. Algorithms, 20(2):356-374, election is a simple form of symmetry breaking, there are some remarkable issues
1996. that allow us to introduce notable computational models.

In this chapter we concentrate on the ring topology. Many interesting chal-
lenges in distributed computing already reveal the root of the problem in the
special case of the ring. Paying special attention to the ring also makes sense
from a practical point of view as some real world systems are based on a ring
topology, e.g., the token ring standard for local area networks.

[SW08

Johannes Schneider and Roger Wattenhofer. A Log-Star Distributed
Maximal Independent Set Algorithm for Growth-Bounded Graphs.
In 27th ACM Symposium on Principles of Distributed Computing
(PODC), Toronto, Canada, August 2008.

[SW10

Johannes Schneider and Roger Wattenhofer. A New Technique For
Distributed Symmetry Breaking. In 29th Symposium on Principles
of Distributed Computing (PODC), Zurich, Switzerland, July 2010.

Problem 2.1 (Leader Election). Each node eventually decides whether it is a
leader or not, subject to the constraint that there is exactly one leader.

Remarks:

e More formally, nodes are in one of three states: undecided, leader, not
leader. Initially every node is in the undecided state. When leaving the
undecided state, a node goes into a final state (leader or not leader).

Definition 2.2 (Anonymous). A system is anonymous if nodes do not have
unique identifiers.

Definition 2.3 (Uniform). An algorithm is called uniform if the number of
nodes n is not known to the algorithm (to the nodes, if you wish). If n is
known, the algorithm is called non-uniform.

‘Whether a leader can be elected in an anonymous system depends on whether
the network is symmetric (ring, complete graph, complete bipartite graph, etc.)
or asymmetric (star, single node with highest degree, etc.). Simplifying slightly,
in this context a symmetric graph is a graph in which the extended neighborhood
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of each node has the same structure. We will now show that non-uniform
anonymous leader election for synchronous rings is impossible. The idea is that
in a ring, symmetry can always be maintained.

Lemma 2.4. After round k of any deterministic algorithm on an anonymous
ring, each node is in the same state sj.

Proof by induction: All nodes start in the same state. A round in a synchronous
algorithm consists of the three steps sending, receiving, local computation (see
Definition 1.6). All nodes send the same message(s), receive the same mes-
sage(s), do the same local computation, and therefore end up in the same state.

Theorem 2.5 (Anonymous Leader Election). Deterministic leader election in
an anonymous ring is impossible.

Proof (with Lemma 2.4): If one node ever decides to become a leader (or a
non-leader), then every other node does so as well, contradicting the problem
specification 2.1 for n > 1. This holds for non-uniform algorithms, and therefore
also for uniform algorithms. Furthermore, it holds for synchronous algorithms,
and therefore also for asynchronous algorithms.

Remarks:

e Sense of direction is the ability of nodes to distinguish neighbor nodes in
an anonymous setting. In a ring, for example, a node can distinguish the
clockwise and the counterclockwise neighbor. Sense of direction does not
help in anonymous leader election.

Theorem 2.5 also holds for other symmetric network topologies (e.g., com-
plete graphs, complete bipartite graphs, ...).

Note that Theorem 2.5 does not hold for randomized algorithms; if nodes
are allowed to toss a coin, some symmetries can be broken.

2.2 Asynchronous Ring

We first concentrate on the asynchronous model from Definition 1.10. Through-
out this section we assume non-anonymity; each node has a unique identifier
as proposed in Assumption 1.2. Having ID’s seems to lead to a trivial leader
election algorithm, as we can simply elect the node with, e.g., the highest ID.

Theorem 2.6 (Analysis of Algorithm 8). Algorithm 8 is correct. The time
complezity is O(n). The message complexity is O(n?).

Proof: Let node z be the node with the maximum identifier. Node z sends
its identifier in clockwise direction, and since no other node can swallow it,
eventually a message will arrive at z containing it. Then z declares itself to
be the leader. Every other node will declare non-leader at the latest when
forwarding message z. Since there are n identifiers in the system, each node
will at most forward n messages, giving a message complexity of at most n?.
We start measuring the time when the first node that “wakes up” sends its
identifier. For asynchronous time complexity (Definition 1.11) we assume that
each message takes at most one time unit to arrive at its destination. After at
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Algorithm 8 Clockwise

1: Each node v executes the following code:
2: v sends a message with its identifier (for simplicity also v) to its clockwise
neighbor. {If node v already received a message w with w > v, then node
v can skip this step; if node v receives its first message w with w < v, then
node v will immediately send v.}
if v receives a message w with w > v then

v forwards w to its clockwise neighbor

v decides not to be the leader, if it has not done so already.
else if v receives its own identifier v then

v decides to be the leader
end if

most n — 1 time units the message therefore arrives at node z, waking z up.
Routing the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n — 1. Every other node decides before
node z.

Remarks:

e Note that in Algorithm 8 nodes need to distinguish between clockwise
and counterclockwise neighbors. In fact they do not: It is okay to simply
send your own identifier to any neighbor, and forward a message m to the
neighbor you did not receive the message m from. So nodes only need to
be able to distinguish their two neighbors.

Careful analysis shows, that while having worst-case message complexity
of O(n?), Algorithm 8 has an average message complexity of O(nlogn).
Can we improve this algorithm?

Theorem 2.7 (Analysis of Algorithm 9). Algorithm 9 is correct. The time
complezity is O(n). The message complezity is O(nlogn).

Proof: Correctness is as in Theorem 2.6. The time complexity is O(n) since
the node with maximum identifier z sends messages with round-trip times
2,4,8,16,...,2 - 2" with k < log(n + 1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message com-
plexity is slightly harder: if a node v manages to survive round r, no other node
in distance 2" (or less) survives round r. That is, node v is the only node in its
2"-neighborhood that remains active in round r + 1. Since this is the same for
every node, less than n/2" nodes are active in round r+1. Being active in round
7 costs 2 - 2- 2" messages. Therefore, round r costs at most 2-2-2" - 5ty = 8n
messages. Since there are only logarithmic many possible rounds, the message
complexity follows immediately.

Remarks:
e This algorithm is asynchronous and uniform as well.

e The question may arise whether one can design an algorithm with an even
lower message complexity. We answer this question in the next section.
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Algorithm 9 Radius Growth (For readability we provide pseudo-code only; for
a formal version please consult [Attiya/Welch Alg. 3.1])

1: Each node v does the following:

2: Initially all nodes are active. {all nodes may still become leaders}

3: Whenever a node v sees a message w with w > v, then v decides to not be
a leader and becomes passive.

4: Active nodes search in an exponentially growing neighborhood (clockwise
and counterclockwise) for nodes with higher identifiers, by sending out probe
messages. A probe message includes the ID of the original sender, a bit
whether the sender can still become a leader, and a time-to-live number
(TTL). The first probe message sent by node v includes a TTL of 1.

5: Nodes (active or passive) receiving a probe message decrement the TTL and
forward the message to the next neighbor; if their ID is larger than the one
in the message, they set the leader bit to zero, as the probing node does
not have the maximum ID. If the TTL is zero, probe messages are returned
to the sender using a reply message. The reply message contains the ID of
the receiver (the original sender of the probe message) and the leader-bit.
Reply messages are forwarded by all nodes until they reach the receiver.

6: Upon receiving the reply message: If there was no node with higher ID
in the search area (indicated by the bit in the reply message), the TTL is
doubled and two new probe messages are sent (again to the two neighbors).
If there was a better candidate in the search area, then the node becomes
passive.

7: If a node v receives its own probe message (not a reply) v decides to be the
leader.

2.3 Lower Bounds

Lower bounds in distributed computing are often easier than in the standard
centralized (random access machine, RAM) model because one can argue about
messages that need to be exchanged. In this section we present a first lower
bound. We show that Algorithm 9 is asymptotically optimal.

Definition 2.8 (Execution). An ezecution of a distributed algorithm is a list of
events, sorted by time. An event is a record (time, node, type, message), where
type is “send” or “receive”.

Remarks:

e We assume throughout this course that no two events happen at exactly
the same time (or one can break ties arbitrarily).

An execution of an asynchronous algorithm is generally not only deter-
mined by the algorithm but also by a “god-like” scheduler. If more than
one message is in transit, the scheduler can choose which one arrives first.

e If two messages are transmitted over the same directed edge, then it is
sometimes required that the message first transmitted will also be received
first (“FIFO”).

For our lower bound, we assume the following model:
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Figure 2.1: The rings Ry, Ry are glued together at their open edge.

We are given an asynchronous ring, where nodes may wake up at arbitrary
times (but at the latest when receiving the first message).

We only accept uniform algorithms where the node with the maximum
identifier can be the leader. Additionally, every node that is not the
leader must know the identity of the leader. These two requirements can
be dropped when using a more complicated proof; however, this is beyond
the scope of this course.

During the proof we will “play god” and specify which message in trans-
mission arrives next in the execution. We respect the FIFO conditions for
links.

Definition 2.9 (Open Schedule). A schedule is an execution chosen by the
scheduler. An open (undirected) edge is an edge where no message traversing
the edge has been received so far. A schedule for a ring is open if there is an
open edge in the ring.

The proof of the lower bound is by induction. First we show the base case:

Lemma 2.10. Given a ring R with two nodes, we can construct an open sched-
ule in which at least one message is received. The nodes cannot distinguish this
schedule from one on a larger ring with all other nodes being where the open
edge is.

Proof: Let the two nodes be u and v with v < v. Node u must learn the
identity of node v, thus receive at least one message. We stop the execution of
the algorithm as soon as the first message is received. (If the first message is
received by v, bad luck for the algorithm!) Then the other edge in the ring (on
which the received message was not transmitted) is open. Since the algorithm
needs to be uniform, maybe the open edge is not really an edge at all, nobody
can tell. We could use this to glue two rings together, by breaking up this
imaginary open edge and connect two rings by two edges. An example can be
seen in Figure 2.1.

Lemma 2.11. By gluing together two rings of size n/2 for which we have open
schedules, we can construct an open schedule on a ring of size n. If M(n/2)
denotes the number of messages already received in each of these schedules, at
least 2M (n/2) + n/4 messages have to be exchanged in order to solve leader
election.

Proof by induction: We divide the ring into two sub-rings R; and Ry of size
n/2. These subrings cannot be distinguished from rings with n/2 nodes if no
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messages are received from “outsiders”. We can ensure this by not scheduling
such messages until we want to. Note that executing both given open schedules
on Ry and Ry “in parallel” is possible because we control not only the scheduling
of the messages, but also when nodes wake up. By doing so, we make sure that
2M (n/2) messages are sent before the nodes in Ry and Ry learn anything of
each other!

Without loss of generality, Ry contains the maximum identifier. Hence, each
node in Ry must learn the identity of the maximum identifier, thus at least
n/2 additional messages must be received. The only problem is that we cannot
connect the two sub-rings with both edges since the new ring needs to remain
open. Thus, only messages over one of the edges can be received. We look into
the future: we check what happens when we close only one of these connecting
edges.

Since we know that n/2 nodes have to be informed in Rs, there must be
at least n/2 messages that must be received. Closing both edges must inform
n/2 nodes, thus for one of the two edges there must be a node in distance n/4
which will be informed upon creating that edge. This results in n/4 additional
messages. Thus, we pick this edge and leave the other one open which yields
the claim.

Lemma 2.12. Any uniform leader election algorithm for asynchronous rings
has at least message complexity M(n) > % (logn +1).

Proof by induction: For the sake of simplicity we assume n being a power of
2. The base case n = 2 works because of Lemma 2.10 which implies that
M(2) > 1= 2(log2 + 1). For the induction step, using Lemma 2.11 and the
induction hypothesis we have
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Remarks:

e To hide the ugly constants we use the “big Omega” notation, the lower
bound equivalent of O(). A function f is in Q(g) if there are constants
2o and ¢ > 0 such that |f(z)| > c|g(z)| for all z > zy. Again we refer
to standard text books for a formal definition. Rewriting Lemma 2.12 we
get:

Theorem 2.13 (Asynchronous Leader Election Lower Bound). Any uniform
leader election algorithm for asynchronous rings has Q(nlogn) message com-
plexity.

2.4 Synchronous Ring

The lower bound relied on delaying messages for a very long time. Since this is
impossible in the synchronous model, we might get a better message complexity
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in this case. The basic idea is very simple: In the synchronous model, not

receiving a message is information as welll First we make some additional
assumptions:

e We assume that the algorithm is non-uniform (i.e., the ring size n is
known).

e We assume that every node starts at the same time.

e The node with the minimum identifier becomes the leader; identifiers are
integers.

Algorithm 10 Synchronous Leader Election

1: Each node v concurrently executes the following code:

2: The algorithm operates in synchronous phases. Each phase consists of n
time steps. Node v counts phases, starting with 0.

if phase = v and v did not yet receive a message then

4: v decides to be the leader

5: v sends the message “v is leader” around the ring

6: end if

Remarks:

e Message complexity is indeed n.

But the time complexity is huge! If m is the minimum identifier it is m-n.

The synchronous start and the non-uniformity assumptions can be drop-
ped by using a wake-up technique (upon receiving a wake-up message,
wake up your clockwise neighbors) and by letting messages travel slowly.

There are several lower bounds for the synchronous model: comparison-
based algorithms or algorithms where the time complexity cannot be a
function of the identifiers have message complexity Q(nlogn) as well.

In general graphs efficient leader election may be tricky. While time-
optimal leader election can be done by parallel flooding-echo (see next
chapter), bounding the message complexity is generally more difficult.

Chapter Notes

[Ang80] was the first to mention the now well-known impossibility result for
anonymous rings and other networks, even when using randomization. The
first algorithm for asynchronous rings was presented in [Lan77], which was im-
proved to the presented clockwise algorithm in [CR79]. Later, [HS80] found the
radius growth algorithm, which decreased the worst case message complexity.
Algorithms for the unidirectional case with runtime O(nlogn) can be found in
[DKR82, Pet82]. The Q(nlogn) message complexity lower bound for compari-
son based algorithms was first published in [FL87]. In [Sch89] an algorithm with
constant error probability for anonymous networks is presented. General results
about limitations of computer power in synchronous rings are in [ASW88, AS88].
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Chapter 3

Tree Algorithms

In this chapter we learn a few basic algorithms on trees, and how to construct
trees in the first place so that we can run these (and other) algorithms. The
good news is that these algorithms have many applications, the bad news is
that this chapter is a bit on the simple side. But maybe that’s not really bad
news?!

3.1 Broadcast

Definition 3.1 (Broadcast). A broadcast operation is initiated by a single pro-
cessor, the source. The source wants to send a message to all other nodes in
the system.

Definition 3.2 (Distance, Radius, Diameter). The distance between two nodes
u and v in an undirected graph G is the number of hops of a minimum path
between v and v. The radius of a node u is the maximum distance between u
and any other node in the graph. The radius of a graph is the minimum radius
of any node in the graph. The diameter of a graph is the mazimum distance
between two arbitrary nodes.

Remarks:

e Clearly there is a close relation between the radius R and the diameter D
of a graph, such as R < D < 2R.

The world is often fascinated by graphs with a small radius. For example,
movie fanatics study the who-acted-with-whom-in-the-same-movie graph.
For this graph it has long been believed that the actor Kevin Bacon has
a particularly small radius. The number of hops from Bacon even got a
name, the Bacon Number. In the meantime, however, it has been shown
that there are “better” centers in the Hollywood universe, such as Sean
Connery, Christopher Lee, Rod Steiger, Gene Hackman, or Michael Caine.
The center of other social networks has also been explored, Paul Erdés for
instance is well known in the math community.

Theorem 3.3 (Broadcast Lower Bound). The message complezity of broadcast
is at least n — 1. The source’s radius is a lower bound for the time complexity.

23
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Proof: Every node must receive the message.
Remarks:
e You can use a pre-computed spanning tree to do broadcast with tight

message complexity. If the spanning tree is a breadth-first search spanning
tree (for a given source), then the time complexity is tight as well.

Definition 3.4 (Clean). A graph (network) is clean if the nodes do not know
the topology of the graph.

Theorem 3.5 (Clean Broadcast Lower Bound). For a clean network, the num-
ber of edges is a lower bound for the broadcast message complezity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.

Remarks:

e This lower bound proof directly brings us to the well known flooding al-
gorithm.

Algorithm 11 Flooding
1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards the
message to all (other) neighbors.
3: Upon later receiving the message again (over other edges), a node can dis-
card the message.

Remarks:

e If node v receives the message first from node u, then node v calls node
u parent. This parent relation defines a spanning tree 7. If the flooding
algorithm is executed in a synchronous system, then 7" is a breadth-first
search spanning tree (with respect to the root).

More interestingly, also in asynchronous systems the flooding algorithm
terminates after R time units, R being the radius of the source. However,
the constructed spanning tree may not be a breadth-first search spanning
tree.

3.2 Convergecast
Convergecast is the same as broadcast, just reversed: Instead of a root sending

a message to all other nodes, all other nodes send information to a root. The
simplest convergecast algorithm is the echo algorithm:
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Algorithm 12 Echo

Require: This algorithm is initiated at the leaves.
1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message
to the parent.

Remarks:

Usually the echo algorithm is paired with the flooding algorithm, which is
used to let the leaves know that they should start the echo process; this
is known as flooding/echo.

One can use convergecast for termination detection, for example. If a root
wants to know whether all nodes in the system have finished some task, it
initiates a flooding/echo; the message in the echo algorithm then means
“This subtree has finished the task.”

Message complexity of the echo algorithm is n — 1, but together with
flooding it is O(m), where m = |E| is the number of edges in the graph.

The time complexity of the echo algorithm is determined by the depth of
the spanning tree (i.e., the radius of the root within the tree) generated
by the flooding algorithm.

The flooding/echo algorithm can do much more than collecting acknowl-
edgements from subtres One can for instance use it to compute the
number of nodes in the system, or the maximum ID (for leader election),
or the sum of all values stored in the system, or a route-disjoint matching.

Moreover, by combining results one can compute even fancier aggrega-
tions, e.g., with the number of nodes and the sum one can compute the
average. With the average one can compute the standard deviation. And
soon...

3.3 BFS Tree Construction

In synchronous systems the flooding algorithm is a simple yet efficient method to
construct a breadth-first search (BFS) spanning tree. However, in asynchronous
systems the spanning tree constructed by the flooding algorithm may be far from
BFS. In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms.

We start with the Dijkstra algorithm. The basic idea is to always add the
“closest” node to the existing part of the BFS tree. We need to parallelize this
idea by developing the BFS tree layer by layer:

Theorem 3.6 (Analysis of Algorithm 13). The time complexity of Algorithm
18 is O(D?), the message complezity is O(m + nD), where D is the diameter
of the graph, n the number of nodes, and m the number of edges.

Proof: A broadcast/echo algorithm in 7, needs at most time 2D. Finding new
neighbors at the leaves costs 2 time units. Since the BFS tree height is bounded
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Algorithm 13 Dijkstra BFS
1: The algorithm proceeds in phases. In phase p the nodes with distance p to
the root are detected. Let T), be the tree in phase p. We start with T7 which
is the root plus all direct neighbors of the root. We start with phase p = 1:

2: repeat

3. The root starts phase p by broadcasting “start p” within 7),.

4:  When receiving “start p” a leaf node u of T}, (that is, a node that was
newly discovered in the last phase) sends a “join p + 17 message to all
quiet neighbors. (A neighbor v is quiet if u has not yet “talked” to v.)

5: A node v receiving the first “join p+1” message replies with “ACK” and
becomes a leaf of the tree Tpyq.

6: A node v receiving any further “join” message replies with “NACK”.

7. The leaves of T, collect all the answers of their neighbors; then the leaves
start an echo algorithm back to the root.

8:  When the echo process terminates at the root, the root increments the
phase

9: until there was no new node detected

by the diameter, we have D phases, giving a total time complexity of O(D?).
Each node participating in broadcast/echo only receives (broadcasts) at most 1
message and sends (echoes) at most once. Since there are D phases, the cost is
bounded by O(nD). On each edge there are at most 2 “join” messages. Replies
to a “join” request are answered by 1 “ACK” or “NACK” , which means that we
have at most 4 additional messages per edge. Therefore the message complexity
is O(m +nD).

Remarks:
e The time complexity is not very exciting, so let’s try Bellman-Ford!

The basic idea of Bellman-Ford is even simpler, and heavily used in the
Internet, as it is a basic version of the omnipresent border gateway protocol
(BGP). The idea is to simply keep the distance to the root accurate. If a
neighbor has found a better route to the root, a node might also need to update
its distance.

Algorithm 14 Bellman-Ford BFS
1: Each node u stores an integer d,, which corresponds to the distance from u
to the root. Initially dygot = 0, and d,, = oo for every other node w.
The root starts the algorithm by sending “1” to all neighbors.
if a node u receives a message “y” with y < d,, from a neighbor v then
node u sets d,, =y
node u sends “y + 1”7 to all neighbors (except v)
end if

@«

Theorem 3.7 (Analysis of Algorithm 14). The time complexity of Algorithm
14 is O(D), the message complezity is O(nm), where D,n,m are defined as in
Theorem 3.6.

Proof: We can prove the time complexity by induction. We claim that a node
at distance d from the root has received a message “d” by time d. The root
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knows by time 0 that it is the root. A node v at distance d has a neighbor u
at distance d — 1. Node u by induction sends a message “d” to v at time d — 1
or before, which is then received by v at time d or before. Message complexity
is easier: A node can reduce its distance at most n — 1 times; each of these
times it sends a message to all its neighbors. If all nodes do this we have O(nm)
messages.

Remarks:

e Algorithm 13 has the better message complexity and Algorithm 14 has the
better time complexity. The currently best algorithm (optimizing both)
needs O(m + nlog®n) messages and O(Dlog®n) time. This “trade-off”
algorithm is beyond the scope of this chapter, but we will later learn the
general technique.

3.4 MST Construction

There are several types of spanning trees, each serving a different purpose. A
particularly interesting spanning tree is the minimum spanning tree (MST). The
MST only makes sense on weighted graphs, hence in this section we assume that
each edge e is assigned a weight we.

Definition 3.8 (MST). Given a weighted graph G = (V, E,w), the MST of G is
a spanning tree T minimizing w(T), where w(G') = 3 we for any subgraph

G'CG.

Remarks:

e In the following we assume that no two edges of the graph have the same
weight. This simplifies the problem as it makes the MST unique; however,
this simplification is not essential as one can always break ties by adding
the IDs of adjacent vertices to the weight.

e Obviously we are interested in computing the MST in a distributed way.
For this we use a well-known lemma:

Definition 3.9 (Blue Edges). Let T be a spanning tree of the weighted graph
G and T" C T a subgraph of T (also called a fragment). Edge e = (u,v) is an
outgoing edge of T if u € T" and v ¢ T" (or vice versa). The minimum weight
outgoing edge b(T") is the so-called blue edge of T".

Lemma 3.10. For a given weighted graph G (such that no two weights are the
same), let T denote the MST, and T’ be a fragment of T. Then the blue edge
of T' is also part of T, i.e., T"Ub(T') CT.

Proof: For the sake of contradiction, suppose that in the MST T there is edge
e # b(T") connecting T" with the remainder of 7. Adding the blue edge b(1") to
the MST T we get a cycle including both e and b(T”). If we remove e from this
cycle we still have a spanning tree, and since by the definition of the blue edge
we > w7y, the weight of that new spanning tree is less than than the weight
of T. We have a contradiction.
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Remarks:

e In other words, the blue edges seem to be the key to a distributed al-
gorithm for the MST problem. Since every node itself is a fragment of
the MST, every node directly has a blue edge! All we need to do is to
grow these fragments! Essentially this is a distributed version of Kruskal’s
sequential algorithm.

At any given time the nodes of the graph are partitioned into fragments
(rooted subtrees of the MST). Each fragment has a root, the ID of the
fragment is the ID of its root. Each node knows its parent and its children
in the fragment. The algorithm operates in phases. At the beginning of a
phase, nodes know the IDs of the fragments of their neighbor nodes.

Algorithm 15 GHS (Gallager-Humblet—Spira)

1: Initially each node is the root of its own fragment. We proceed in phases:

2: repeat

3:  All nodes learn the fragment IDs of their neighbors.

4:  The root of each fragment uses flooding/echo in its fragment to determine
the blue edge b = (u,v) of the fragment.

5. The root sends a message to node u; while forwarding the message on the
path from the root to node w all parent-child relations are inverted {such
that w is the new temporary root of the fragment}

6: node u sends a merge request over the blue edge b = (u,v).

7. if node v also sent a merge request over the same blue edge b = (v, u)

then
8: either u or v (whichever has the smaller ID) is the new fragment root
9: the blue edge b is directed accordingly
10: else
11: node v is the new parent of node u
12:  end if

13:  the newly elected root node informs all nodes in its fragment (again using
flooding/echo) about its identity
14: until all nodes are in the same fragment (i.e., there is no outgoing edge)

Remarks:

o Algorithm 15 was stated in pseudo-code, with a few details not really
explained. For instance, it may be that some fragments are much larger
than others, and because of that some nodes may need to wait for others,
e.g., if node u needs to find out whether neighbor v also wants to merge
over the blue edge b = (u,v). The good news is that all these details can
be solved. We can for instance bound the asynchronicity by guaranteeing
that nodes only start the new phase after the last phase is done, similarly
to the phase-technique of Algorithm 13.

Theorem 3.11 (Analysis of Algorithm 15). The time complexity of Algorithm
15 is O(nlogn), the message complezity is O(mlogn).

Proof: Each phase mainly consists of two flooding/echo processes. In general,
the cost of flooding/echo on a tree is O(D) time and O(n) messages. However,
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the diameter D of the fragments may turn out to be not related to the diameter
of the graph because the MST may meander, hence it really is O(n) time. In
addition, in the first step of each phase, nodes need to learn the fragment ID of
their neighbors; this can be done in 2 steps but costs O(m) messages. There are
a few more steps, but they are cheap. Altogether a phase costs O(n) time and
O(m) messages. So we only have to figure out the number of phases: Initially all
fragments are single nodes and hence have size 1. In a later phase, each fragment
merges with at least one other fragment, that is, the size of the smallest fragment
at least doubles. In other words, we have at most logn phases. The theorem
follows directly.

Remarks:

e The GHS algorithm can be applied in different ways. GHS for instance
directly solves leader election in general graphs: The leader is simply the
last surviving root!

Chapter Notes

Trees are one of the oldest graph structures, already appearing in the first book
about graph theory [Koe36]. Broadcasting in distributed computing is younger,
but not that much [DM78]. Overviews about broadcasting can be found for
example in Chapter 3 of [Pel00] and Chapter 7 of [HKPT05]. For a introduction
to centralized tree-construction, see e.g. [Eve79] or [CLRS09]. Overviews for the
distributed case can be found in Chapter 5 of [Pel00] or Chapter 4 of [Lyn96].
The classic papers on routing are [For56, Bel58, Dij59]. In a later chapter, we
will later learn a general technique to derive algorithms with an almost optimal
time and message complexity.

Algorithm 15 is called “GHS” after Gallager, Humblet, and Spira, three
pioneers in distributed computing [GHS83]. Their algorithm won the presti-
gious Edsger W. Dijkstra Prize in Distributed Computing in 2004, among other
reasons because it was one of the first non-trivial asynchronous distributed al-
gorithms. As such it can be seen as one of the seeds of this research area. We
presented a simplified version of GHS. The original paper featured an improved
message complexity of O(m + nlogn). Later, Awerbuch managed to further
improve the GHS algorithm to get O(n) time and O(m + nlogn) message com-
plexity, both asymptotically optimal [Awe87].
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Chapter 4

Distributed Sorting

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of sorting [and searching]!”

— Donald E. Knuth, The Art of Computer Programming

In this chapter we study a classic problem in computer science—sorting
from a distributed computing perspective. In contrast to an orthodox single-
processor sorting algorithm, no node has access to all data, instead the to-be-
sorted values are distributed. Distributed sorting then boils down to:

Definition 4.1 (Sorting). We choose a graph with n nodes vy, ..., v,. Initially
each node stores a value. After applying a sorting algorithm, node vy, stores the
k™ smallest value.

Remarks:

o What if we route all values to the same central node v, let v sort the values
locally, and then route them to the correct destinations?! According to the
message passing model studied in the first few chapters this is perfectly
legal. With a star topology sorting finishes in O(1) time!

Definition 4.2 (Node Contention). In each step of a synchronous algorithm,
each node can only send and receive O(1) messages containing O(1) values, no
matter how many neighbors the node has.

Remarks:

e Using Definition 4.2 sorting on a star graph takes linear time.

4.1 Array & Mesh

To get a better intuitive understanding of distributed sorting, we start with two
simple topologies, the array and the mesh. Let us begin with the array:
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Algorithm 16 Odd/Even Sort

1: Given an array of n nodes (v1, .
2: repeat

3:  Compare and exchange the values at nodes ¢ and i + 1, ¢ odd
4:  Compare and exchange the values at nodes ¢ and i + 1, i even
5: until done

,Un), each storing a value (not sorted).

Remarks:

e The compare and exchange primitive in Algorithm 16 is defined as follows:
Let the value stored at node i be v;. After the compare and exchange node
i stores value min(v;, v;4+1) and node 4 + 1 stores value max(v;, viy1).

How fast is the algorithm, and how can we prove correctness/efficiency?

The most interesting proof uses the so-called 0-1 Sorting Lemma. It allows
us to restrict our attention to an input of 0’s and 1’s only, and works for any
“oblivious comparison-exchange” algorithm. (Oblivious means: Whether
you exchange two values must only depend on the relative order of the
two values, and not on anything else.)

Lemma 4.3 (0-1 Sorting Lemma). If an oblivious comparison-exchange algo-
rithm sorts all inputs of 0’s and 1’s, then it sorts arbitrary inputs.

Proof. We prove the opposite direction (does not sort arbitrary inputs = does
not sort 0’s and 1’s). Assume that there is an input = = zy,...,x, that is not
sorted correctly. Then there is a smallest value k such that the value at node
vy, after running the sorting algorithm is strictly larger than the k** smallest
value z(k). Define an input 2} = 0 < z; < z(k), f = 1 else. Whenever the
algorithm compares a pair of 1’s or 0’s, it is not important whether it exchanges
the values or not, so we may simply assume that it does the same as on the
input . On the other hand, whenever the algorithm exchanges some values
z; = 0 and &w = 1, this means that z; < z(k) < x;. Therefore, in this case the
respective compare-exchange operation will do the same on both inputs. We
conclude that the algorithm will order z* the same way as z, i.e., the output
with only 0’s and 1’s will also not be correct. O

Theorem 4.4. Algorithm 16 sorts correctly in n steps.

Proof. Thanks to lemma 4.3 we only need to consider an array with 0’s and 1’s.
Let j; be the node with the rightmost (highest index) 1. If j; is odd (even)
it will move in the first (second) step. In any case it will move right in every
following step until it reaches the rightmost node v,,. Let ji be the node with
the k™ rightmost 1. We show by induction that jj is not “blocked” anymore
(constantly moves until it reaches destination!) after step k. We have already
anchored the induction at & = 1. Since ji—; moves after step k — 1, ji gets
a right O0-neighbor for each step after step k. (For matters of presentation we
omitted a couple of simple details.) O
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Algorithm 17 Shearsort
1: We are given a mesh with m rows and m columns, m even, n = m
2: The sorting algorithm operates in phases, and uses the odd/even sort algo-
rithm on rows or columns.
3: repeat
4:  In the odd phases 1, 3,... we sort all the rows, in the even phases 2,4, ...
we sort all the columns, such that:
Columns are sorted such that the small values move up.
Odd rows (1,3,...,m — 1) are sorted such that small values move left.
Even rows (2,4,...,m) are sorted such that small values move right.
until done

2

Remarks:

e Linear time is not very exciting, maybe we can do better by using a dif-
ferent topology? Let’s try a mesh (a.k.a. grid) topology first.

Theorem 4.5. Algorithm 17 sorts n values in /n(logn+1) time in snake-like
order.

Proof. Since the algorithm is oblivious, we can use lemma 4.3. We show that
after a row and a column phase, half of the previously unsorted rows will be
sorted. More formally, let us call a row with only 0’s (or only 1’s) clean, a row
with 0’s and 1’s is dirty. At any stage, the rows of the mesh can be divided
into three regions. In the north we have a region of all-0 rows, in the south all-1
rows, in the middle a region of dirty rows. Initially all rows can be dirty. Since
neither row nor column sort will touch already clean rows, we can concentrate
on the dirty rows.

First we run an odd phase. Then, in the even phase, we run a peculiar
column sorter: We group two consecutive dirty rows into pairs. Since odd and
even rows are sorted in opposite directions, two consecutive dirty rows look as
follows:

00000 ...11111
11111 ...00000

Such a pair can be in one of three states. Either we have more 0’s than 1’s, or
more 1’s than 0’s, or an equal number of 0’s and 1’s. Column-sorting each pair
will give us at least one clean row (and two clean rows if “|0] = |1]”). Then
move the cleaned rows north/south and we will be left with half the dirty rows.

At first glance it appears that we need such a peculiar column sorter. How-
ever, any column sorter sorts the columns in exactly the same way (we are very
grateful to have lemma 4.3!).

All in all we need 2logm = logn phases to remain only with 1 dirty row in
the middle which will be sorted (not cleaned) with the last row-sort. ]
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Remarks:

e There are algorithms that sort in 3m + o(m) time on an m by m mesh
(by diving the mesh into smaller blocks). This is asymptotically optimal,
since a value might need to move 2m times.

e Such a y/n-sorter is cute, but we are more ambitious. There are non-
distributed sorting algorithms such as quicksort, heapsort, or mergesort
that sort n values in (expected) O(nlogn) time. Using our n-fold paral-
lelism effectively we might therefore hope for a distributed sorting algo-
rithm that sorts in time O(logn)!

4.2 Sorting Networks

In this section we construct a graph topology which is carefully manufactured
for sorting. This is a deviation from previous chapters where we always had to
work with the topology that was given to us. In many application areas (e.g.
peer-to-peer networks, communication switches, systolic hardware) it is indeed
possible (in fact, crucial!) that an engineer can build the topology best suited
for an application.

Definition 4.6 (Sorting Networks). A comparator is a device with two inputs
z,y and two outputs ',y such that ' = min(z,y) and y' = maz(z,y). We
construct so-called comparison networks that consist of wires that connect com-
parators (the output port of a comparator is sent to an input port of another
comparator). Some wires are not connected to comparator outputs, and some
are not connected to comparator inputs. The first are called input wires of the
comparison network, the second output wires. Given n values on the input wires,
a sorting network ensures that the values are sorted on the output wires. We will
also use the term width to indicate the number of wires in the sorting network.

Remarks:

e The odd/even sorter explained in Algorithm 16 can be described as a
sorting network.

e Often we will draw all the wires on n horizontal lines (n being the “width”
of the network). Comparators are then vertically connecting two of these
lines.

e Note that a sorting network is an oblivious comparison-exchange network.
Consequently we can apply lemma 4.3 throughout this section. An exam-
ple sorting network is depicted in figure 4.1.

Definition 4.7 (Depth). The depth of an input wire is 0. The depth of a
comparator is the maximum depth of its input wires plus one. The depth of
an output wire of a comparator is the depth of the comparator. The depth of a
comparison network is the mazimum depth (of an output wire).

Definition 4.8 (Bitonic Sequence). A bitonic sequence is a sequence of numbers
that first monotonically increases, and then monotonically decreases, or vice
versa.
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Figure 4.1: A sorting network.

Remarks:
e <1,4,6,8,3,2> or <5,3,2,1,4,8 > are bitonic sequences.
e <96,2,3,5,4>o0r<7,4,2,5,9,8 > are not bitonic.

e Since we restrict ourselves to 0’s and 1’s (lemma 4.3), bitonic sequences
have the form 0°170% or 1°071% for i, 4,k > 0.

Algorithm 18 Half Cleaner
1: A half cleaner is a comparison network of depth 1, where we compare wire
¢ with wire ¢ +n/2 for i = 1,...,n/2 (we assume n to be even).

Lemma 4.9. Feeding a bitonic sequence into a half cleaner (Algorithm 18), the
half cleaner cleans (makes all-0 or all-1) either the upper or the lower half of
the n wires. The other half is bitonic.

Proof. Assume that the input is of the form 0°170* for 4, j, k > 0. If the midpoint
falls into the 0’s, the input is already clean/bitonic and will stay so. If the
midpoint falls into the 1’s the half cleaner acts as Shearsort with two adjacent
rows, exactly as in the proof of theorem 4.5. The case 1°071* is symmetric. [

Algorithm 19 Bitonic Sequence Sorter

1: A bitonic sequence sorter of width n (n being a power of 2) consists of a
half cleaner of width n, and then two bitonic sequence sorters of width n/2
each.

2: A bitonic sequence sorter of width 1 is empty.

Lemma 4.10. A bitonic sequence sorter (Algorithm 19) of width n sorts bitonic
sequences. It has depth logn.
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Proof. The proof follows directly from the Algorithm 19 and lemma 4.9. O

Remarks:

e Clearly we want to sort arbitrary and not only bitonic sequences! To do
this we need one more concept, merging networks.

Algorithm 20 Merging Network
1: A merging network of width n is a merger of width n followed by two bitonic
sequence sorters of width n/2. A merger is a depth-one network where we
compare wire ¢ with wire n —i+ 1, fori =1,...,n/2.

Remarks:

e Note that a merging network is a bitonic sequence sorter where we replace
the (first) half-cleaner by a merger.

Lemma 4.11. A merging network of width n (Algorithm 20) merges two sorted
input sequences of length n/2 each into one sorted sequence of length n.

Proof. We have two sorted input sequences. Essentially, a merger does to two
sorted sequences what a half cleaner does to a bitonic sequence, since the lower
part of the input is reversed. In other words, we can use same argument as in
theorem 4.5 and lemma 4.9: Again, after the merger step either the upper or the
lower half is clean, the other is bitonic. The bitonic sequence sorters complete
sorting. O

Remarks:

e How do you sort n values when you are able to merge two sorted sequences
of size n/27 Piece of cake, just apply the merger recursively.

Algorithm 21 Batcher’s “Bitonic” Sorting Network
1: A batcher sorting network of width n consists of two batcher sorting net-
works of width n/2 followed by a merging network of width n. (See figure
4.2))
2: A batcher sorting network of width 1 is empty.

Theorem 4.12. A sorting network (Algorithm 21) sorts an arbitrary sequence
of n values. It has depth O(log? n).

Proof. Correctness is immediate: at recursive stage k (k= 1,2,3,...,logn) we
merge 2¥) sorted sequences into 2¥~! sorted sequences. The depth d(n) of the
sorting network of level n is the depth of a sorting network of level n/2 plus
the depth m(n) of a merging network with width n. The depth of a sorter of
level 1 is 0 since the sorter is empty. Since a merging network of width n has
the same depth as a bitonic sequence sorter of width n, we know by lemma
4.10 that m(n) = logn. This gives a recursive formula for d(n) which solves to
d(n) =1 log®n + 1 logn. O
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Figure 4.2: A batcher sorting network

Remarks:

e Simulating Batcher’s sorting network on an ordinary sequential computer
takes time O(n Homm ). As said, there are sequential sorting algorithms
that sort in asymptotically optimal time O(nlogn). So a natural question
is whether there is a sorting network with depth O(logn). Such a network
would have some remarkable advantages over sequential asymptotically
optimal sorting algorithms such as heapsort. Apart from being highly
parallel, it would be completely oblivious, and as such perfectly suited for
a fast hardware solution. In 1983, Ajtai, Komlos, and Szemeredi presented
a celebrated O(logn) depth sorting network. (Unlike Batcher’s sorting
network the constant hidden in the big-O of the “AKS” sorting network
is too large to be practical, however.)

It can be shown that Batcher’s sorting network and similarly others can
be simulated by a Butterfly network and other hypercubic networks, see
next chapter.

What if a sorting network is asynchronous?!? Clearly, using a synchronizer
we can still sort, but it is also possible to use it for something else. Check
out the next section!

4.3 Counting Networks

In this section we address distributed counting, a distributed service which can
for instance be used for load balancing.

Definition 4.13 (Distributed Counting). A distributed counter is a variable
that is common to all processors in a system and that supports an atomic test-
and-increment operation. The operation delivers the system’s counter value to
the requesting processor and increments it.
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Remarks:

e A naive distributed counter stores the system’s counter value with a dis-
tinguished central node. When other nodes initiate the test-and-increment
operation, they send a request message to the central node and in turn
receive a reply message with the current counter value. However, with a
large number of nodes operating on the distributed counter, the central
processor will become a bottleneck. There will be a congestion of request
messages at the central processor, in other words, the system will not
scale.

Is a scalable implementation (without any kind of bottleneck) of such a
distributed counter possible, or is distributed counting a problem which
is inherently centralized?!?

Distributed counting could for instance be used to implement a load bal-
ancing infrastructure, i.e. by sending the job with counter value ¢ (modulo
n) to server ¢ (out of n possible servers).

Definition 4.14 (Balancer). A balancer is an asynchronous flip-flop which
forwards messages that arrive on the left side to the wires on the right, the first
to the upper, the second to the lower, the third to the upper, and so on.

Algorithm 22 Bitonic Counting Network.

1: Take Batcher’s bitonic sorting network of width w and replace all the com-
parators with balancers.

2: When a node wants to count, it sends a message to an arbitrary input wire.

3: The message is then routed through the network, following the rules of the
asynchronous balancers.

4: Each output wire is completed with a “mini-counter.”

5: The mini-counter of wire k replies the value “k + 4 - w” to the initiator of
the i message it receives.

Definition 4.15 (Step Property). A sequence yo,y1,...,Yw—1 is said to have
the step property, if 0 <y; —y; <1, for any i < j.

Remarks:

e If the output wires have the step property, then with r requests, exactly
the values 1,...,r will be assigned by the mini-counters. All we need to
show is that the counting network has the step property. For that we need
some additional facts...

Facts 4.16. For a balancer, we denote the number of consumed messages on the
i™ input wire with x;, i = 0,1. Similarly, we denote the number of sent messages
on the it" output wire with y;, i = 0,1. A balancer has these properties:

(1) A balancer does not generate output-messages; that is, xo + 1 > yo + Y1
in any state.

(2) Every incoming message is eventually forwarded. In other words, if we
are in a quiescent state (no message in transit), then o+ x1 = Yo + Yy1.
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(8) The number of messages sent to the upper output wire is at most one
higher than the number of messages sent to the lower output wire: in any
state yo = [(yo +y1)/2] (thus y1 = |(yo + y1)/2])-

Facts 4.17. If a sequence yo, Y1, - ..,Yuw—1 has the step property,
(1) then all its subsequences have the step property.

(2) then its even and odd subsequences satisfy

w/2—1 = w/2—1 1wl
.M Y2 = |5 M yi | and M Yait1 = | 5 M Yi|-
i=0 i=0 i=0 i=0
Facts 4.18. If two sequences T, T1, ..., Tyw—1 and Yo, Y1, - - -, Yuw—1 have the step

property,

(1) and MMEH\cH T = MMCH\% yi, then x; = y; fori=0,...,w— 1.

(2) and MUM.H\QH z; MUM:H\OH yi+1, then there exists a unique j (7 =0,1,...,w—
1) such that x; = y; + 1, and x; = y; fori=0,...,w—1, 1 # j.

Remarks:
e That’s enough to prove that a Merger preserves the step property.

Lemma 4.19. Let M[w] be a Merger of width w. In a quiescent state (no mes-
sage in transit), if the inputs T0, L1+ -y Tayj2—1 TESP. Tuy/2 La/2+15 - - -5 Tw—1
have the step property, then the output yo,y1,-..,Yw—1 has the step property.

Proof. By induction on the width w.
For w = 2: M|[2] is a balancer and a balancer’s output has the step property
(fact 4.16.3).

For w > 2: Let 20,...,2,/2-1 T€Sp. Nm,..;uma\mL be the output of the
upper respectively lower M[w/2] subnetwork. Since o, 21,...,%y/2—1 and
Ty /25 Tw/241, - - - » Tw—1 Doth have the step property by assumption, their even

and odd subsequences also have the step property (fact 4.17.1). By induction
hypothesis, the output of both M[w/2] subnetworks have the step property.
Let Z =" %L zi and Z' = MWH\NL z}. From fact 4.17.2 we conclude that

Z= LS ) 4+ (E S0 o] and 27 = |32 ] + [TV, wil.
Since [a] + |b] and |a] + [b] differ by at most 1 we know that Z and Z’ differ
by at most 1.

If Z = Z', fact 4.18.1 implies that z; = 2} for ¢ = 0,...,w/2 — 1. Therefore,
the output of M(w] is y; = 2;/2) for i =0,...,w — 1. Since 20, ..., 2,21 has
the step property, so does the output of M|[w] and the lemma follows.

If Z and Z' differ by 1, fact 4.18.2 implies that z; = 2] for i = 0,...,w/2—1,
except a unique j such that z; and ,& differ by only 1, for j =0,..., w/2 — 1.
Let [ := min(zj,2;). Then, the output y; (with i < 2j) is I + 1. The output
y; (with ¢ > 25 4 1) is . The output y»; and yo;4+1 are balanced by the final
balancer resulting in y2; = I + 1 and ysj41 = . Therefore M[w] preserves the
step property. O
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A bitonic counting network is constructed to fulfill lemma 4.19, i.e., the
final output comes from a Merger whose upper and lower inputs are recursively
merged. Therefore, the following theorem follows immediately.

Theorem 4.20 (Correctness). In a quiescent state, the w output wires of a
bitonic counting network of width w have the step property.

Remarks:

e Is every sorting network also a counting network? No. But surprisingly,
the other direction is true!

Theorem 4.21 (Counting vs. Sorting). If a network is a counting network
then it is also a sorting network, but not vice versa.

Proof. There are sorting networks that are not counting networks (e.g. odd/even
sort, or insertion sort). For the other direction, let C' be a counting network
and I(C) be the isomorphic network, where every balancer is replaced by a
comparator. Let I(C) have an arbitrary input of 0’s and 1’s; that is, some of
the input wires have a 0, all others have a 1. There is a message at C’s i
input wire if and only if 7(C)’s ¢ input wire is 0. Since C'is a counting network,
all messages are routed to the upper output wires. I(C) is isomorphic to C,
therefore a comparator in I(C') will receive a 0 on its upper (lower) wire if
and only if the corresponding balancer receives a message on its upper (lower)
wire. Using an inductive argument, the 0’s and 1’s will be routed through 7(C)
such that all 0’s exit the network on the upper wires whereas all 1’s exit the
network on the lower wires. Applying lemma 4.3 shows that I(C) is a sorting
network. ]

Remarks:

e We claimed that the counting network is correct. However, it is only
correct in a quiescent state.

Definition 4.22 (Linearizable). A system is linearizable if the order of the
values assigned reflects the real-time order in which they were requested. More
Sformally, if there is a pair of operations o1, 02, where operation oy terminates be-
fore operation os starts, and the logical order is “oy before 01”7, then a distributed
system is not linearizable.

Lemma 4.23 (Linearizability). The bitonic counting network is not lineariz-
able.

Proof. Consider the bitonic counting network with width 4 in figure 4.3: Assume
that two inc operations were initiated and the corresponding messages entered
the network on wire 0 and 2 (both in light gray color). After having passed the
second resp. the first balancer, these traversing messages “fall asleep”; In other
words, both messages take unusually long time before they are received by the
next balancer. Since we are in an asynchronous setting, this may be the case.

In the meantime, another inc operation (medium gray) is initiated and enters
the network on the bottom wire. The message leaves the network on wire 2,
and the inc operation is completed.
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Figure 4.3: Linearizability Counter Example.

Strictly afterwards, another inc operation (dark gray) is initiated and enters
the network on wire 1. After having passed all balancers, the message will leave
the network wire 0. Finally (and not depicted in figure 4.3), the two light gray
messages reach the next balancer and will eventually leave the network on wires
1 resp. 3. Because the dark gray and the medium gray operation do conflict
with Definition 4.22, the bitonic counting network is not linearizable. O

Remarks:

e Note that the example in figure 4.3 behaves correctly in the quiescent
state: Finally, exactly the values 0,1, 2,3 are allotted.

e It was shown that linearizability comes at a high price (the depth grows
linearly with the width).

Chapter Notes

The technique used for the famous lower bound of comparison-based sequential
sorting first appeared in [FJ59]. Comprehensive introductions to the vast field of
sorting can certainly be found in [Knu73]. Knuth also presents the 0/1 principle
in the context of sorting networks, supposedly as a special case of a theorem
for decision trees of W. G. Bouricius, and includes a historic overview of sorting
network research.

Using a rather complicated proof not based on the 0/1 principle, [Hab72]
first presented and analyzed Odd/Even sort on arrays. Shearsort for grids first
appeared in [SSS86] as a sorting algorithm both easy to implement and to prove
correct. Later it was generalized to meshes with higher dimension in [SS89]. A
bubble sort based algorithm is presented in [SI86]; it takes time O(y/nlogn),
but is fast in practice. Nevertheless, already [TK77] presented an asymptotically
optimal algorithms for grid network which runs in 3n + O(n?/3 logn) rounds for
an n xn grid. A simpler algorithm was later found by [SS86] using 3n.+O(n%/*)
rounds.

Batcher presents his famous O(log? n) depth sorting network in [Bat68]. Tt
took until [AKS83] to find a sorting network with asymptotically optimal depth
O(logn). Unfortunately, the constants hidden in the big-O-notation render it
rather impractical.
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Chapter 5

Maximal Independent Set

In this chapter we present a highlight of this course, a fast maximal independent
set (MIS) algorithm. The algorithm is the first randomized algorithm that we
study in this class. In distributed computing, randomization is a powerful and
therefore omnipresent concept, as it allows for relatively simple yet efficient
algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples: matching and vertex coloring (see Chapter

1).

51 MIS

Definition 5.1 (Independent Set). Given an undirected Graph G = (V, E) an
independent set is a subset of nodes U C V', such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of mazimum cardinality is called
maximum.

Figure 5.1: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).
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Remarks:

e Computing a maximum independent set (MaxIS) is a notoriously difficult
problem. It is equivalent to maximum clique on the complementary graph.

Both problems are NP-hard, in fact not approximable within ni=e,

In this course we concentrate on the maximal independent set (MIS) prob-
lem. Please note that MIS and MaxIS can be quite different, indeed e.g.
on a star graph the MIS is ©(n) smaller than the MaxIS (cf. Figure 5.1).

Computing a MIS sequentially is trivial: Scan the nodes in arbitrary order.
If a node u does not violate independence, add u to the MIS. If u violates
independence, discard w. So the only question is how to compute a MIS
in a distributed way.

Algorithm 23 Slow MIS
Require: Node IDs
Every node v executes the following code:
1: if all neighbors of v with larger identifiers have decided not to join the MIS
then
2: v decides to join the MIS
3: end if

Remarks:

e Not surprisingly the slow algorithm is not better than the sequential algo-
rithm in the worst case, because there might be one single point of activity
at any time. Formally:

Theorem 5.2 (Analysis of Algorithm 23). Algorithm 23 features a time com-
plexity of O(n) and a message complezity of O(m).

Remarks:
e This is not very exciting.

e There is a relation between independent sets and node coloring (Chapter
1), since each color class is an independent set, however, not necessarily a
MIS. Still, starting with a coloring, one can easily derive a MIS algorithm:
We first choose all nodes of the first color. Then, for each additional color
we add “in parallel” (without conflict) as many nodes as possible. Thus
the following corollary holds:

Corollary 5.3. Given a coloring algorithm that needs C' colors and runs in
time T, we can construct a MIS in time C' +T.

Remarks:

e Using Theorem 1.17 and Corollary 5.3 we get a distributed determinis-
tic MIS algorithm for trees (and for bounded degree graphs) with time
complexity O(log” n).
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e With a lower bound argument one can show that this deterministic MIS
algorithm for rings is asymptotically optimal.

e There have been attempts to extend Algorithm 5 to more general graphs,
however, so far without much success. Below we present a radically dif-
ferent approach that uses randomization.

5.2 Original Fast MIS

Algorithm 24 Fast MIS
The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:

1) Each node v marks itself with probability

) Where d(v) is the current
degree of v.

2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remarks:

e Correctness in the sense that the algorithm produces an independent set
is relatively simple: Steps 1 and 2 make sure that if a node v joins the
MIS, then v’s neighbors do not join the MIS at the same time. Step 3
makes sure that v’s neighbors will never join the MIS.

e Likewise the algorithm eventually produces a MIS, because the node with
the highest degree will mark itself at some point in Step 1.

e So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.
Lemma 5.4 (Joining MIS). A node v joins the MIS in Step 2 with probability
1
P2 gy
Proof: Let M be the set of marked nodes in Step 1. Let H(v) be the set of
neighbors of v with higher degree, or same degree and higher identifier. Using
independence of the random choices of v and nodes in H(v) in Step 1 we get
P v ¢ MIS|v € M| P[3w e H(v),w € MJv € M|
= P[3we H(),we M]
1
P M] = —
- MU [w € M] MU 2d(w)
weH (v) weH (v)
MU 1 < d(v) _ W
2d(v) ~ 2d(v) 2

weH (v)

A

IN

Then

11
) / = / ) ViB 1> =.
PlveMIS]=PlveMiSjp € M]-Plve M] > 5 2000)
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[m]

Lemma 5.5 (Good Nodes). A node v is called good if

Mw&

weN (v)

>

>

/\,_‘

)

Otherwise we 3: v a bad node. A good node will be removed in Step 3 with
probability p > @o

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in Step 3 of the algorithm.

If there is a neighbor w € N(v) with degree at most 2 we are roau With
Lemma 5.4 the probability that node w joins the MIS is at least 1 5, and our
good node will be removed in Step 3.

So all we need to worry about is that all neighbors have at least degree 3:

1 1
For any neighbor w of v we have 5 &Msv < w, Since MU Sdiw) > — there is a

wENo (w) ~ 6

H
subset of neighbors S C N(x WZG\A
subset of neighbors S C N(v) such tha stummR w < 3
We can now bound the probability that node v will be removed. Let therefore
R be the event of v being removed. Again, if a neighbor of v joins the MIS in
Step 2, node v will be removed in Step 3. We have

PR

A%

P[3u € S,u € MIS)

S PlueMis|—- Y PluecMISand we MIS].
ues u,weESuFw

v

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after
Step 1. Using P [u € M| > P [u € MIS] we get

PRl > Y PueMS|- > PluecM andwe M|

ues w,weS;utw

> Mw? eMIS| - > Y Plue M| Plwe M]
ueS ﬂmm::m.w

>

- ‘ NK MU MU mm :MV
ueS ueS wes

1 (1 1 1/1 1 1
> - - [ S (el e —
> > 2d(u) \ 2 ) 2d(w) | = 6 Aw wv 36

u€eS weS
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Remarks:

e We would be almost finished if we could prove that many nodes are good
in each phase. Unfortunately this is not the case: In a star-graph, for
instance, only a single node is good! We need to find a work-around.

Lemma 5.6 (Good Edges). An edge e = (u,v) is called bad if both w and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 5.7. A bad node has outdegree (number of edges pointing away from
bad node) at least twice its indegree (number of edges pointing towards bad node).
Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then

1 dw) 11
> :vMU§ vaUg Z73 2d(0) 6

EmES wes wes

which means v is good, a contradiction. m]

Continuing the proof of Lemma 5.6: According to Lemma 5.7 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 5.8 (Analysis of Algorithm 24). Algorithm 24 terminates in expected
time O(logn).

Proof: With Lemma 5.5 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 5.6) a constant fraction of edges will be deleted in each phase.

More formally: With Lemmas 5.5 and 5.6 we know that at least half of the
edges will be removed with probability at least 1/36. Let R be the number of
edges to be removed. Using linearity of expectation (cf. Theorem 5.9) we know
that E[R] > m/72, m being the total number of edges at the start of a phase.

Now let p := P[R < E[R] /2]. Bounding the expectation yields
E[R] = MWEHL -r < P[R<E[R]/2]-E[R]/2+ P[R > E[R]/2] - n
T

= p E[R]/2+(1-p) m.
Solving for p we get
m — E[R] m —E[R] /2
p< <
m —E[R] /2 m
In other words, with probability at least 1/144 at least m/144 edges are removed

in a phase. After expected O(logm) phases all edges are deleted. Since m < n?
and thus O(logm) = O(logn) the Theorem follows. ul

<1-1/144.
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Remarks:

e With a bit of more math one can even show that Algorithm 24 terminates
in time O(logn) “with high probability”.

5.3 Fast MIS v2

Algorithm 25 Fast MIS 2
The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v chooses a random value r(v) € [0,1] and sends it to its
neighbors.
2) If r(v) < r(w) for all neighbors w € N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
adjacent to v are removed from the graph), otherwise v enters the next phase.

Remarks:

Correctness in the sense that the algorithm produces an independent set
is simple: Steps 1 and 2 make sure that if a node v joins the MIS, then
v’s neighbors do not join the MIS at the same time. Step 3 makes sure
that v’s neighbors will never join the MIS.

Likewise the algorithm eventually produces a MIS, because the node with
the globally smallest value will always join the MIS, hence there is progress.

So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.

Our proof will rest on a simple, yet powerful observation about expected
values of random variables that may not be independent:

Theorem 5.9 (Linearity of Expectation). Let X;, i = 1,...,k denote random
variables, then

E|Y Xi| =D E[X,].

Proof. 1t is sufficient to prove E [X + Y] = E [X]|+E [Y] for two random variables
X and Y, because then the statement follows by induction. Since

P[X =z]-PlY =y|X =z
= PlY=y|-PX=z|]Y =y
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we get that

EX+Y] = Y PIXY)=(zy) (z+y)
(XY)=(z,y)
= Y Y PX=a]-PY=yX=2]-2
X=zY=y
+ Y D PY =y PIX=aY=y]y
Y=y X=zx
= Y Plx=
X=zx
= E[X]+E[Y].
O
Remarks:

e How can we prove that the algorithm only needs O(logn) phases in expec-
tation? It would be great if this algorithm managed to remove a constant
fraction of nodes in each phase. Unfortunately, it does not.

Instead we will prove that the number of edges decreases quickly. Again,
it would be great if any single edge was removed with constant probability
in Step 3. But again, unfortunately, this is not the case.

Maybe we can argue about the expected number of edges to be removed
in one single phase? Let’s see: A node v enters the MIS with probability
1/(d(v) + 1), where d(v) is the degree of node v. By doing so, not only
are v’s edges removed, but indeed all the edges of v’s neighbors as well —
generally these are much more than d(v) edges. So there is hope, but we
need to be careful: If we do this the most naive way, we will count the
same edge many times.

e How can we fix this? The nice observation is that it is enough to count
just some of the removed edges. Given a new MIS node v and a neighbor
w € N(v), we count the edges only if r(v) < r(z) for all € N(w). This
looks promising. In a star graph, for instance, only the smallest random
value can be accounted for removing all the edges of the star.

Lemma 5.10 (Edge Removal). In a single phase, we remove at least half of
the edges in expectation.

Proof. To simplify the notation, at the start of our phase, the graph is simply
G = (V, E). In addition, to ease presentation, we replace each undirected edge
{v,w} by the two directed edges (v, w) and (w,v).

Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w) for all
neighbors w € N(v). If in addition we have r(v) < r(x) for all neighbors x of a
neighbor w of v, we call this event (v — w). The probability of event (v — w)
is at least 1/(d(v) + d(w)), since d(v) + d(w) is the maximum number of nodes
adjacent to v or w (or both). As v joins the MIS, all (directed) edges (w,x)
with 2 € N(w) will be removed; there are d(w) of these edges.

We now count the removed edges. Whether we remove the edges adjacent
to w because of event (v — w) is a random variable X(,_,,). If event (v — w)
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occurs, X,y has the value d(w), if not it has the value 0. For each undirected
edge {v,w} we have two such variables, X(,_,.) and X (). Due to Theorem
5.9, the expected value of the sum X of all these random variables is at least

E[X] = M ﬁ_uﬂnclEL + ﬁ_uﬂdslz
{v,w}eE

= M P [Event (v — w)] - d(w) + P [Event (w — v)] - d(v)
{v,w}eE

v

d(w) d(v)
?,stmm d(v) + d(w) * d(w) + d(v)

Il
(]

1=|E|.

{vw}eE

In other words, in expectation |E| directed edges are removed in a single
phase! Note that we did not double count any edge removals, as a directed edge
(v, w) can only be removed by an event (u — v). The event (u — v) inhibits
a concurrent event (v’ — v) since r(u) < r(u') for all v’ € N(v). We may
have counted an undirected edge at most twice (once in each direction). So, in
expectation at least half of the undirected edges are removed. O

Remarks:

e This enables us to follow a bound on the expected running time of Algo-
rithm 25 quite easily.

Theorem 5.11 (Expected running time of Algorithm 25). Algorithm 25 ter-
minates after at most 3logyzm+1€ O(logn) phases in expectation.

Proof: The probability that in a single phase at least a quarter of all edges
are removed is at least 1/3. For the sake of contradiction, assume not. Then
with probability less than 1/3 we may be lucky and many (potentially all) edges
are removed. With probability more than 2/3 less than 1/4 of the edges are
removed. Hence the expected fraction of removed edges is strictly less than
1/3-1+2/3-1/4 = 1/2. This contradicts Lemma 5.10.

Hence, at least every third phase is “good” and removes at least a quarter
of the edges. To get rid of all but two edges we need log, 3 m good phases in
expectation. The last two edges will certainly be removed in the next phase.
Hence a total of 3log, 3 m + 1 phases are enough in expectation.

Remarks:

e Sometimes one expects a bit more of an algorithm: Not only should the
expected time to terminate be good, but the algorithm should always
terminate quickly. As this is impossible in randomized algorithms (after
all, the random choices may be “unlucky” all the time!), researchers often
settle for a compromise, and just demand that the probability that the
algorithm does not terminate in the specified time can be made absurdly
small. For our algorithm, this can be deduced from Lemma 5.10 and
another standard tool, namely Chernoff’s Bound.

Definition 5.12 (W.h.p.). We say that an algorithm terminates w.h.p. (with
high probability) within O(t) time if it does so with probability at least 1 —1/n®
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for any choice of ¢ > 1. Here ¢ may affect the constants in the Big-O notation
because it is considered a “tunable constant” and usually kept small.

Definition 5.13 (Chernoff’s Bound). Let X = MUMOHH X, be the sum of k inde-
pendent 0 — 1 random variables. Then Chernoff’s bound states that w.h.p.

|X —E[X]| €0 ocm: + VE[X]log i .

Corollary 5.14 (Running Time of Algorithm 25). Algorithm 25 terminates
w.h.p. in O(logn) time.

Proof: In Theorem 5.11 we used that independently of everything that happened
before, in each phase we have a constant probability p that a quarter of the edges
are removed. Call such a phase good. For some constants C and Cs, let us check
after C;logn + C2 € O(logn) phases, in how many phases at least a quarter of
the edges have been removed. In expectation, these are at least p(C4 logn+C5)
many. Now we look at the random variable X = Mumﬂ_om "+C2 X, where the X;
are independent 0 — 1 variables being one with exactly probability p. Certainly,
if X is at least x with some probability, then the probability that we have
z good phases can only be larger (if no edges are left, certainly “all” of the
remaining edges are removed). To X we can apply Chernoff’s bound. If C;
and C are chosen large enough, they will overcome the constants in the Big-O
from Chernoff’s bound, i.e., w.h.p. it holds that |X —E[X]| < E[X]/2, implying
X > E[X]/2. Choosing C; large enough, we will have w.h.p. sufficiently many
good phases, i.e., the algorithm terminates w.h.p. in O(logn) phases.

Remarks:

e The algorithm can be improved a bit more even. Drawing random real
numbers in each phase for instance is not necessary. One can achieve
the same by sending only a total of O(logn) random (and as many non-
random) bits over each edge.

One of the main open problems in distributed computing is whether one
can beat this logarithmic time, or at least achieve it with a deterministic
algorithm.

e Let’s turn our attention to applications of MIS next.

5.4 Applications

Definition 5.15 (Matching). Given a graph G = (V, E) a matching is a subset
of edges M C E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of mazimum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.
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Remarks:

e In contrast to MaxIS, a maximum matching can be found in polynomial
time, and is also easy to approximate (in fact, already any maximal match-
ing is a 2-approximation).

An independent set algorithm is also a matching algorithm: Let G =
(V, E) be the graph for which we want to construct the matching. The
auxiliary graph G is defined as follows: for every edge in G there is a node
in G'; two nodes in G’ are connected by an edge if their respective edges
in G are adjacent. A (maximal) independent set in G’ is a (maximal)
matching in G, and vice versa. Using Algorithm 25 directly produces a
O(logn) bound for maximal matching.

e More importantly, our MIS algorithm can also be used for vertex coloring
(Problem 1.1):

Definition 5.16. An approzimation algorithm A for a mazimization problem 11
has an approximation factor of r if the following condition holds for all instances
Iell:

OPT(I)

ﬁ%ﬁ

Algorithm 26 General Graph Coloring

1: Given a graph G = (V,E) we virtually build a graph G’ = (V',E’) as
follows:

2: Every node v € V clones itself d(v) +1 times (vo, ..., v4) € V'), d(v) being
the degree of v in G.

3: The edge set E’ of G’ is as follows:

4: First all clones are in a clique: (v;,v;) € E', forallv € V and all 0 < i <
j<d()

5: Second all i*" clones of neighbors in the original graph G are connected:
(ui,v;) € E', for all (u,v) € E and all 0 <4 < min(d(u), d(v)).

6: Now we simply run (simulate) the fast MIS Algorithm 25 on G.

7: If node v; is in the MIS in G’, then node v gets color i.

Theorem 5.17 (Analysis of Algorithm 26). Algorithm 26 (A + 1)-colors an
arbitrary graph in O(logn) time, with high probability, A being the largest degree
in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v)+1 clones of node v every node will get a free color! The
running time remains logarithmic since G’ has O Aimv nodes and the exponent
becomes a constant factor when applying the logarithm.

Remarks:
e This solves our open problem from Chapter 1.1!

e Together with Corollary 5.3 we get quite close ties between (A+1)-coloring
and the MIS problem.
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e Computing a MIS also solves another graph problem on graphs of bounded
independence.

Definition 5.18 (Bounded Independence). G = (V, E) is of bounded indepen-
dence, if each neighborhood contains at most a constant number of independent
(i.e., mutually non-adjacent) nodes.

Definition 5.19 ((Minimum) Dominating Sets). A dominating set is a subset
of the nodes such that each node is in the set or adjacent to a node in the set.
A minimum dominating set is a dominating set containing the least possible
number of nodes.

Remarks:

e In general, finding a dominating set less than factor logn larger than an
minimum dominating set is NP-hard.

e Any MIS is a dominating set: if a node was not covered, it could join the
independent set.

e In general a MIS and a minimum dominating sets have not much in com-
mon (think of a star). For graphs of bounded independence, this is differ-
ent.

Corollary 5.20. On graphs of bounded independence, a constant-factor approx-
imation to a minimum dominating set can be found in time O(logn) w.h.p.

Proof: Denote by M a minimum dominating set and by I a MIS. Since M is a
dominating set, each node from [ is in M or adjacent to a node in M. Since
the graph is of bounded independence, no node in M is adjacent to more than
constantly many nodes from I. Thus, [I| € O(|M][). Therefore, we can compute
a MIS with Algorithm 25 and output it as the dominating set, which takes
O(logn) rounds w.h.p.

Chapter Notes

The fast MIS algorithm is a simplified version of an algorithm by Luby [Lub86].
Around the same time there have been a number of other papers dealing with the
same or related problems, for instance by Alon, Babai, and Itai [ABI86], or by
Israeli and Itai [II86]. The analysis presented in Section 5.2 takes elements of all
these papers, and from other papers on distributed weighted matching [WWO04].
The analysis in the book [Pel00] by David Peleg is different, and only achieves
Gﬁomm n) time. The new MIS variant (with the simpler analysis) of Section
5.3 is by Métivier, Robson, Saheb-Djahromi and Zemmari [MRSDZ11]. With
some adaptations, the algorithms [Lub86, MRSDZ11] only need to exchange
a total of O(logn) bits per node, which is asymptotically optimum, even on
unoriented trees [KSOS06]. However, the distributed time complexity for MIS
is still somewhat open, as the strongest lower bounds are Q(y/logn) or Q(log A)
[KMWO04]. Recent research regarding the MIS problem focused on improving
the O(logn) time complexity for special graph classes, for instances growth-
bounded graphs [SWO08] or trees [LW11]. There are also results that depend
on the degree of the graph [BE09, Kuh09]. Deterministic MIS algorithms are
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still far from the lower bounds, as the best deterministic MIS algorithm takes
20(VI8™) time [PS96]. The maximum matching algorithm mentioned in the
remarks is the blossom algorithm by Jack Edmonds.
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Chapter 6

Locality Lower Bounds

In Chapter 1, we looked at distributed algorithms for coloring. In particular,
we saw that rings and rooted trees can be colored with 3 colors in log™ n+ O(1)
rounds. In this chapter, we will reconsider the distributed coloring problem.
We will look at a classic lower bound that shows that the result of Chapter 1
is tight: Coloring rings (and rooted trees) indeed requires Q(log™ n) rounds. In
particular, we will prove a lower bound for coloring in the following setting:

We consider deterministic, synchronous algorithms.
Message size and local computations are unbounded.
We assume that the network is a directed ring with n nodes.

Nodes have unique labels (identifiers) from 1 to n.

Remarks:

A generalization of the lower bound to randomized algorithms is possible.

Except for restricting to deterministic algorithms, all the conditions above
make a lower bound stronger: Any lower bound for synchronous algo-
rithms certainly also holds for asynchronous ones. A lower bound that is
true if message size and local computations are not restricted is clearly also
valid if we require a bound on the maximal message size or the amount
of local computations. Similarly also assuming that the ring is directed
and that node labels are from 1 to n (instead of choosing IDs from a more
general domain) strengthen the lower bound.

Instead of directly proving that 3-coloring a ring needs Q(log* n) rounds,
we will prove a slightly more general statement. We will consider deter-
ministic algorithms with time complexity r (for arbitrary r) and derive a
lower bound on the number of colors that are needed if we want to prop-
erly color an n-node ring with an r-round algorithm. A 3-coloring lower
bound can then be derived by taking the smallest  for which an r-round
algorithm needs 3 or fewer colors.
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Algorithm 27 Synchronous Algorithm: Canonical Form

1: In 7 rounds: send complete initial state to nodes at distance at most r
2: // do all the communication first
3: Compute output based on complete information about r-neighborhood
4: // do all the computation in the end

6.1 Locality

Let us for a moment look at distributed algorithms more generally (i.e., not
only at coloring and not only at rings). Assume that initially, all nodes only
know their own label (identifier) and potentially some additional input. As
information needs at least r rounds to travel r hops, after r rounds, a node v
can only learn about other nodes at distance at most r. If message size and local
computations are not restricted, it is in fact not hard to see, that in r rounds,
a node v can exactly learn all the node labels and inputs up to distance r.
As shown by the following lemma, this allows to transform every deterministic
r-round synchronous algorithm into a simple canonical form.

Lemma 6.1. If message size and local computations are not bounded, every
deterministic, synchronous r-round algorithm can be transformed into an algo-
rithm of the form given by Algorithm 27 (i.e., it is possible to first communicate
for r rounds and then do all the computations in the end).

Proof. Consider some r-round algorithm A. We want to show that A can be
brought to the canonical form given by Algorithm 27. First, we let the nodes
communicate for r rounds. Assume that in every round, every node sends its
complete state to all of its neighbors (remember that there is no restriction on
the maximal message size). By induction, after 7 rounds, every node knows the
initial state of all other nodes at distance at most i. Hence, after r rounds, a
node v has the combined initial knowledge of all the nodes in its r-neighborhood.
We want to show that this suffices to locally (at node v) simulate enough of
Algorithm A to compute all the messages that v receives in the r communication
rounds of a regular execution of Algorithm A.

Concretely, we prove the following statement by induction on i. For all
nodes at distance at most r — i 4 1 from v, node v can compute all messages
of the first ¢ rounds of a regular execution of A. Note that this implies that v
can compute all the messages it receives from its neighbors during all r rounds.
Because v knows the initial state of all nodes in the r-neighborhood, v can
clearly compute all messages of the first round (i.e., the statement is true for
i =1). Let us now consider the induction step from i to i+ 1. By the induction
hypothesis, v can compute the messages of the first ¢ rounds of all nodes in
its (7 — i + 1)-neighborhood. It can therefore compute all messages that are
received by nodes in the (r — 4)-neighborhood in the first ¢ rounds. This is of
course exactly what is needed to compute the messages of round 7 + 1 of nodes
in the (r — i)-neighborhood. ]
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Remarks:

o It is straightforward to generalize the canonical form to randomized algo-
rithms: Every node first computes all the random bits it needs throughout
the algorithm. The random bits are then part of the initial state of a node.

Definition 6.2 (r-hop view). We call the collection of the initial states of all
nodes in the r-neighborhood of a node v, the r-hop view of v.

Remarks:

e Assume that initially, every node knows its degree, its label (identifier)
and potentially some additional input. The r-hop view of a node v then
includes the complete topology of the r-neighborhood (excluding edges
between nodes at distance r) and the labels and additional inputs of all
nodes in the r-neighborhood.

Based on the definition of an r-hop view, we can state the following corollary
of Lemma 6.1.

Corollary 6.3. A deterministic r-round algorithm A is a function that maps
every possible r-hop view to the set of possible outputs.

Proof. By Lemma 6.1, we know that we can transform Algorithm A to the
canonical form given by Algorithm 27. After r» communication rounds, every
node v knows exactly its 7-hop view. This information suffices to compute the
output of node v. O

Remarks:

e Note that the above corollary implies that two nodes with equal r-hop
views have to compute the same output in every r-round algorithm.

For coloring algorithms, the only input of a node v is its label. The r-hop
view of a node therefore is its labeled r-neighborhood.

If we only consider rings, r-hop neighborhoods are particularly simple.
The labeled r-neighborhood of a node v (and hence its r-hop view) in
an oriented ring is simply a (27 + 1)-tuple (¢—p, €—r41,...,00,..., L) of
distinct node labels where {; is the label of v. Assume that for i > 0, ¢;
is the label of the it clockwise neighbor of v and ¢_; is the label of the
i counterclockwise neighbor of v. A deterministic coloring algorithm for
oriented rings therefore is a function that maps (2r + 1)-tuples of node
labels to colors.

Consider two r-hop views V, = ({_,,....4;) and V. = (¢/_,... 0)). If
0 =Ly for —r < i <r—1andif £ #¢; for —r < i <r, the r-hop view
V! can be the r-hop view of a clockwise neighbor of a node with r-hop view
V,. Therefore, every algorithm A that computes a valid coloring needs to
assign different colors to V, and V). Otherwise, there is a ring labeling for
which A assigns the same color to two adjacent nodes.
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6.2 The Neighborhood Graph

We will now make the above observations concerning colorings of rings a bit
more formal. Instead of thinking of an r-round coloring algorithm as a function
from all possible r-hop views to colors, we will use a slightly different perspective.
Interestingly, the problem of understanding distributed coloring algorithms can
itself be seen as a classical graph coloring problem.

Definition 6.4 (Neighborhood Graph). For a given family of network graphs
G, the r-neighborhood graph N,.(G) is defined as follows. The node set of N.(G)
is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views).
There is an edge between two labeled r-neighborhoods V, and V.. if V, and V!
can be the r-hop views of two adjacent nodes.

Lemma 6.5. For a given family of network graphs G, there is an r-round al-
gorithm that colors graphs of G with ¢ colors iff the chromatic number of the
netghborhood graph is x(N;(G)) < c.

Proof. We have seen that a coloring algorithm is a function that maps every
possible m-hop view to a color. Hence, a coloring algorithm assigns a color to
every node of the neighborhood graph N;.(G). If two r-hop views V, and V. can
be the r-hop views of two adjacent nodes u and v (for some labeled graph in
G), every correct coloring algorithm must assign different colors to V, and V..
Thus, specifying an r-round coloring algorithm for a family of network graphs
G is equivalent to coloring the respective neighborhood graph N,.(G). O

Instead of directly defining the neighborhood graph for directed rings, we
define directed graphs By, that are closely related to the neighborhood graph.
Let £ and n be two positive integers and assume that n > k. The node set of
B, contains all k-tuples of increasing node labels ([n] = {1,...,n}):

V(Bin = AAQT:;Q\L ra; €n)i<j—a; < QL (6.1)

sag) and 8= (B, ..., Bk) there is a directed edge from a to §

Vie{l,...,k—1}: B = ajq1. (6.2)

Lemma 6.6. Viewed as an undirected graph, the graph Ba,i1,n is a subgraph
of the r-neighborhood graph of directed n-node rings with node labels from [n].

Proof. The claim follows directly from the observations regarding r-hop views of
nodes in a directed ring from Section 6.1. The set of k-tuples of increasing node
labels is a subset of the set of k-tuples of distinct node labels. Two nodes of
Bay41,n are connected by a directed edge iff the two corresponding r-hop views
are connected by a directed edge in the neighborhood graph. Note that if there
is an edge between o and 8 in By, n, a1 # By, because the node labels in o and
[ are increasing. O

To determine a lower bound on the number of colors an r-round algorithm
needs for directed n-node rings, it therefore suffices to determine a lower bound
on the chromatic number of By, t1,. To obtain such a lower bound, we need
the following definition.
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Definition 6.7 (Diline Graph). The directed line graph (diline graph) DL(G)
of a directed graph G = (V, E) is defined as follows. The node set of DL(G) is
VIDL(G)] = E. There is a directed edge ((w,z), (y, 2)) between (w,z) € E and
(y,2) € E iff v =y, i.e., if the first edge ends where the second one starts.

Lemma 6.8. Ifn > k, the graph Bjy11, can be defined recursively as follows:
Biy1,n = DL(Br,n)-

Proof. The edges of By, are pairs of k-tuples @ = (ay,...,o) and g =
(Bi,--.,Bk) that satisfy Conditions (6.1) and (6.2). Because the last k — 1
labels in o are equal to the first £ — 1 labels in 38, the pair (a, 3) can be rep-
resented by a (k + 1)-tuple v = (1,...,Yk+1) with v, = a1, v = Bic1 = o4
for 2 < i < k, and yp41 = Br. Because the labels in o and the labels in j
are increasing, the labels in v are increasing as well. The two graphs Nw»tﬂ
and DL(By,,) therefore have the same node sets. There is an edge between
two nodes @T%L and @w,mmv of DL(By,) if mH = a,. This is equivalent to
requiring that the two corresponding (k + 1)-tuples % and 7, are neighbors in
Bi+1.n, 1.€., that the last &k labels of 7, are equal to the first k labels of Yy O

The following lemma establishes a useful connection between the chromatic
numbers of a directed graph G and its diline graph DL(G).

Lemma 6.9. For the chromatic numbers x(G) and x(DL(G)) of a directed
graph G and its diline graph, it holds that

X(DL(G)) > log, (x(G)).

Proof. Given a c-coloring of DL(G), we show how to construct a 2¢ coloring of G.
The claim of the lemma then follows because this implies that y(G) < 2X(P£(G)),

Assume that we are given a c-coloring of DL(G). A c-coloring of the diline
graph DL(G) can be seen as a coloring of the edges of G such that no two
adjacent edges have the same color. For a node v of G, let S, be the set of
colors of its outgoing edges. Let u and v be two nodes such that G contains a
directed edge (u,v) from u to v and let z be the color of (u,v). Clearly, z € S,
because (u,v) is an outgoing edge of u. Because adjacent edges have different
colors, no outgoing edge (v, w) of v can have color x. Therefore z ¢ S,. This
implies that S, # S,. We can therefore use these color sets to obtain a vertex
coloring of G, i.e., the color of u is S, and the color of v is S,. Because the
number of possible subsets of [¢] is 2¢, this yields a 2°-coloring of G. O

Let Hom_S x be the i-fold application of the base-2 logarithm to z:
Emg x = log, z, _omﬁ.tu T = ﬁommﬁomfu x).
Remember from Chapter 1 that
log"z=1if2 <2, log"x =14 min{i: log® & < 2}.

For the chromatic number of By ,, we obtain

Lemma 6.10. For alln > 1, x(B1,,) = n. Further, forn >k > 2, x(Bpn) >

_cm?\: n.
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Proof. For k =1, By, is the complete graph on n nodes with a directed edge
from node ¢ to node j iff ¢ < j. Therefore, x(Bi,) = n. For k > 2, the claim
follows by induction and Lemmas 6.8 and 6.9. O

This finally allows us to state a lower bound on the number of rounds needed
to color a directed ring with 3 colors.

Theorem 6.11. FEvery deterministic, distributed algorithm to color a directed
ring with 3 or less colors needs at least (log" n)/2 — 1 rounds.

Proof. Using the connection between By, ,, and the neighborhood graph for di-
rected rings, it suffices to show that x(Bay11,,) > 3 for all r < (log"n)/2 — 1.
From Lemma 6.10, we know that x(Bayi1,n) > Fm@; n. To obtain Hcmﬁsv n <2,
we need r > (log*n)/2 — 1. Because logy 3 < 2, we therefore have log®”) n > 3
if r <log"n/2—1. O

Corollary 6.12. Every deterministic, distributed algorithm to compute an MIS
of a directed ring needs at least log* n/2 — O(1) rounds.

Remarks:

o It is straightforward to see that also for a constant ¢ > 3, the number of
rounds needed to color a ring with ¢ or less colors is log" n/2 — O(1).

e There basically (up to additive constants) is a gap of a factor of 2 between
the log" n+ O(1) upper bound of Chapter 1 and the log* n/2 — O(1) lower
bound of this chapter. It is possible to show that the lower bound is
tight, even for undirected rings (for directed rings, this will be part of the
exercises).

Alternatively, the lower bound can also be presented as an application of
Ramsey’s theory. Ramsey’s theory is best introduced with an example:
Assume you host a party, and you want to invite people such that there
are no three people who mutually know each other, and no three people
which are mutual strangers. How many people can you invite? This is
an example of Ramsey’s theorem, which says that for any given integer c,
and any given integers ny, . .., n., there is a Ramsey number R(ny, ..., n.),
such that if the edges of a complete graph with R(nq,...,n.) nodes are
colored with ¢ different colors, then for some color ¢ the graph contains
some complete subgraph of color i of size n;. The special case in the party
example is looking for R(3,3).

e Ramsey theory is more general, as it deals with hyperedges. A normal
edge is essentially a subset of two nodes; a hyperedge is a subset of k
nodes. The party example can be explained in this context: We have
(hyper)edges of the form {7, 5}, with 1 <, j < n. Choosing n sufficiently
large, coloring the edges with two colors must exhibit a set S of 3 edges
{i,7} C {v1,v2,v3}, such that all edges in S have the same color. To prove
our coloring lower bound using Ramsey theory, we form all hyperedges of
size k = 2r+1, and color them with 3 colors. Choosing n sufficiently large,
there must be a set S = {v1,...,v541} of k + 1 identifiers, such that all
k + 1 hyperedges consisting of k nodes from S have the same color. Note
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that both {v1,...,v;} and {va,...,vp41} are in the set S, hence there will
be two neighboring views with the same color. Ramsey theory shows that
in this case n will grow as a power tower (tetration) in k. Thus, if n is so
large that k is smaller than some function growing like log™ n, the coloring
algorithm cannot be correct.

The neighborhood graph concept can be used more generally to study
distributed graph coloring. It can for instance be used to show that with
a single round (every node sends its identifier to all neighbors) it is possible
to color a graph with (14 o(1))A%Inn colors, and that every one-round
algorithm needs at least Q(A2/log? A + loglogn) colors.

One may also extend the proof to other problems, for instance one may
show that a constant approximation of the minimum dominating set prob-
lem on unit disk graphs costs at least log-star time.

Using r-hop views and the fact that nodes with equal r-hop views have to
make the same decisions is the basic principle behind almost all locality
lower bounds (in fact, we are not aware of a locality lower bound that does
not use this principle). Using this basic technique (but a completely dif-
ferent proof otherwise), it is for instance possible to show that computing
an MIS (and many other problems) in a general graph requires at least
Q(y/logn) and Q(log A) rounds.

Chapter Notes

The lower bound proof in this chapter is by Linial [Lin92], proving asymptotic
optimality of the technique of Chapter 1. This proof can also be found in
Chapter 7.5 of [Pel00]. The lower bound is also true for randomized algorithms
[Na091]. Recently, this lower bound technique was adapted to other problems
[CHWO08, LWO08]. In some sense, Linial’s seminal work raised the question of
what can be computed in O(1) time [NS93], essentially starting distributed
complexity theory.

More recently, using a different argument, Kuhn et al. [KMWO04] managed
to show more substantial lower bounds for a number of combinatorial problems
including minimum vertex cover (MVC), minimum dominating set (MDS), max-
imal matching, or maximal independent set (MIS). More concretely, Kuhn et al.
showed that all these problems need polylogarithmic time (for a polylogarithmic
approximation, in case of approximation problems such as MVC and MDS). For
recent surveys regarding locality lower bounds we refer to e.g. [KMW10, Suo12].

Ramsey theory was started by Frank P. Ramsey with his 1930 article called
“On a problem of formal logic” [Ram30]. For an introduction to Ramsey theory
we refer to e.g. [NR90, LRO3].
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Chapter 7

All-to-All Communication

In the previous chapters, we have mostly considered communication on a par-
ticular graph G = (V, E), where any two nodes u and v can only communicate
directly if {u,v} € E. This is however not always the best way to model a net-
work. In the Internet, for example, every machine (node) is able to “directly”
communicate with every other machine via a series of routers. If every node in
a network can communicate directly with all other nodes, many problems can
be solved easily. For example, assume we have n servers, each hosting an ar-
bitrary number of (numeric) elements. If all servers are interested in obtaining
the maximum of all elements, all servers can simultaneously, i.e., in one com-
munication round, send their local maximum element to all other servers. Once
these maxima are received, each server knows the global maximum.

Note that we can again use graph theory to model this all-to-all commu-
nication scenario: The communication graph is simply the complete graph
K= (V, vi If each node can send its entire local state in a single message,
then all problems could be solved in 1 communication round in this model!
Since allowing unbounded messages is not realistic in most practical scenarios,
we restrict the message size: Assuming that all node identifiers and all other
variables in the system (such as the numeric elements in the example above)
can be described using O(log n) bits, each node can only send a message of size
O(logn) bits to all other nodes (messages to different neighbors can be differ-
ent). In other words, only a constant number of identifiers (and elements) can
be packed into a single message. Thus, in this model, the limiting factor is the
amount of information that can be transmitted in a fixed amount of time. This
is fundamentally different from the model we studied before where nodes are
restricted to local information about the network graph.

In this chapter, we study one particular problem in this model, the com-
putation of a minimum spanning tree (MST), i.e., we will again look at the
construction of a basic network structure. Let us first review the definition of a
minimum spanning tree from Chapter 3. We assume that each edge e is assigned
a weight we.

Definition 7.1 (MST). Given a weighted graph G = (V, E,w). The MST of G
is a spanning tree T minimizing w(T), where w(H) = Y, i we for any subgraph
HCQG.
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Remarks:

n

e Since we have a complete communication graph, the graph has Am

in the beginning.

v edges

e Asin Chapter 3, we assume that no two edges of the graph have the same
weight. Recall that this assumption ensures that the MST is unique.
Recall also that this simplification is not essential as one can always break
ties by using the IDs of adjacent vertices.

For simplicity, we assume that we have a synchronous model (as we are
only interested in the time complexity, our algorithm can be made asynchro-
nous using synchronizer « at no additional cost (cf. Chapter 12). As usual, in
every round, every node can send a (potentially different) message to each of
its neighbors. In particular, note that the message delay is 1 for every edge e
independent of the weight w.. As mentioned before, every message can contain
a constant number of node IDs and edge weights (and O(log n) additional bits).

Remarks:

e Note that for graphs of arbitrary diameter D, if there are no bounds on the
number of messages sent, on the message size, and on the amount of local
computations, there is a straightforward generic algorithm to compute an
MST in time D: In every round, every node sends its complete state to all
its neighbors. After D rounds, every node knows the whole graph and can
compute any graph structure locally without any further communication.

e In general, the diameter D is also an obvious lower bound for the time
needed to compute an MST. In a weighted ring, e.g., it takes time D to
find the heaviest edge. In fact, on the ring, time D is required to compute
any spanning tree.

In this chapter, we are not concerned with lower bounds, we want to give an
algorithm that computes the MST as quickly as possible instead! We again use
the following lemma that is proven in Chapter 3.

Lemma 7.2. For a given graph G let T be an MST, and let T' C T be a subgraph
(also known as a fragment) of the MST. Edge e = (u,v) is an outgoing edge of
T ifueT andv & T (or vice versa). Let the minimum weight outgoing edge
of the fragment T" be the so-called blue edge b(T"). Then T"Ub(T") C T.

Lemma 7.2 leads to a straightforward distributed MST algorithm. We start
with an empty graph, i.e., every node is a fragment of the MST. The algorithm
consists of phases. In every phase, we add the blue edge b(T”) of every existing
fragment 7" to the MST. Algorithm 28 shows how the described simple MST
construction can be carried out in a network of diameter 1.

Theorem 7.3. On a complete graph, Algorithm 28 computes an MST in time
O(logn).

Proof. The algorithm is correct because of Lemma 7.2. Every node only needs
to send a single message to all its neighbors in every phase (line 4). All other
computations can be done locally without sending other messages. In particular,
the blue edge of a given fragment is the lightest edge sent by any node of that
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Algorithm 28 Simple MST Construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: while v has neighbor u in different fragment do

3 find lowest-weight edge e between v and a node u in a different fragment
4:  send e to all nodes

5:  determine blue edges of all fragments

6:  add blue edges of all fragments to MST, update fragments

7. end while

fragment. Because every node always knows the current MST (and all current
fragments), lines 5 and 6 can be performed locally.

In every phase, every fragment connects to at least one other fragment. The
minimum fragment size therefore at least doubles in every phase. Thus, the
number of phases is at most log, n. O

Remarks:

e Algorithm 28 does essentially the same thing as the GHS algorithm (Algo-
rithm 15) discussed in Chapter 3. Because we now have a complete graph
and thus every node can communicate with every other node, things get
simpler (and also much faster).

Algorithm 28 does not make use of the fact that a node can send different
messages to different nodes. Making use of this possibility will allow us to
significantly reduce the running time of the algorithm.

Our goal is now to improve Algorithm 28. We assume that every node has
a unique identifier. By sending its own identifier to all other nodes, every node
knows the identifiers of all other nodes after one round. Let ¢(F) be the node
with the smallest identifier in fragment F. We call £(F) the leader of fragment
F. In order to improve the running time of Algorithm 28, we need to be able
to connect every fragment to more than one other fragment in a single phase.
Algorithm 29 shows how the nodes can learn about the k& = |F| lightest outgoing
edges of each fragment F' (in constant time!).

Given this set E’ of edges, each node can locally decide which edges can
safely be added to the constructed tree by calling the subroutine AddEdges
(Algorithm 30). Note that the set of received edges E’ in line 14 is the same for
all nodes. Since all nodes know all current fragments, all nodes add the same
set of edges!

Algorithm 30 uses the lightest outgoing edge that connects two fragments (to
a larger super-fragment) as long as it is safe to add this edge, i.e., as long as it is
clear that this edge is a blue edge. A (super-)fragment that has outgoing edges
in E’ that are surely blue edges is called safe. As we will see, a super-fragment
F is safe if all the original fragments that make up F are still incident to at least
one edge in E’ that has not yet been considered. In order to determine whether
all lightest outgoing edges in E’ that are incident to a certain fragment F have
been processed, a counter ¢(F) is maintained (see line 2). If an edge incident
to two (distinct) fragments F; and Fj is processed, both ¢(F;) and ¢(Fj) are
decremented by 1 (see Line 8).
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Algorithm 29 Fast MST construction (at node v)
1: // all nodes always know all current MST edges and thus all MST fragments
2: repeat
3:  F := fragment of v;
4:  VYF’' # F, compute min-weight edge eps connecting v to F’
5. VF' #F,send eps to ((F")
6: if v =((F) then
7 VE' # F, determine min-weight edge ey between F and F’
8
9

k:=|F|
: E(F) := k lightest edges among ep, s for F' # F
10: send send each edge in E(F) to a different node in F'
// for simplicity assume that v also sends an edge to itself
11:  end if
12:  send edge received from ¢(F') to all nodes
13:  // the following operations are performed locally by each node
14: B’ := edges received by other nodes
15:  AddEdges(E’)
16: until all nodes are in the same fragment

An edge connecting two distinct super-fragments F' and F” is added if at
least one of the two super-fragments is safe. In this case, the two super-fragments
are merged into one (new) super-fragment. The new super-fragment is safe if
and only if both original super-fragements are safe and the processed edge e is
not the last edge in £’ incident to any of the two fragments F; and F; that are
incident to e, i.e., both counters c(F;) and c(Fj) are still positive (see line 12).

The considered edge e may not be added for one of two reasons. It is possible
that both F’ and F" are not safe. Since a super-fragment cannot become safe
again, nothing has to be done in this case. The second reason is that F/' = F”.
In this case, this single fragment may become unsafe if e reduced either c¢(F;)
or ¢(F}) to zero (see line 18).

Lemma 7.4. The algorithm only adds MST edges.

Proof. We have to prove that at the time we add an edge e in line 9 of Al-
gorithm 30, e is the blue edge of some (super-)fragment. By definition, e is
the lightest edge that has not been considered and that connects two distinct
super-fragments F' and F”. Since e is added, we know that either safe(F’)
or safe(F") is true. Without loss of generality, assume that F’ is safe. Ac-
cording to the definition of safe, this means that from each fragment F' in the
super-fragment F' we know at least the lightest outgoing edge, which implies
that we also know the lightest outgoing edge, i.e., the blue edge, of F’. Since e
is the lightest edge that connects any two super-fragments, it must hold that e
is exactly the blue edge of F'. Thus, whenever an edge is added, it is an MST
edge. O

Theorem 7.5. Algorithm 29 computes an MST in time O(loglogn).

Proof. Let By denote the size of the smallest fragment after phase k of Algo-
rithm 29. We first show that every fragment merges with at least [ other
fragments in each phase. Since the size of each fragment after phase k is at
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Algorithm 30 AddEdges(E’): Given the set of edges E’, determine which
edges are added to the MST

1: Let Fi,..., F, be the initial fragments

2: VF; € {F,..., F.}, ¢(F;) := # incident edges in E’

3: Let Fy :=Fy,... := F, be the initial super-fragments
4 VF e{F,..., Fr},safe(F;) := true

5: while E' # () do

6 e := lightest edge in £’ between the original fragments F; and F;

7. E:=FE\{e}

8 c(Fy) = c(F;) — 1, c(Fj) :==c(Fj) — 1

9:  if e connects super-fragments ' # F” and (safe(F’) or safe(F")) then
5“ mm&mﬁc?ﬁmwh

11: merge F' and F” into one super-fragment F,,cq,

12: if safe(F’) and safe(F”) and c(F;) > 0 and ¢(F};) > 0 then
13: safe(Fpew) := true

14: else

15: safe(Fnew) := false

16: end if

17:  else if 7/ = F" and (¢(F;) = 0 or ¢(F;) =0) then
18: safe(F') = false

19:  end if

20: end while

least ) by definition, we get that the size of each fragment after phase k + 1 is
at least Bi(Br +1). Assume that a fragment F, consisting of at least i, nodes,
does not merge with Sy other fragments in phase k + 1 for any k£ > 0. Note
that F' cannot be safe because being safe implies that there is at least one edge
in E’ that has not been considered yet and that is the blue edge of F. Hence,
the phase cannot be completed in this case. On the other hand, if F' is not
safe, then at least one of its sub-fragments has used up all its 35 edges to other
fragments. However, such an edge is either used to merge two fragments or it
must have been dropped because the two fragments already belong to the same
fragment because another edge connected them (in the same phase). In either
case, we get that any fragment, and in particular F, must merge with at least
B, other fragments.

Given that the minimum fragment size grows (quickly) in each phase and
that only edges belonging to the MST are added according to Lemma 7.4, we
conclude that the algorithm correctly computes the MST. The fact that

Brt1 > Br(Be +1)

implies that g > 227" for any k > 1. Therefore after 1+log, log, n phases, the
minimum fragment size is n and thus all nodes are in the same fragment. [

Chapter Notes

There is a considerable amount of work on distributed MST construction. Table
7.1 lists the most important results for various network diameters D. In the
above text we focus only on D = 1.
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7 Upper Bounds 7 construction in o (log log n) communication rounds. In Proceedings
of the fifteenth annual ACM symposium on Parallel algorithms and
architectures, pages 94-100. ACM, 2003.

Graph Class Time Complexity Authors
General Graphs O(D + y/n-log"n) Kutten, Peleg [KP95] [LPSP06] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed mst for
Diameter 2 O(logn) Lotker, Patt-Shamir, constant diameter graphs. Distributed Computing, 18(6):453-460,
Peleg [LPSP06] 2006.
Diameter 1 Ologlogn) WMMHHM, memmmnmﬁwﬂow_ [SHK'12] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman,
Danupon Nanongkai, Gopal Pandurangan, David Peleg, and Roger
Wattenhofer. Distributed verification and hardness of distributed
: Lower Bounds : approximation. SIAM Journal on Computing, 41(5):1235-1265,
2012.
Graph Class Time Complexity Authors
Diameter Q(logn) QD + y/n/logn) Das Sarma, Holzer, Kor,

Korman, Nanongkai,
Pandurangan, Peleg,
Wattenhofer [SHK*12]

Diameter 4 Q Q:\ log ip\wv Das Sarma, Holzer, Kor,

Korman, Nanongkai,
Pandurangan, Peleg,
Wattenhofer [SHK 112

Diameter 3 Q Q:\ log :v(»v Das Sarma, Holzer, Kor,
Korman, Nanongkai,

Pandurangan, Peleg,
Wattenhofer [SHK*12]

Table 7.1: Time complexity of distributed MST construction

We want to remark that the above lower bounds remain true for random-
ized algorithms. We can even not hope for a better randomized approximation
algorithm for the MST as long as the approximation factor is bounded polyno-
mially in n. On the other hand it is not known whether the O(loglogn) time
complexity of Algorithm 29 is optimal. In fact, no lower bounds are known for
the MST construction on graphs of diameter 1 and 2. Algorithm 29 makes use
of the fact that it is possible to send different messages to different nodes. If
we assume that every node always has to send the same message to all other
nodes, Algorithm 28 is the best that is known. Also for this simpler case, no
lower bound is known.
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Chapter 8

Social Networks

Distributed computing is applicable in various contexts. This lecture exemplar-
ily studies one of these contexts, social networks, an area of study whose origins
date back a century. To give you a first impression, consider Figure 8.1.

Figure 8.1: This graph shows the social relations between the members of a
karate club, studied by anthropologist Wayne Zachary in the 1970s. Two people
(nodes) stand out, the instructor and the administrator of the club, both happen
to have many friends among club members. At some point, a dispute caused
the club to split into two. Can you predict how the club partitioned? (If not,
just search the Internet for Zachary and Karate.)

75
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8.1 Small World Networks

Back in 1929, Frigyes Karinthy published a volume of short stories that pos-
tulated that the world was “shrinking” because human beings were connected
more and more. Some claim that he was inspired by radio network pioneer
Guglielmo Marconi’s 1909 Nobel Prize speech. Despite physical distance, the
growing density of human “networks” renders the actual social distance smaller
and smaller. As a result, it is believed that any two individuals can be connected
through at most five (or so) acquaintances, i.e., within six hops.

The topic was hot in the 1960s. For instance, in 1964, Marshall McLuhan
coined the metaphor “Global Village”. He wrote: “As electrically contracted,
the globe is no more than a village”. He argues that due to the almost instanta-
neous reaction times of new (“electric”) technologies, each individual inevitably
feels the consequences of his actions and thus automatically deeply participates
in the global society. McLuhan understood what we now can directly observe —
real and virtual world are moving together. He realized that the transmission
medium, rather than the transmitted information is at the core of change, as
expressed by his famous phrase “the medium is the message”.

This idea has been followed ardently in the 1960s by several sociologists,
first by Michael Gurevich, later by Stanley Milgram. Milgram wanted to know
the average path length between two “random” humans, by using various ex-
periments, generally using randomly chosen individuals from the US Midwest
as starting points, and a stockbroker living in a suburb of Boston as target.
The starting points were given name, address, occupation, plus some personal
information about the target. They were asked to send a letter to the target.
However, they were not allowed to directly send the letter, rather, they had to
pass it to somebody they knew on first-name basis and that they thought to
have a higher probability to know the target person. This process was repeated,
until somebody knew the target person, and could deliver the letter. Shortly
after starting the experiment, letters have been received. Most letters were lost
during the process, but if they arrived, the average path length was about 5.5.
The observation that the entire population is connected by short acquaintance
chains got later popularized by the terms “six degrees of separation” and “small
world”.

Statisticians tried to explain Milgram’s experiments, by essentially giving
network models that allowed for short diameters, i.e., each node is connected
to each other node by only a few hops. Until today there is a thriving research
community in statistical physics that tries to understand network properties
that allow for “small world” effects.

One of the keywords in this area are power-law graphs, networks where node
degrees are distributed according to a power-law distribution, i.e., the number
of nodes with degree § is proportional to §~¢, for some a > 1. Such power-
law graphs have been witnessed in many application areas, apart from social
networks also in the web, or in biology or physics.

Obviously, two power-law graphs might look and behave completely differ-
ently, even if o and the number of edges is exactly the same.

One well-known model towards this end is the Watts-Strogatz model. Watts
and Strogatz argued that social networks should be modeled by a combination of
two networks: As the basis we take a network that has a large cluster coefficient
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Definition 8.1. The cluster coefficient of a network is defined by the probability
that two friends of a node are likely to be friends as well, averaged over all the
nodes.

..., then we augment such a graph with random links, every node for in-
stance points to a constant number of other nodes, chosen uniformly at random.
This augmentation represents acquaintances that connect nodes to parts of the
network that would otherwise be far away.

Remarks:

e Without further information, knowing the cluster coefficient is of ques-
tionable value: Assume we arrange the nodes in a grid. Technically, if
we connect each node to its four closest neighbors, the graph has cluster
coefficient 0, since there are no triangles; if we instead connect each node
with its eight closest neighbors, the cluster coefficient is 3/7. The clus-
ter coefficient is quite different, even though both networks have similar
characteristics.

This is interesting, but not enough to really understand what is going on. For
Milgram’s experiments to work, it is not sufficient to connect the nodes in a
certain way. In addition, the nodes themselves need to know how to forward
a message to one of their neighbors, even though they cannot know whether
that neighbor is really closer to the target. In other words, nodes are not just
following physical laws, but they make decisions themselves.

Let us consider an artificial network with nodes on a grid topology, plus some
additional random links per node. In a quantitative study it was shown that the
random links need a specific distance distribution to allow for efficient greedy
routing. This distribution marks the sweet spot for any navigable network.

Definition 8.2 (Augmented Grid). We take n = m? nodes
{1,.. ;3% that are identified with the lattice points on an m x m grid. We
define the distance between two nodes (i, ) and (k) as d((i,4), (k,0)) = |k —
i| + [ — j| as the distance between them on the m x m lattice. The network
is modeled using a parameter a > 0. Each node w has a directed edge to ev-
ery lattice neighbor. These are the local contacts of a node. In addition, each
node also has an additional random link (the long-range contact). For all u
and v, the long-range contact of u points to node v with probability proportional
to d(u,v)™%, i.e., with probability d(u,v)™*/ 3 ey (o) A(u, w) ™. Figure 8.2
illustrates the model.

Remarks:

e The network model has the following geographic interpretation: nodes
(individuals) live on a grid and know their neighbors on the grid. Further,
each node has some additional acquaintances throughout the network.

The parameter o controls how the additional neighbors are distributed
across the grid. If a = 0, long-range contacts are chosen uniformly at
random (as in the Watts-Strogatz model). As « increases, long-range
contacts become shorter on average. In the extreme case, if & — oo, all
long-range contacts are to immediate neighbors on the grid.
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RS

Figure 8.2: Augmented grid with m =6

e It can be shown that as long as a < 2, the diameter of the resulting
graph is polylogarithmic in n (polynomial in log n) with high probability.
In particular, if the long-range contacts are chosen uniformly at random
(av = 0), the diameter is O(logn).

Since the augmented grid contains random links, we do not know anything
for sure about how the random links are distributed. In theory, all links could
point to the same node! However, this is almost certainly not the case. Formally
this is captured by the term with high probability.

Definition 8.3 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p > 1 —
1/n¢, where c is a constant. The constant ¢ may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Remarks:

e For instance, a running time bound of clogn or e logn + 5000¢ with
probability at least 1 —1/n¢ would be O(logn) w.h.p., but a running time
of n® would not be O(n) w.h.p. since ¢ might also be 50.

e This definition is very powerful, as any polynomial (in n) number of state-
ments that hold w.h.p. also holds w.h.p. at the same time, regardless of
any dependencies between random variables!
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Theorem 8.4. The diameter of the augmented grid with o = 0 is O(log n) with
high probability.

Proof Sketch. For simplicity, we will only show that we can reach a target node
t starting from some source node s. However, it can be shown that (essentially)
each of the intermediate claims holds with high probability, which then by means
of the union bound yields that all of the claims hold simultaneously with high
probability for all pairs of nodes (see exercises).

Let Ny be the [logn]-hop neighborhood of source s on the grid, containing
bﬁom& n) nodes. Each of the nodes in Ny has a random link, probably leading
to distant parts of the graph. As long as we have reached only o(n) nodes, any
new random link will with probability 1 —o(1) lead to a node for which none of
its grid neighbors has been visited yet. Thus, in expectation we find almost | N|
new nodes whose neighbors are “fresh”. Using their grid links, we will reach
(4—0(1))|Ns| more nodes within one more hop. If bad luck strikes, it could still
happen that many of these links lead to a few nodes, already visited nodes, or
nodes that are very close to each other. But that is very unlikely, as we have
lots of random choices! Indeed, it can be shown that not only in expectation,
but with high probability (5 — o(1))|N,| many nodes are reached this way (see
exercises).

Because all the new nodes have (so far unused) random links, we can repeat
this reasoning inductively, implying that the number of nodes grows by (at least)
a constant factor for every two hops. Thus, after O(logn) hops, we will have
reached n/logn nodes (which is still small compared to n). Finally, consider the
expected number of links from these nodes that enter the (logn)-neighborhood
of some target node ¢ with respect to the grid. Since this neighborhood consists
of Q(log?n) nodes, in expectation Q(logn) links come close enough to target
t. This is large enough to almost guarantee that this happens (see exercises).
Summing everything up, we still used merely O(logn) hops in total to get from
s to t.

]

This shows that for « = 0 (and in fact for all a < 2), the resulting network
has a small diameter. Recall however that we also wanted the network to be
navigable. For this, we consider a simple greedy routing strategy (Algorithm 31).

Algorithm 31 Greedy Routing

1: while not at destination do

2:  go to a neighbor which is closest to destination (considering grid distance
only)

3: end while

Lemma 8.5. In the augmented grid, Algorithm 31 finds a routing path of length
at most 2(m — 1) € O(y/n).

Proof. Because of the grid, there is always a neighbor which is closer to the
destination. Since with each hop we reduce the distance to the target at least
by one in one of the two grid dimensions, we will reach the destination within
2(m — 1) steps. O
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This is not really what Milgram’s experiment promises. We want to know
how much the additional random links speed up the process. To this end, we
first need to understand how likely it is that the random link of node u points
to node v, in terms of their grid distance d(u,v), the number of nodes n, and
the constant parameter .

Lemma 8.6. Node u’s random link points to a node v with probability
o O(1/(d(u,v)*m?>™)) if a < 2.
e O(1/(d(u,v)?logn)) if « = 2,
o O(1/d(u,v)*) if > 2.

Moreover, if a > 2, the probability to see a link of length at least d is in
o(1/d*~2).

Proof. For a constant « # 2, we have that

5 e —o (L) e (=)

weV\{u} r=1

If @ < 2, this gives O(m?™%), if a > 2, it is in O(1). If o = 2, we get

MU &A: w) M\U = M\UW = O(logm) = O(logn).

weV\{u}

Multiplying with d(u,v)® yields the first three bounds. For the last statement,
compute

3 e(1/d(u,v)*) = A\u“ Wg %.v -0 ATI\.M%V = 0(1/d?).

veV
d(u,v)>d

Remarks:

o If @ > 2, according to the lemma, the probability to see a random link
of length at least d = m/(*=1) is ©(1/d*~?) = O(1/m(*=2/(e=1) In
expectation we have to take ©(m(*=2/(@=1)) hops until we see a random
link of length at least d. When just following links of length less than d,
it takes more than m/d = m/m/(@=1) = m(e=2/(a=1) hops. In other
words, in expectation, either way we need at least m(*~2)/(a=1) = 1)
hops to the destination.

If a < 2, there is a (slightly more complicated) argument. First we draw
a border around the nodes in distance m(2~®)/3 to the target. Within this
border there are about m2(2~®)/3 many nodes in the target area. Assume
that the source is outside the target area. Starting at the source, the prob-
ability to find a random link that leads directly inside the target area is
according to the lemma at most m2?=)/3.9(1/m?~%)) = ©(1/m=)/3).
In other words, until we find a random link that leads into the target area,
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in expectation, we have to do ©(m(?~*/3) hops. This is too slow, and
our greedy strategy is probably faster, as thanks to having a < 2 there
are many long-range links. However, it means that we will probably en-
ter the border of the target area on a regular grid link. Once inside the
target area, again the probability of short-cutting our trip by a random
long-range link is ©(1/m(=)/3), so we probably just follow grid links,
mZ=)/3 = ;1) many of them.

In summary, if a # 2, our greedy routing algorithm takes m?() = n®(1)
expected hops to reach the destination. This is polynomial in the number

of nodes n, and the social network can hardly be called a “small world”

e Maybe we can get a polylogarithmic bound on n if we set a = 27

Definition 8.7 (Phase). Consider routing from source s to target t and assume
that we are at some intermediate node w. We say that we are in phase j at node

w if the lattice distance d(w,t) to the target node t is between 29 < d(w,t) <
27+,

Remarks:

e Enumerating the phases in decreasing order is useful, as notation becomes
less cumbersome.

o There are [logm] € O(logn) phases.

Lemma 8.8. Assume that we are in phase j at node w when routing from s
to t. The probability for getting (at least) to phase j — 1 in one step is at least

Q(1/logn).

Proof. Let B; be the set of nodes  with d(z,t) < 27. We get from phase j to
(at least) phase j — 1 if the long-range contact of node w points to some node
in Bj. Note that we always make progress while following the greedy routing
path. Therefore, we have not seen node w before and the long-range contact of
w points to a random node that is independent of anything seen on the path
from s to w.

For all nodes z € Bj, we have d(w, z) < d(w,t) +d(z,t) < 201 425 < 272,
Hence, for each node = € Bj, the probability that the long-range contact of w
points to z is Q(1/2%**logn). Further, the number of nodes in B; is at least
(27)2/2 = 2%7~1. Hence, the probability that some node in B; is the long range
contact of w is at least

o(|B ! o 2 oL
O \._.wmiﬁom:v\ Awmiﬁom:v\ Oom:v. -

Theorem 8.9. Consider the greedy routing path from a node s to a node t on
an augmented grid with parameter o = 2. The expected length of the path is
O(log*n).

Proof. We already observed that the total number of phases is O(logn) (the
distance to the target is halved when we go from phase j to phase j — 1). At
each point during the routing process, the probability of proceeding to the next
phase is at least Q(1/logn). Let X; be the number of steps in phase j. Because
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the probability for ending the phase is Q(1/logn) in each step, in expectation
we need O(logn) steps to proceed to the next phase, i.e., E[X;] € O(logn). Let
X = M\. X be the total number of steps of the routing process. By linearity of
expectation, we have

E[X] =Y E[X;] € O(log’ n). O
J

Remarks:
e One can show that the O(log? n) result also holds w.h.p.

e In real world social networks, the parameter a was evaluated experimen-
tally. The assumption is that you are connected to the geographically
closest nodes, and then have some random long-range contacts. For Face-
book grandpa LiveJournal it was shown that « is not really 2, but rather
around 1.25.

8.2 Propagation Studies

In networks, nodes may influence each other’s behavior and decisions. There are
many applications where nodes influence their neighbors, e.g., they may impact
their opinions, or they may bias what products they buy, or they may pass on
a disease.

On a beach (modeled as a line segment), it is best to place an ice cream
stand right in the middle of the segment, because you will be able to “control”
the beach most easily. What about the second stand, where should it settle?
The answer generally depends on the model, but assuming that people will buy
ice cream from the stand that is closer, it should go right next to the first stand.

Rumors can spread surprisingly fast through social networks. Tradition-
ally this happens by word of mouth, but with the emergence of the Internet
and its possibilities new ways of rumor propagation are available. People write
email, use instant messengers or publish their thoughts in a blog. Many factors
influence the dissemination of rumors. It is especially important where in a net-
work a rumor is initiated and how convincing it is. Furthermore the underlying
network structure decides how fast the information can spread and how many
people are reached. More generally, we can speak of diffusion of information in
networks. The analysis of these diffusion processes can be useful for viral mar-
keting, e.g., to target a few influential people to initiate marketing campaigns.
A company may wish to distribute the rumor of a new product via the most
influential individuals in popular social networks such as Facebook. A second
company might want to introduce a competing product and has hence to select
where to seed the information to be disseminated. Rumor spreading is quite
similar to our ice cream stand problem.

More formally, we may study propagation problems in graphs. Given a
graph, and two players. Let the first player choose a seed node uy; afterwards
let the second player choose a seed node uy, with ug # uy. The goal of the game
is to maximize the number of nodes that are closer to one’s own seed node.

In many graphs it is an advantage to choose first. In a star graph for instance
the first player can choose the center node of the star, controlling all but one
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node. In some other graphs, the second player can at least score even. But is
there a graph where the second player has an advantage?

Theorem 8.10. In a two player rumor game where both players select one node
to initiate their rumor in the graph, the first player does not always win.

Proof. See Figure 8.3 for an example where the second player will always win,
regardless of the decision the first player. If the first player chooses the node z(
in the center, the second player can select 1. Choice 1 will be outwitted by x4,
and xo itself can be answered by z;. All other strategies are either symmetric,
or even less promising for the first player. O

Figure 8.3: Counter example.

Chapter Notes

A simple form of a social network is the famous stable marriage problem [DS62]
in which a stable matching bipartite graph has to be found. There exists a great
many of variations which are based on this initial problem, e.g., [KC82, KMV94,
EO06, FKPS10, Hoell]. Social networks like Facebook, Twitter and others have
grown very fast in the last years and hence spurred interest to research them.
How users influence other users has been studied both from a theoretical point
of view [KKT03] and in practice [CHBG10]. The structure of these networks
can be measured and studied [MMG™07]. More than half of the users in social
networks share more information than they expect to [LGKM11].

The small world phenomenon that we presented in this chapter is analyzed
by Kleinberg [Kle00]. A general overview is in [DJ10].

This chapter has been written in collaboration with Michael Kuhn.
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Chapter 9

Shared Memory

9.1 Introduction

In distributed computing, various different models exist. So far, the focus of the
course was on loosely-coupled distributed systems such as the Internet, where
nodes asynchronously communicate by exchanging messages. The “opposite”
model is a tightly-coupled parallel computer where nodes access a common
memory totally synchronously—in distributed computing such a system is called
a Parallel Random Access Machine (PRAM).

A third major model is somehow between these two extremes, the shared
memory model. In a shared memory system, asynchronous processes (or proces-
sors) communicate via a common memory area of shared variables or registers:

Definition 9.1 (Shared Memory). A shared memory system is a system that
consists of asynchronous processes that access a common (shared) memory. A
process can atomically access a register in the shared memory through a set of
predefined operations. An atomic modification appears to the rest of the system
instantaneously. Apart from this shared memory, processes can also have some
local (private) memory.

Remarks:

e Various shared memory systems exist. A main difference is how they allow
processes to access the shared memory. All systems can atomically read
or write a shared register R. Most systems do allow for advanced atomic
read-modify-write (RMW) operations, for example:

— test-and-set(R): ¢t := R; R :=1; return ¢

— fetch-and-add(R, z): t := R; R := R+ x; return ¢

— compare-and-swap(R,z,y): if R = z then R :=
return false; endif;

— load-link(R)/store-conditional(R,z): Load-link returns the current
value of the specified register R. A subsequent store-conditional to
the same register will store a new value z (and return true) only
if no updates have occurred to that register since the load-link. If
any updates have occurred, the store-conditional is guaranteed to fail

; return true; else
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(and return false), even if the value read by the load-link has since
been restored.

The power of RMW operations can be measured with the so-called consensus-
number: The consensus-number k of a RMW operation defines whether
one can solve consensus for k processes. Test-and-set for instance has
consensus-number 2 (one can solve consensus with 2 processes, but not
3), whereas the consensus-number of compare-and-swap is infinite. It can
be shown that the power of a shared memory system is determined by the
consensus-number (“universality of consensus”.) This insight has a re-
markable theoretical and practical impact. In practice for instance, after
this was known, hardware designers stopped developing shared memory
systems supporting weak RMW operations.

Many of the results derived in the message passing model have an equiva-
lent in the shared memory model. Consensus for instance is traditionally
studied in the shared memory model.

Whereas programming a message passing system is rather tricky (in partic-
ular if fault-tolerance has to be integrated), programming a shared mem-
ory system is generally considered easier, as programmers are given access
to global variables directly and do not need to worry about exchanging
messages correctly. Because of this, even distributed systems which phys-
ically communicate by exchanging messages can often be programmed
through a shared memory middleware, making the programmer’s life eas-
ier.

We will most likely find the general spirit of shared memory systems in
upcoming multi-core architectures. As for programming style, the multi-
core community seems to favor an accelerated version of shared memory,
transactional memory.

From a message passing perspective, the shared memory model is like a
bipartite graph: On one side you have the processes (the nodes) which
pretty much behave like nodes in the message passing model (asynchro-
nous, maybe failures). On the other side you have the shared registers,
which just work perfectly (no failures, no delay).

9.2 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion. We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time is
allowed to access the resource. More formally:

Definition 9.2 (Mutual Exclusion). We are given a number of processes, each
ezecuting the following code sections:

<Entry> — <Critical Section> — <Exit> — <Remaining Code>

A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds
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o Mutual Exclusion: At all times at most one process is in the critical sec-

tion.

e No deadlock: If some process manages to get to the entry section, later
some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

e No lockout: If some process manages to get to the entry section, later the
same process will get to the critical section.

o Unobstructed exit: No process can get stuck in the exit section.

Using RMW primitives one can build mutual exclusion algorithms quite easily.
Algorithm 32 shows an example with the test-and-set primitive.

Algorithm 32 Mutual Exclusion: Test-and-Set
Input: Shared register R :=0
<Entry>
1: repeat
2: 1 := test-and-set(R)
3: until 7 =0
<Critical Section>
4: ...
<Exit>
5 R:=0
<Remainder Code>
6: ...

Theorem 9.3. Algorithm 32 solves the mutual exclusion problem as in Defini-
tion 9.2.

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let p; be the i process to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time ¢;. At time ¢, process p; resets the shared register R to 0. Between ¢;
and ¢; no other process can successfully test-and-set, hence no other process can
enter the critical section concurrently.

Proving no deadlock works similar: One of the processes loitering in the
entry section will successfully test-and-set as soon as the process in the critical
section exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit. ]

Remarks:

e No lockout, on the other hand, is not given by this algorithm. Even with
only two processes there are asynchronous executions where always the
same process wins the test-and-set.

e Algorithm 32 can be adapted to guarantee fairness (no lockout), essentially
by ordering the processes in the entry section in a queue.
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e A natural question is whether one can achieve mutual exclusion with only
reads and writes, that is without advanced RMW operations. The answer
is yes!

Our read/write mutual exclusion algorithm is for two processes pg and p; only.
In the remarks we discuss how it can be extended. The general idea is that
process p; has to mark its desire to enter the critical section in a “want” register
W; by setting W; := 1. Only if the other process is not interested (W;_; = 0)
access is granted. This however is too simple since we may run into a deadlock.
This deadlock (and at the same time also lockout) is resolved by adding a priority
variable II. See Algorithm 33.

Algorithm 33 Mutual Exclusion: Peterson’s Algorithm
Initialization: Shared registers Wy, Wy, I1, all initially 0.
Code for process p; ,i={0,1}

<Entry>
1: Wyi=1
2: MI:=1—1

3: repeat until [I =4 or W7_; =
<Critical Section>

4: ...

<Exit>

5 W;:=0

<Remainder Code>

6: ...

Remarks:

e Note that line 3 in Algorithm 33 represents a “spinlock” or “busy-wait”,
similarly to the lines 1-3 in Algorithm 32.

Theorem 9.4. Algorithm 33 solves the mutual exclusion problem as in Defini-
tion 9.2.

Proof. The shared variable IT elegantly grants priority to the process that passes
line 2 first. If both processes are competing, only process pr; can access the
critical section because of II. The other process p;_p cannot access the critical
section because Wiy = 1 (and II # 1 — II). The only other reason to access the
critical section is because the other process is in the remainder code (that is,
not interested). This proves mutual exclusion!

No deadlock comes directly with Il: Process pr gets direct access to the
critical section, no matter what the other process does.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Thanks to the shared variable II also no lockout (fairness) is achieved: If a
process p; loses against its competitor p;_; in line 2, it will have to wait until
the competitor resets Wi_; := 0 in the exit section. If process p; is unlucky it
will not check Wi_; = 0 early enough before process p;_; sets Wi_; := 1 again
in line 1. However, as soon as p;—; hits line 2, process p; gets the priority due
to II, and can enter the critical section. O
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Remarks:

e Extending Peterson’s Algorithm to more than 2 processes can be done by
a tournament tree, like in tennis. With n processes every process needs to
win log n matches before it can enter the critical section. More precisely,
each process starts at the bottom level of a binary tree, and proceeds to
the parent level if winning. Once winning the root of the tree it can enter
the critical section. Thanks to the priority variables IT at each node of the
binary tree, we inherit all the properties of Definition 9.2.

9.3 Store & Collect
9.3.1 Problem Definition

In this section, we will look at a second shared memory problem that has an
elegant solution. Informally, the problem can be stated as follows. There are
n processes pi,...,pn. Every process p; has a read/write register R; in the
shared memory where it can store some information that is destined for the
other processes. Further, there is an operation by which a process can collect
(i.e., read) the values of all the processes that stored some value in their register.

We say that an operation op! precedes an operation op2 iff op! terminates
before op2 starts. An operation op2 follows an operation op! iff op! precedes

g

op2.

Definition 9.5 (Collect). There are two operations: A STORE(val) by process
pi sets val to be the latest value of its register R;. A COLLECT operation returns
a view, a partial function V' from the set of processes to a set of values, where
V(pi) is the latest value stored by p;, for each process p;. For a COLLECT
operation cop, the following validity properties must hold for every process p;:

o If A\AN:,V

o IfV(p;) =v# L, then v is the value of a STORE operation sop of p; that
does not follow cop, and there is no STORE operation by p; that follows
sop and precedes cop.

L, then no STORE operation by p; precedes cop.

Hence, a COLLECT operation cop should not read from the future or miss a
preceding STORE operation sop.

We assume that the read/write register R; of every process p; is initialized
to L. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem as shown by Algorithm 34.

Algorithm 34 Collect: Simple (Non-Adaptive) Solution
Operation STORE(val) (by process p;) :
1: R; := wval
Operation COLLECT:
2: for i:=1ton do
3 Vi(p):=R; // read register R;
4: end for
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Remarks:

e Algorithm 34 clearly works. The step complexity of every STORE operation
is 1, the step complexity of a COLLECT operation is n.

At first sight, the step complexities of Algorithm 34 seem optimal. Because
there are n processes, there clearly are cases in which a COLLECT operation
needs to read all n registers. However, there are also scenarios in which
the step complexity of the COLLECT operation seems very costly. Assume
that there are only two processes p; and p; that have stored a value in
their registers R; and R;. In this case, a COLLECT in principle only needs
to read the registers R; and R; and can ignore all the other registers.

Assume that up to a certain time t, k < n processes have finished or
started at least one operation. We call an operation op at time ¢ adap-
tive to contention if the step complexity of op only depends on k and is
independent of n.

In the following, we will see how to implement adaptive versions of STORE
and COLLECT.

9.3.2 Splitters

Algorithm 35 Splitter Code
Shared Registers: X : {L}U{l,...,n}; Y : boolean
Initialization: X := 1;Y := false

Splitter access by process p;:
1: X =1
2: if Y then
3:  return right
4: else
5 Y :=true
6 if X =i then
7 return stop
8: else
9 return left
end if
11: end if

-
e

To obtain adaptive collect algorithms, we need a synchronization primitive,
called a splitter.

Definition 9.6 (Splitter). A splitter is a synchronization primitive with the
following characteristic. A process entering a splitter exits with either stop,
left, or right. If k processes enter a splitter, at most one process exits with
stop and at most k — 1 processes exit with left and right, respectively.

Hence, it is guaranteed that if a single process enters the splitter, then it

obtains stop, and if two or more processes enter the splitter, then there is
at most one process obtaining stop and there are two processes that obtain
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k processors
at most 1
stop
at most k—1 at most k—1
left right

Figure 9.1: A Splitter

different values (i.e., either there is exactly one stop or there is at least one
left and at least one right). For an illustration, see Figure 9.1. The code
implementing a splitter is given by Algorithm 35.

Lemma 9.7. Algorithm 35 correctly implements a splitter.

Proof. Assume that k processes enter the splitter. Because the first process that
checks whether Y = true in line 2 will find that Y = false, not all processes
return right. Next, assume that ¢ is the last process that sets X :=i. If i does
not return right, it will find X =4 in line 6 and therefore return stop. Hence,
there is always a process that does not return left. It remains to show that at
most 1 process returns stop. For the sake of contradiction, assume p; and p;
are two processes that return stop and assume that p; sets X := i before p; sets
X := j. Both processes need to check whether Y is true before one of them
sets Y := true. Hence, they both complete the assignment in line 1 before the
first one of them checks the value of X in line 6. Hence, by the time p; arrives
at line 6, X # i (p; and maybe some other processes have overwritten X by
then). Therefore, p; does not return stop and we get a contradiction to the
assumption that both p; and p; return stop. O

9.3.3 Binary Splitter Tree

Assume that we are given 2" — 1 splitters and that for every splitter S, there
is an additional shared variable Zg : {L} U{1,..., n} that is initialized to L
and an additional shared variable Mg : boolean that is initialized to false. We
call a splitter S marked if Mg = true. The 2" — 1 splitters are arranged in a
complete binary tree of height n — 1. Let S(v) be the splitter associated with
a node v of the binary tree. The STORE and COLLECT operations are given by
Algorithm 36.

Theorem 9.8. Algorithm 36 correctly implements STORE and COLLECT. Let k
be the number of participating processes. The step complexity of the first STORE
of a process p; is O(k), the step complezity of every additional STORE of p; is
O(1), and the step complexity of COLLECT is O(k).

Proof. Because at most one process can stop at a splitter, it is sufficient to show
that every process stops at some splitter at depth at most k —1 < n — 1 when
invoking the first STORE operation to prove correctness. We prove that at most
k — i processes enter a subtree at depth ¢ (i.e., a subtree where the root has
distance i to the root of the whole tree). By definition of k, the number of
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Algorithm 36 Adaptive Collect: Binary Tree Algorithm
Operation STORE(val) (by process p;) :

1: R; := wval

2: if first STORE operation by p; then

3: v := root node of binary tree

4: o := result of entering splitter S(v);

5. Mg, = true

6:  while o # stop do

7 if o = left then

8: v := left child of v

9: else

10: v := right child of v

11: end if

12: a := result of entering splitter S(v);
13: Mg (y) := true

14:  end while
15: Zg() =1
16: end if

Operation COLLECT:

Traverse marked part of binary tree:
17: for all marked splitters S do

18: if Zg # L then

19: i:=Zg; V(pi) =R, // read value of process p;
20:  end if
21: end for /] V(pi) = L for all other processes

processes entering the splitter at depth 0 (i.e., at the root of the binary tree)
is k. For ¢ > 1, the claim follows by induction because of the at most k& — i
processes entering the splitter at the root of a depth i subtree, at most k —¢—1
obtain left and right, respectively. Hence, at the latest when reaching depth
k — 1, a process is the only process entering a splitter and thus obtains stop.
It thus also follows that the step complexity of the first invocation of STORE is
O(k).

To show that the step complexity of COLLECT is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables Mg associated to them and their
neighbors. Hence, showing that at most 2k — 1 nodes of the binary tree are
marked is sufficient. Let xj be the maximum number of marked nodes in a tree,
where k processes access the root. We claim that x; < 2k — 1, which is true
for k = 1 because a single process entering a splitter will always compute stop.
Now assume the inequality holds for 1,...,k — 1. Not all k processes may exit
the splitter with left (or right), i.e., k& < k — 1 processes will turn left and
ky < min{k — k;, k — 1} turn right. The left and right children of the root are
the roots of their subtrees, hence the induction hypothesis yields

SFHHFATH?ATHMAwk~\Hv+Aw\aﬁ\Hv+HMMN\H,

concluding induction and proof. O
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right

left

Figure 9.2: 5 x 5 Splitter Matrix

Remarks:

e The step complexities of Algorithm 36 are very good. Clearly, the step
complexity of the COLLECT operation is asymptotically optimal. In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n—1. The space complexity of Algorithm 36
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse COLLECT step complexity.

9.3.4 Splitter Matrix

Instead of arranging splitters in a binary tree, we arrange n? splitters in an n xn
matrix as shown in Figure 9.2. The algorithm is analogous to Algorithm 36.
The matrix is entered at the top left. If a process receives left, it next visits
the splitter in the next row of the same column. If a process receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n?). The following theorem gives bounds on
the step complexities of STORE and COLLECT.

Theorem 9.9. Let k be the number of participating processes. The step com-
plexity of the first STORE of a process p; is O(k), the step complexity of every
additional STORE of p; is O(1), and the step compleity of COLLECT is O(k?).

Proof. Let the top row be row 0 and the left-most column be column 0. Let z;
be the number of processes entering a splitter in row i. By induction on i, we
show that x; < k — i. Clearly, zo < k. Let us therefore consider the case i > 0.
Let j be the largest column such that at least one process visits the splitter in
row ¢ — 1 and column j. By the properties of splitters, not all processes entering
the splitter in row ¢ — 1 and column j obtain left. Therefore, not all processes
entering a splitter in row ¢ — 1 move on to row i. Because at least one process
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stays in every row, we get that x; < k — 4. Similarly, the number of processes
entering column j is at most k — j. Hence, every process stops at the latest in
row k — 1 and column k — 1 and the number of marked splitters is at most 2.
Thus, the step complexity of COLLECT is at most O(k?). Because the longest
path in the splitter matrix is 2k, the step complexity of STORE is O(k). O

Remarks:

e With a slightly more complicated argument, it is possible to show that the
number of processes entering the splitter in row 7 and column j is at most
k —i— j. Hence, it suffices to only allocate the upper left half (including
the diagonal) of the n x n matrix of splitters.

e The binary tree algorithm can be made space efficient by using a random-
ized version of a splitter. Whenever returning left or right, a randomized
splitter returns left or right with probability 1/2. With high probability,
it then suffices to allocate a binary tree of depth O(logn).

e Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n?) space complexity.

Chapter Notes

Already in 1965 Edsger Dijkstra gave a deadlock-free solution for mutual ex-
clusion [Dij65]. Later, Maurice Herlihy suggested consensus-numbers [Her91],
where he proved the “universality of consensus”, i.e., the power of a shared
memory system is determined by the consensus-number. For this work, Mau-
rice Herlihy was awarded the Dijkstra Prize in Distributed Computing in 2003.
Petersons Algorithm is due to [PF77, Pet81], and adaptive collect was studied
in the sequence of papers [MA95, AFG02, AL05, AKP*06].
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Chapter 10

Shared Objects

10.1 Introduction

Assume that there is a common resource (e.g. a common variable or data struc-
ture), which different nodes in a network need to access from time to time. If
the nodes are allowed to change the common object when accessing it, we need
to guarantee that no two nodes have access to the object at the same time. In
order to achieve this mutual exclusion, we need protocols that allow the nodes
of a network to store and manage access to such a shared object. A simple and
obvious solution is to store the shared object at a central location (see Algorithm
37).

Algorithm 37 Shared Object: Centralized Solution

Initialization: Shared object stored at root node r of a spanning tree of the
network graph (i.e., each node knows its parent in the spanning tree).
Accessing Object: (by node v)
1: v sends request up the tree
2: request processed by root r (atomically)
3: result sent down the tree to node v

Remarks:
e Instead of a spanning tree, one can use routing.

e Algorithm 37 works, but it is not very efficient. Assume that the object is
accessed by a single node v repeatedly. Then we get a high message/time
complexity. Instead v could store the object, or at least cache it. But then,
in case another node w accesses the object, we might run into consistency
problems.

Alternative idea: The accessing node should become the new master of
the object. The shared object then becomes mobile. There exist several
variants of this idea. The simplest version is a home-based solution like
in Mobile IP (see Algorithm 38).
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Algorithm 38 Shared Object: Home-Based Solution
Initialization: An object has a home base (a node) that is known to every
node. All requests (accesses to the shared object) are routed through the
home base.
Accessing Object: (by node v)
1: v acquires a lock at the home base, receives object.

Remarks:

e Home-based solutions suffer from the triangular routing problem. If two
close-by nodes access the object on a rotating basis, all the traffic is routed
through the potentially far away home-base.

10.2 Arrow and Friends

We will now look at a protocol (called the Arrow algorithm) that always
moves the shared object to the node currently accessing it without creating
the triangular routing problem of home-based solutions. The protocol runs on
a precomputed spanning tree. Assume that the spanning tree is rooted at the
current position of the shared object. When a node u wants to access the shared
object, it sends out a find request towards the current position of the object.
While searching for the object, the edges of the spanning tree are redirected
such that in the end, the spanning tree is rooted at u (i.e., the new holder of the
object). The details of the algorithm are given by Algorithm 39. For simplicity,
we assume that a node u only starts a find request if u is not currently the
holder of the shared object and if u has finished all previous find requests (i.e.,
it is not currently waiting to receive the object).

Remarks:
e The parent pointers in Algorithm 39 are only needed for the find operation.

Sending the variable to w in line 13 or to w.successor in line 23 is done
using routing (on the spanning tree or on the underlying network).

When we draw the parent pointers as arrows, in a quiescent moment
(where no “find” is in motion), the arrows all point towards the node
currently holding the variable (i.e., the tree is rooted at the node holding
the variable)

What is really great about the Arrow algorithm is that it works in a
completely asynchronous and concurrent setting (i.e., there can be many
find requests at the same time).

Theorem 10.1. (Arrow, Analysis) In an asynchronous and concurrent setting,
a “find” operation terminates with message and time complexity D, where D is
the diameter of the spanning tree.
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Algorithm 39 Shared Object: Arrow Algorithm

Initialization: As for Algorithm 37, we are given a rooted spanning tree. Each
node has a pointer to its parent, the root r is its own parent. The variable
is initially stored at r. For all nodes v, v.successor := null, v.wait := false.

Start Find Request at Node u:

1: do atomically

2:  wsends “find by u” message to parent node
3: w.parent := u

4:  w.wait := true

5: end do

Upon w Receiving “Find by u” Message from Node v:
6: do atomically
7. if w.parent # w then

8: w sends “find by u” message to parent

9: w.parent := v

10:  else

11: w.parent := v

12: if not w.wait then

13: send variable to u // w holds var. but does not need it any more
14: else

15: W.SUCCESSOr 1= U // w will send variable to u a.s.a.p.
16: end if

17:  end if

18: end do

Upon w Receiving Shared Object:
19: perform operation on shared object
20: do atomically

21:  w.wait := false

22:  if w.successor # null then

23: send variable to w.successor
24: w.successor := null

25:  end if

26: end do
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Before proving Theorem 10.1, we prove the following lemma.
Lemma 10.2. An edge {u,v} of the spanning tree is in one of four states:

1.) Pointer from u to v (no message on the edge, no pointer from v to u)
2.) Message on the move from u to v (no pointer along the edge)
3.) Pointer from v to u (no message on the edge, no pointer from u to v)
4.) Message on the move from v to u (no pointer along the edge)

Proof. W.lo.g., assume that initially the edge {u,v} is in state 1. With a
message arrival at u (or if u starts a “find by u” request, the edge goes to state
2. When the message is received at v, v directs its pointer to u and we are
therefore in state 3. A new message at v (or a new request initiated by v) then
brings the edge back to state 1. O

Proof of Theorem 10.1. Since the “find” message will only travel on a static
tree, it suffices to show that it will not traverse an edge twice. Suppose for the
sake of contradiction that there is a first “find” message f that traverses an
edge e = {u,v} for the second time and assume that e is the first edge that
is traversed twice by f. The first time, f traverses e. Assume that e is first
traversed from u to v. Since we are on a tree, the second time, e must be
traversed from v to u. Because e is the first edge to be traversed twice, f must
re-visit e before visiting any other edges. Right before f reaches v, the edge e
is in state 2 (f is on the move) and in state 3 (it will immediately return with
the pointer from v to u). This is a contradiction to Lemma 10.2. O

Remarks:

e Finding a good tree is an interesting problem. We would like to have a
tree with low stretch, low diameter, low degree, etc.

o It seems that the Arrow algorithm works especially well when lots of “find”
operations are initiated concurrently. Most of them will find a “close-by”
node, thus having low message/time complexity. For the sake of simplicity
we analyze a synchronous system.

Theorem 10.3. (Arrow, Concurrent Analysis) Let the system be synchronous.
Initially, the system is in a quiescent state. At time 0, a set S of nodes initiates
a “find” operation. The message complezity of all “find” operations is O(log | S
m*) where m* is the message complexity of an optimal (with global knowledge)
algorithm on the tree.

Proof Sketch. Let d be the minimum distance of any node in S to the root.
There will be a node u; at distance d from the root that reaches the root in
d time steps, turning all the arrows on the path to the root towards u;. A
node uy that finds (is queued behind) u; cannot distinguish the system from
a system where there was no request u;, and instead the root was initially
located at uy. The message cost of uy is consequentially the distance between
uy1 and uy on the spanning tree. By induction the total message complexity is
exactly as if a collector starts at the root and then “greedily” collects tokens
located at the nodes in S (greedily in the sense that the collector always goes
towards the closest token). Greedy collecting the tokens is not a good strategy
in general because it will traverse the same edge more than twice in the worst
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case. An asymptotically optimal algorithm can also be translated into a depth-
first-search collecting paradigm, traversing each edge at most twice. In another
area of computer science, we would call the Arrow algorithm a nearest-neighbor
TSP heuristic (without returning to the start/root though), and the optimal
algorithm TSP-optimal. It was shown that nearest-neighbor has a logarithmic
overhead, which concludes the proof. O

Remarks:

e An average request set S on a not-too-bad tree gives usually a much better
bound. However, there is an almost tight log|S|/loglog |S| worst-case
example.

e It was recently shown that Arrow can do as good in a dynamic setting
(where nodes are allowed to initiate requests at any time). In particular
the message complexity of the dynamic analysis can be shown to have a
log D overhead only, where D is the diameter of the spanning tree (note
that for logarithmic trees, the overhead becomes loglogn).

What if the spanning tree is a star? Then with Theorem 10.1, each find
will terminate in 2 steps! Since also an optimal algorithm has message
cost 1, the algorithm is 2-competitive...? Yes, but because of its high
degree the star center experiences contention. .. It can be shown that the
contention overhead is at most proportional to the largest degree A of the
spanning tree.

Thought experiment: Assume a balanced binary spanning tree—by Theo-
rem 10.1, the message complexity per operation is logn. Because a binary
tree has maximum degree 3, the time per operation therefore is at most
3logn.

There are better and worse choices for the spanning tree. The stretch of
an edge {u,v} is defined as distance between u and v in a spanning tree.
The maximum stretch of a spanning tree is the maximum stretch over all
edges. A few years ago, it was shown how to construct spanning trees that
are O(log n)-stretch-competitive.

What if most nodes just want to read the shared object? Then it does
not make sense to acquire a lock every time. Instead we can use caching (see
Algorithm 40).

Theorem 10.4. Algorithm 40 is correct. More surprisingly, the message com-
plezity is 3-competitive (at most a factor 3 worse than the optimum).

Proof. Since the accesses do not overlap by definition, it suffices to show that
between two writes, we are 3-competitive. The sequence of accessing nodes is
wo, T1, T2, , Tk, wy. After wp, the object is stored at wp and not cached
anywhere else. All reads cost twice the smallest subtree 7' spanning the write
wo and all the reads since each read only goes to the first copy. The write wq
costs T' plus the path P from w; to 7. Since any data management scheme
must use an edge in 7" and P at least once, and our algorithm uses edges in T’
at most 3 times (and in P at most once), the theorem follows. O




102 CHAPTER 10. SHARED OBJECTS

Algorithm 40 Shared Object: Read/Write Caching

e Nodes can either read or write the shared object. For simplicity we first
assume that reads or writes do not overlap in time (access to the object is
sequential).

o Nodes store three items: a parent pointer pointing to one of the neighbors

(as with Arrow), and a cache bit for each edge, plus (potentially) a copy of

the object.

Initially the object is stored at a single node wu; all the parent pointers point

towards u, all the cache bits are false.

e When initiating a read, a message follows the arrows (this time: without
inverting them!) until it reaches a cached version of the object. Then a copy
of the object is cached along the path back to the initiating node, and the
cache bits on the visited edges are set to true.

o A write at u writes the new value locally (at node ), then searches (follow the
parent pointers and reverse them towards u) a first node with a copy. Delete
the copy and follow (in parallel, by flooding) all edge that have the cache flag
set. Point the parent pointer towards u, and remove the cache flags.

Remarks:

Concurrent reads are not a problem, also multiple concurrent reads and
one write work just fine.

What about concurrent writes? To achieve consistency writes need to
invalidate the caches before writing their value. It is claimed that the
strategy then becomes 4-competitive.

Is the algorithm also time competitive? Well, not really: The optimal
algorithm that we compare to is usually offline. This means it knows the
whole access sequence in advance. It can then cache the object before the
request even appears!

Algorithms on trees are often simpler, but have the disadvantage that they
introduce the extra stretch factor. In a ring, for example, any tree has
stretch n — 1; so there is always a bad request pattern.

10.3. IVY AND FRIENDS 103

Algorithm 41 Shared Object: Pointer Forwarding

Initialization: Object is stored at root r of a precomputed spanning tree T (as
in the Arrow algorithm, each node has a parent pointer pointing towards
the object).

Accessing Object: (by node u)

1: follow parent pointers to current root r of T'
2: send object from r to u
3: r.parent := u; u.parent := u; // u is the new root

Algorithm 42 Shared Object: Ivy

Initialization: Object is stored at root r of a precomputed spanning tree T'
(as before, each node has a parent pointer pointing towards the object). For
simplicity, we assume that accesses to the object are sequential.

Start Find Request at Node u:

1: u sends “find by u” message to parent node
2: w.parent := u

Upon v receiving “Find by u” Message:

3: if v.parent = v then

4:  send object to u

5: else

6:  send “find by u” message to v.parent

7: end if

8: v.parent := u // w will become the new root

10.3 1Ivy and Friends

In the following we study algorithms that do not restrict communication to a
tree. Of particular interest is the special case of a complete graph (clique). A
simple solution for this case is given by Algorithm 41.

Remarks:
e If the graph is not complete, routing can be used to find the root.

e Assume that the nodes line up in a linked list. If we always choose the
first node of the linked list to acquire the object, we have message/time
complexity n. The new topology is again a linear linked list. Pointer
forwarding is therefore bad in a worst-case.

If edges are not FIFO, it can even happen that the number of steps is
unbounded for a node having bad luck. An algorithm with such a property
is named “not fair,” or “not wait-free.” (Example: Initially we have the
list 4 - 3 — 2 — 1; 4 starts a find; when the message of 4 passes 3, 3
itself starts a find. The message of 3 may arrive at 2 and then 1 earlier,
thus the new end of the list is 2 — 1 — 3; once the message of 4 passes 2,
the game re-starts.)

There seems to be a natural improvement of the pointer forwarding idea.
Instead of simply redirecting the parent pointer from the old root to the new
root, we can redirect all the parent pointers of the nodes on the path visited
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Figure 10.1: Reversal of the path xg,z1, z2, T3, 4, 5.

during a find message to the new root. The details are given by Algorithm 42.
Figure 10.1 shows how the pointer redirecting affects a given tree (the right tree
results from a find request started at node z on the left tree).

Remarks:

e Also with Algorithm 42, we might have a bad linked list situation. How-
ever, if the start of the list acquires the object, the linked list turns into
a star. As the following theorem shows, the search paths are not long
on average. Since paths sometimes can be bad, we will need amortized
analysis.

Theorem 10.5. If the initial tree is a star, a find request of Algorithm 42 needs
at most logn steps on average, where n is the number of processors.

Proof. All logarithms in the following proof are to base 2. We assume that
accesses to the shared object are sequential. We use a potential function argu-
ment. Let s(u) be the size of the subtree rooted at node u (the number of nodes
in the subtree including u itself). We define the potential ® of the whole tree
T as (V is the set of all nodes)

log s(u)
d(T) = ——.
(T) Mmm 5
Assume that the path traversed by the i* operation has length k;, i.e., the i*"
operation redirects k; pointers to the new root. Clearly, the number of steps
of the i** operation is proportional to k;. We are interested in the cost of m
consecutive operations, MHSHH ki.

Let Ty be the initial tree and let T; be the tree after the i** operation.
Further, let a; = k; —®(T;_1) +®(T;) be the amortized cost of the i* operation.
We have

m m m

Sai=>" (ki —O(Ti1) + (1)) = ki — O(Tp) + B(Trn)-

i=1 i=1 i=1
For any tree T', we have ®(T") > log(n)/2. Because we assume that Tp is a star,
we also have ®(Ty) = log(n)/2. We therefore get that

m
M a; > M k.
i=1 i=1
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Hence, it suffices to upper bound the amortized cost of every operation. We
thus analyze the amortized cost a; of the i operation. Let xg, 1,22, .., 2k,
be the path that is reversed by the operation. Further for 0 < j < k;, let s; be
the size of the subtree rooted at x; before the reversal. The size of the subtree
rooted at xq after the reversal is s;, and the size of the one rooted at z; after the
reversal, for 1 < j < k;, is s; — sj_1 (see Figure 10.1). For all other nodes, the
sizes of their subtrees are the same, therefore the corresponding terms cancel
out in the ammortized cost a;. We can thus write a; as

k k
1 1 1
a; = k;i— .Mumwomm_\. + mﬁommFLﬁMUm#om.Ama\muLv
j=0 Jj=1
] ol
= ?.+m. (log(sj41 — s5) — log s;)
j=0
1A Sjt1— S
= ity Emrv
5=0 K

For 0 < j < k;—1,let aj = sj41/s;. Note that s;41 > s; and thus that a; > 1.

Further note, that (s;j+1 — s;)/s; = aj — 1. We therefore have that
1 ki—1
a = kity Y logla;—1)
j=0

= FMuL AH + WHOWAE — Cv .

j=0

For o > 1, it can be shown that 1+ log(a —1)/2 < loga (see Lemma 10.6).
From this inequality, we obtain

ki—1 ki—1 ki—1
S
ai < Y logaj =Y log= = 3" (logs;1 —logsy)
=0 =0 .

= logsy, —logsy <logn,

because s, = n and so > 1. This concludes the proof. O
Lemma 10.6. For a > 1, 1+log(aw—1)/2 < loga.

Proof. The claim can be verified by the following chain of reasoning:

0 < (a—2)?
0 < o®—4da+4
4a—1) < a?
log, (4(e—1)) < log, (a?)
2+1logy(a—1) < 2logy
1+ W_OWNAQ —-1) < logya.
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Remarks:

e Systems guys (the algorithm is called Ivy because it was used in a system
with the same name) have some fancy heuristics to improve performance
even more: For example, the root every now and then broadcasts its name
such that paths will be shortened.

What about concurrent requests? It works with the same argument as
in Arrow. Also for Ivy an argument including congestion is missing (and
more pressing, since the dynamic topology of a tree cannot be chosen to
have low degree and thus low congestion as in Arrow).

Sometimes the type of accesses allows that several accesses can be com-
bined into one to reduce congestion higher up the tree. Let the tree in
Algorithm 37 be a balanced binary tree. If the access to a shared variable
for example is “add value z to the shared variable”, two or more accesses
that accidentally meet at a node can be combined into one. Clearly ac-
cidental meeting is rare in an asynchronous model. We might be able to
use synchronizers (or maybe some other timing tricks) to help meeting a
little bit.

Chapter Notes

The Arrow protocol was designed by Raymond [Ray89]. There are real life im-
plementations of the Arrow protocol, such as the Aleph Toolkit [Her99]. The
performance of the protocol under high loads was tested in [HW99] and other im-
plementations and variations of the protocol were given in, e.g., [PR99, HTWO00].

It has been shown that the find operations of the protocol do not backtrack,
i.e., the time and message complexities are O(D) [DH98], and that the Arrow
protocol is fault tolerant [HT01]. Given a set of concurrent request, Herhily et
al. [HTWO1] showed that the time and message complexities are within factor
log R from the optimal, where R is the number of requests. Later, this analysis
was extended to long-lived and asynchronous systems. In particular, Herhily et
al. [HKTWO6] showed that the competitive ratio in this asynchronous concur-
rent setting is O(log D). Thanks to the lower bound of the greedy TSP heuristic,
this is almost tight.

The Ivy system was introduced in [Li88, LH89]. On the theory side, it was
shown by Ginat et al. [GST89] that the amortized cost of a single request of
the Ivy protocol is ©(logn). Closely related work to the Ivy protocol on the
practical side is research on virtual memory and parallel computing on loosely
coupled multiprocessors. For example [BB81, LSHL82, FR86] contain studies on
variations of the network models, limitations on data sharing between processes
and different approaches.

Later, the research focus shifted towards systems where most data operations
were read operations, i.e., efficient caching became one of the main objects of
study, e.g., [MMVWO97].
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Chapter 11

Wireless Protocols

Wireless communication was one of the major success stories of the last decades.
Today, different wireless standards such as wireless local area networks (WLAN)
are omnipresent. In some sense, from a distributed computing viewpoint wireless
networks are quite simple, as they cannot form arbitrary network topologies.
Simplistic models of wireless networks include geometric graph models such as
the so-called unit disk graph. Modern models are more robust: The network
graph is restricted, e.g., the total number of neighbors of a node which are not
adjacent is likely to be small. This observation is hard to capture with purely
geometric models, and motivates more advanced network connectivity models
such as bounded growth or bounded independence.

However, on the other hand, wireless communication is also more difficult
than standard message passing, as for instance nodes are not able to transmit a
different message to each neighbor at the same time. And if two neighbors are
transmitting at the same time, they interfere, and a node may not be able to
decipher anything.

In this chapter we deal with the distributed computing principles of wireless
communication: We make the simplifying assumption that all n nodes are in the
communication range of each other, i.e., the network graph is a clique. Nodes
share a synchronous time, in each time slot a node can decide to either transmit
or receive (or sleep). However, two or more nodes transmitting in the same
time slot will cause interference. Transmitting nodes are never aware if there is
interference because they cannot simultaneously transmit and receive.

11.1 Basics

The basic communication protocol in wireless networks is the medium access
control (MAC) protocol. Unfortunately it is difficult to claim that one MAC
protocol is better than another, because it all depends on the parameters, such as
the network topology, the channel characteristics, or the traffic pattern. When
it comes to the principles of wireless protocols, we usually want to achieve
much simpler goals. One basic and important question is the following: How
long does it take until one node can transmit successfully, without interference?
This question is often called the wireless leader election problem (Chapter 2),
with the node transmitting alone being the leader.
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Clearly, we can use node IDs to solve leader election, e.g., a node with ID
transmits in time slot i. However, this may be incredibly slow. There are better
deterministic solutions, but by and large the best and simplest algorithms are
randomized.

Throughout this chapter, we use a random variable X to denote the number
of nodes transmitting in a given slot.

Algorithm 43 Slotted Aloha
1: Every node v executes the following code:
2: repeat
3:  transmit with probability 1/n
4: until one node has transmitted alone

Theorem 11.1. Using Algorithm 43 allows one node to transmit alone (become
a leader) after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

n—1
Nul.x‘H:H:.W.AH\WV Rwu
m

n n

where the last approximation is a result from Theorem 11.23 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

]
Remarks:
e The origin of the name is the ALOHAnet which was developed at the
University of Hawaii.
e How does the leader know that it is the leader? One simple solution is

a “distributed acknowledgment”. The nodes just continue Algorithm 43,
including the ID of the the leader in their transmission. So the leader
learns that it is the leader.

e One more problem?! Indeed, node v which managed to transmit the ac-
knowledgment (alone) is the only remaining node which does not know
that the leader knows that it is the leader. We can fix this by having the
leader acknowledge v’s successful acknowledgment.

One can also imagine an unslotted time model. In this model two mes-
sages which overlap partially will interfere and no message is received. As
everything in this chapter, Algorithm 43 also works in an unslotted time
model, with a factor 2 penalty, i.e., the probability for a successful trans-
mission will drop from w to Mn Essentially, each slot is divided into ¢ small
time slots with ¢ — oo and the nodes start a new ¢-slot long transmission

with probability %
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11.2 Initialization

Sometimes we want the n nodes to have the IDs {1,2,...,n}. This process is
called initialization. Initialization can for instance be used to allow the nodes
to transmit one by one without any interference.

11.2.1 Non-Uniform Initialization

Theorem 11.2. If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 43. The leader gets
the next free number and afterwards leaves the process. We know that this
works with probability 1/e. The expected time to finish is hence e - n.

]

Remarks:

e But this algorithm requires that the nodes know 7 in order to give them
IDs from 1,...,n! For a more realistic scenario we need a uniform algo-
rithm, i.e, the nodes do not know n.

11.2.2 Uniform Initialization with CD

Definition 11.3 (Collision Detection, CD). Two or more nodes transmitting
concurrently is called interference. In a system with collision detection, a re-
ceiver can distinguish interference from nobody transmitting. In a system with-
out collision detection, a receiver cannot distinguish the two cases.

Let us first present a high-level idea. The set of nodes is recursively par-
titioned into two non-empty sets, similarly to a binary tree. This is repeated
recursively until a set contains only one node which gets the next free ID. Af-
terwards, the algorithm continues with the next set.

Remarks:
e In line 8 the transmitting nodes need to know if they were the only one

transmitting. Since we have enough time, we can do a leader election first
and use a similar trick as before to ensure this.

Algorithm 45 Initialization with Collision Detection

1: Every node v executes the following code:

2: global variable m := 0 {number of already identified nodes}

3: local variable b, := ¢ {current bitstring of node v, initially empty}
4: RandomizedSplit(*)

Theorem 11.4. Algorithm 45 correctly initializes the set of nodes in O(n).

Proof. A successful split is defined as a split in which both subsets are non-
empty. We know that there are exactly n — 1 successful splits because we have
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Algorithm 44 RandomizedSplit(b)
: Every node v executes the following code:
: repeat
if b, = b then
choose 7 uniformly at random from {0,1}
in the next two time slots:
transmit in slot r, and listen in other slot
end if
. until there was at least 1 transmission in both slots
. if b, = b then
b, := b, + r {append bit r to bitstring b, }
: end if
12: if some node u transmitted alone in slot r € {0,1} then
13:  node u gets ID m {and becomes passive}
14: m:=m-+1
15: else
16:  RandomizedSplit(b + 0)
17:  RandomizedSplit(b + 1)
18: end if

e
TR X e el

a binary tree with n leaves and n — 1 inner nodes. Let us now calculate the
probability for creating two non-empty sets from a set of size k > 2 as

Prl<X <k—1=1—Pr[X =0]— PriX =] =1 — — —

2k =

1
3

V]

Thus, in expectation we need O(n) splits. O

Remarks:

e What if we do not have collision detection?

11.2.3 Uniform Initialization without CD

Let us assume that we have a special node ¢ (leader) and let S denote the set
of nodes which want to transmit. We now split every time slot from before into
two time slots and use the leader to help us distinguish between silence and
noise. In the first slot every node from the set S transmits, in the second slot
the nodes in S U {¢} transmit. This gives the nodes sufficient information to
distinguish the different cases (see Table 11.1).

nodes in S transmit | nodes in S U {/} transmit
S|=0 X v
S|=1,5={{} v v
S| =1,5#{(} v X
S|>2 X X

Table 11.1: Using a leader to distinguish between noise and silence: X represents
noise/silence, ¥ represents a successful transmission.
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Remarks:

As such, Algorithm 45 works also without CD, with only a factor 2 over-
head.

More generally, a leader immediately brings CD to any protocol.

This protocol has an important real life application, for instance when
checking out a shopping cart with items which have RFID tags.

But how do we determine such a leader? And how long does it take until
we are “sure” that we have one? Let us repeat the notion of with high
probability.

11.3 Leader Election

11.3.1 With High Probability

Definition 11.5 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p > 1 —
1/n°, where c is a constant. The constant ¢ may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Theorem 11.6. Algorithm 43 elects a leader w.h.p. in O(logn) time slots.

Proof. The probability for not electing a leader after ¢ - logn time slots, i.e.,
clogn slots without a successful transmission is

clnn ec'Inn
1 1 1 1
1-- =(1-- S e = o
e e elnn-c ne

Remarks:

e What about uniform algorithms, i.e. the number of nodes n is not known?

11.3.2 Uniform Leader Election

Algorithm 46 Uniform leader election

1: Every node v executes the following code:
2: for k=1,2,3,... do

3: fori=1tockdo

4 transmit with probability p := 1/2%
5 if node v was the only node which transmitted then
6: v becomes the leader
7 break

8 end if

9 end for

10: end for
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Theorem 11.7. By using Algorithm 46 it is possible to elect a leader w.h.p. in
O(log®n) time slots if n is not known.

Proof. Let us briefly describe the algorithm. The nodes transmit with prob-
ability p = 27 for ck time slots for k = 1,2,.... At first p will be too high
and hence there will be a lot of interference. But after logn phases, we have
k ~ logn and thus the nodes transmit with probability ~ m For simplicity’s
sake, let us assume that n is a power of 2. Using the approach outlined above,
we know that after log n iterations, we have p = w Theorem 11.6 yields that we
can elect a leader w.h.p. in O(logn) slots. Since we have to try logn estimates

until k£ & n, the total runtime is Qﬁomu n). O

Remarks:

e Note that our proposed algorithm has not used collision detection. Can we
solve leader election faster in a uniform setting with collision detection?

11.3.3 Fast Leader Election with CD

Algorithm 47 Uniform leader election with CD
1: Every node v executes the following code:
2: repeat
3:  transmit with probability W
4:  if at least one node transmitted then
5 all nodes that did not transmit quit the protocol
6: end if
7: until one node transmits alone

Theorem 11.8. With collision detection we can elect a leader using Algorithm
47 w.h.p. in O(logn) time slots.

Proof. The number of active nodes k is monotonically decreasing and always
greater than 1 which yields the correctness. A slot is called successful if at most
half the active nodes transmit. We can assume that k& > 2 since otherwise we
would have already elected a leader. We can calculate the probability that a
time slot is successful as

?mem m:ume m:Lu%auo_vmle

Since the number of active nodes at least halves in every successful time slot,
log n successful time slots are sufficient to elect a leader. Now let Y be a random
variable which counts the number of successful time slots after 8 - ¢ - logn time
slots. The expected value is E[Y] > 8- ¢-logn - w > 2-logn. Since all those
time slots are independent from each other, we can apply a Chernoff bound (see
Theorem 11.22) with § = 1 which states

PrY < (1—6)E[Y]] < e~ TEW] < ¢~k 2elogn < o

for any constant «.
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Remarks:

e Can we be even faster?

11.3.4 Even Faster Leader Election with CD

Let us first briefly describe an algorithm for this. In the first phase the nodes
transmit with probability H\wmoq H\m%q H\wmnq ... until no node transmits. This
yields a first approximation on the number of nodes. Afterwards, a binary search
is performed to determine an even better approximation of n. Finally, the third
phase finds a constant approximation of n using a biased random walk. The
algorithm stops in any case as soon as only one node is transmitting which will
become the leader.

Algorithm 48 Fast uniform leader election
1:3:=1
: repeat
=21
transmit with probability 1/2¢
: until no node transmitted
{End of Phase 1}
6: [ =212
7o =2
8
9

oWy

o

: while I +1 < u do

J= 173
10:  transmit with probability 1/27
11:  if no node transmitted then

12: ui=7
13:  else

14: l:=j
15:  end if

16: end while

{End of Phase 2}
17 k:=u
18: repeat
19:  transmit with probability 1/2*
20:  if no node transmitted then
21: k=Fk—-1

22: else
23: k=k+1
24:  end if

25: until exactly one node transmitted

Lemma 11.9. If j > logn + loglogn, then Pr(X > 1] < X

Proof. The nodes transmit with probability 1/27 < 1/2legntloglogn — 1

nlogn”
The expected number of nodes transmitting is E[X] = - Togn - Using Markov’s

inequality (see Theorem 11.21) yields Pr[X > 1] < Pr[X > E[X]-logn] <
1

O

logn*
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Lemma 11.10. If j < logn — loglogn, then P[X =0] < 1.

= n

Proof. The nodes transmit with probability 1/27 < 1/2legn~loglosn —

Hence, the probability for a silent time slot is (1 — How o

v: \m\_ow: _ %.

Corollary 11.11. Ifi > 2logn, then Pr[X > 1] < -k

= logn-
Proof. This follows from Lemma 11.9 since the deviation in this corollary is
even larger. O

Corollary 11.12. Ifi < logn, then P[X = 0] <

1
o

Proof. This follows from Lemma 11.10 since the deviation in this corollary is
even larger. O

Lemma 11.13. Let v be such that 2°~' <n <2V, i.e., v~logn. Ifk >v+2,
then Pr(X > 1] < 1.

Proof. Markov’s inequality yields

ok

wcm_kz < Pr[X >4E[X]] <

k
PrX >1] = Pr T > m\ExL < PriX > :
n
O
Lemma 11.14. If k <v — 2, then P[X =0] < 1.

Proof. A similar analysis is possible to upper bound the probability that a
transmission fails if our estimate is too small. We know that & < v —2 and thus

==

Hz é e.\p
Pr(X =0] = AH - %v <eF T <e?<

O

Lemma 11.15. Ifv—2 < k < v+ 2, then the probability that exactly one node
transmits is constant.

Proof. The transmission probability is p = Q = O(1/n), and the lemma
follows with a slightly adapted version of Theorem 11.1.
O

Lemma 11.16. With probability 1— EM — we find a leader in phase 3 in O(loglogn)
time.

Proof. For any k, because of Lemmas 11.13 and 11.14, the random walk of the
third phase is biased towards the good area. One can show that in O(loglogn)
steps one gets Q(loglogn) good transmissions. Let Y denote the number of
times exactly one node transmitted. With Lemma 11.15 we obtain E[Y] =
Q(loglogn). Now a direct application of a Chernoff bound (see Theorem 11.22)

yields that these transmissions elect a leader with probability 1 — _ow.:. O

Theorem 11.17. The Algorithm 48 elects a leader with probability of at least

1- Smo_% in time O(loglogn).
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Proof. From Corollary 11.11 we know that after O(loglogn) time slots, the
first phase terminates. Since we perform a binary search on an interval of size
O(logn), the second phase also takes at most O(loglogn) time slots. For the
third phase we know that O(loglogn) slots are sufficient to elect a leader with
probability 1 — _cwz by Lemma 11.16. Thus, the total runtime is O(loglogn).
Now we can combine the results. We know that the error probability for
every time slot in the first two phases is at most _ow —. Using a union bound (see
Theorem 11.20), we can upper bound the probability that no error occurred by

_o_mc_%. Thus, we know that after phase 2 our estimate is at most log log n away

from log n with probability of at least 1 —

log log

oz n Hence, we can apply Lemma

loglogn
Togn

11.16 and thus successfully elect a leader with probability of at least 1 —
(again using a union bound) in time O(loglogn).

O

Remarks:

e Tightening this analysis a bit more, one can elect a leader with probability
1 — =L in time loglogn + o(loglogn).

logn

e Can we be even faster?

11.3.5 Lower Bound

Theorem 11.18. Any uniform protocol that elects a leader with probability of
at least 1 — w“ must run for at least t time slots.
Proof. Consider a system with only 2 nodes. The probability that exactly one

transmits is at most

ﬁlNH:Hw%.ﬁIEMW.

Thus, after ¢ time slots the probability that a leader was elected is at most
1t

— 1t m

Remarks:

e Setting t = loglog(n) shows that algorithm 48 is almost tight.

11.3.6 Uniform Asynchronous Wakeup without CD

Until now we have assumed that all nodes start the algorithm in the same time
slot. But what happens if this is not the case? How long does it take to elect
a leader if we want a uniform and anonymous (nodes do not have an identifier
and thus cannot base their decision on it) algorithm?

Theorem 11.19. If nodes wake up in an arbitrary (worst-case) way, any al-
gorithm may take Q(n/logn) time slots until a single node can successfully
transmit.
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Proof. Nodes must transmit at some point, or they will surely never successfully
transmit. With a uniform protocol, every node executes the same code. We
focus on the first slot where nodes may transmit. No matter what the protocol
is, this happens with probability p. Since the protocol is uniform, p must be a
constant, independent of n.

The adversary wakes up w = w_: n nodes in each time slot with some con-
stant ¢. All nodes woken up in the first time slot will transmit with probability
p. We study the event E; that exactly one of them transmits in that first time
slot. Using the inequality (14 t/n)" < e’ from Lemma 11.23 we get

PriEy)=w-p-(1- EVSL
=clnn(l- 3%?5:\3

clnn-e~cm+p

IN

—c

=clnn-n"%"
n=¢-O(logn)
1 1

< ne—1  pe”

In other words, w.h.p. that time slot will not be successful. Since the nodes
cannot distinguish noise from silence, the same argument applies to every set of
nodes which wakes up. Let F, be the event that all n/w time slots will not be
successful. Using the inequality 1 —p < (1 — p/k)* from Lemma 11.24 we get

>1-—

7

ne

1\ ©(n/logm) 1
PriEs] = (1= Pr(g) > (1- L)

ne
In other words, w.h.p. it takes more than n/w time slots until some node can
transmit alone.

O

11.4 Useful Formulas

In this chapter we have used several inequalities in our proofs. For simplicity’s
sake we list all of them in this section.

Theorem 11.20. Boole’s inequality or union bound: For a countable set of
events E1, Es, Es, ..., we have

wzC E] <Y Pr{E).

Theorem 11.21. Markov’s inequality: If X is any random variable and a > 0,

then Bix
Pr|X|>a] < ﬁ _
a
Theorem 11.22. Chernoff bound: Let Yi,..., Y, be a independent Bernoulli

random variables let Y := >, Y;. For any 0 < <1 it holds

Pr{Y < (1-)B[Y]] < e~ FF1
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and for 6 >0
min{4d, 2
Pr[Y > (1+6) - B[Y]] < ¢~ "5 £IY]

Theorem 11.23. We have

for alln € N, |t| < n. Note that

"
lim AH + Mv =e.
n—00 n

Theorem 11.24. For all p,k such that 0 <p <1 and k > 1 we have

1-p< ﬁ\w\\avw.

Chapter Notes

The Aloha protocol is presented and analyzed in [Abr70, BAK*75, Abr85]; the
basic technique that unslotted protocols are twice as bad a slotted protocols is
from [Rob75]. The idea to broadcast in a packet radio network by building a
tree was first presented in [TM78, Cap79]. This idea is also used in [HNO99]
to initialize the nodes. Willard [Wil86] was the first that managed to elect
a leader in O(loglogn) time in expectation. Looking more carefully at the
success rate, it was shown that one can elect a leader with probability 1 — EM -
in time loglogn + o(loglogn) [NO98]. Finally, approximating the number of
nodes in the network is analyzed in [JKZ02, CGKO05]. The lower bound for
probabilistic wake-up is published in [JS02]. In addition to single-hop networks,
multi-hop networks have been analyzed, e.g. broadcast [BYGI92, KM98, CR06],
or deployment [MvRWO06].
This chapter was written in collaboration with Philipp Brandes.
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Definition 12.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Given a mechanism that generates the clock pulses, a synchronous algorithm
is turned into an asynchronous algorithm in an obvious way: As soon as the i*®
clock pulse is generated at node v, v performs all the actions (local computations
and sending of messages) of round ¢ of the synchronous algorithm.
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Theorem 12.2. If all generated clock pulses are valid according to Definition
12.1, the above method provides an asynchronous algorithm that behaves exactly
the same way as the given synchronous algorithm.
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Proof. When the i*® pulse is generated at a node v, v has sent and received
exactly the same messages and performed the same local computations as in
the first ¢ — 1 rounds of the synchronous algorithm. O
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a Multiple Access Channel. STAM J. Comput., 15(2):468-477, 1986. The main problem when generating the clock pulses at a node v is that v can-
’ ’ not know what messages its neighbors are sending to it in a given synchronous

round. Because there are no bounds on link delays, v cannot simply wait “long
enough” before generating the next pulse. In order satisfy Definition 12.1, nodes
have to send additional messages for the purpose of synchronization. The total
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complexity of the resulting asynchronous algorithm depends on the overhead
introduced by the synchronizer. For a synchronizer S, let T(S) and M(S) be
the time and message complexities of S for each generated clock pulse. As we
will see, some of the synchronizers need an initialization phase. We denote the
time and message complexities of the initialization by Tinit(S) and Mipit(S),
respectively. If T'(A) and M (A) are the time and message complexities of the
given synchronous algorithm A, the total time and message complexities Tyt
and M, of the resulting asynchronous algorithm then become

Tiot = Tinit(S)+T(A)-(1+T(S)) and Mot = Minit(S)+M(A)+T(A)-M(S),

respectively.

Remarks:

e Because the initialization only needs to be done once for each network, we
will mostly be interested in the overheads T'(S) and M(S) per round of
the synchronous algorithm.

Definition 12.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

Lemma 12.4. If all neighbors of a node v are safe with respect to the current
clock pulse of v, the next pulse can be generated for v.

Proof. If all neighbors of v are safe with respect to a certain pulse, v has received
all messages of the given pulse. Node v therefore satisfies the condition of
Definition 12.1 for generating a valid next pulse. O

Remarks:

e In order to detect safety, we require that all algorithms send acknowl-
edgements for all received messages. As soon as a node v has received
an acknowledgement for each message that it has sent in a certain pulse,
it knows that it is safe with respect to that pulse. Note that sending
acknowledgements does not increase the asymptotic time and message
complexities.

12.2 The Local Synchronizer «

Algorithm 49 Synchronizer « (at node v)

wait until v is safe

send SAFE to all neighbors

wait until v receives SAFE messages from all neighbors
start new pulse

Synchronizer « is very simple. It does not need an initialization. Using
acknowledgements, each node eventually detects that it is safe. It then reports
this fact directly to all its neighbors. Whenever a node learns that all its neigh-
bors are safe, a new pulse is generated. Algorithm 49 formally describes the
synchronizer a.
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Theorem 12.5. The time and message complexities of synchronizer o per syn-
chronous round are

T(a) = O(1) and M(a) = O(m).

Proof. Communication is only between neighbors. As soon as all neighbors of
a node v become safe, v knows of this fact after one additional time unit. For
every clock pulse, synchronizer « sends at most four additional messages over
every edge: Each of the nodes may have to acknowledge a message and reports
safety. O

Remarks:

e Synchronizer o was presented in a framework, mostly set up to have a
common standard to discuss different synchronizers. Without the frame-
work, synchronizer « can be explained more easily:

1. Send message to all neighbors, include round information ¢ and actual
data of round i (if any).

2. Wait for message of round i from all neighbors, and go to next round.

e Although synchronizer « allows for simple and fast synchronization, it
produces awfully many messages. Can we do better? Yes.

12.3 The Global Synchronizer 3

Algorithm 50 Synchronizer 3 (at node v)

wait until v is safe
wait until v receives SAFE messages from all its children in T’
if v # ¢ then
send SAFE message to parent in 7'
wait until PULSE message received from parent in T
end if
send PULSE message to children in T
start new pulse

Synchronizer 3 needs an initialization that computes a leader node ¢ and a
spanning tree T rooted at £. As soon as all nodes are safe, this information is
propagated to £ by a convergecast. The leader then broadcasts this information
to all nodes. The details of synchronizer § are given in Algorithm 50.

Theorem 12.6. The time and message complexities of synchronizer 3 per syn-
chronous round are

T(8) = O(diameter(T)) < O(n) and M(B8) = O(n).
The time and message complezities for the initialization are

Tmit(B) = O(n) and M (B) = O(m+nlogn).
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Proof. Because the diameter of T is at most n — 1, the convergecast and the
broadcast together take at most 2n — 2 time units. Per clock pulse, the syn-
chronizer sends at most 2n — 2 synchronization messages (one in each direction
over each edge of T)).

With an improvement (due to Awerbuch) of the GHS algorithm (Algorithm
15) you saw in Chapter 3, it is possible to construct an MST in time O(n)
with O(m+nlogn) messages in an asynchronous environment. Once the tree is
computed, the tree can be made rooted in time O(n) with O(n) messages. [

Remarks:

e We now got a time-efficient synchronizer () and a message-efficient syn-
chronizer (), it is only natural to ask whether we can have the best of
both worlds. And, indeed, we can. How is that synchronizer called? Quite
obviously: ~.

12.4 The Hybrid Synchronizer ~

Figure 12.1: A cluster partition of a network: The dashed cycles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges

Synchronizer 7 can be seen as a combination of synchronizers o and . In the
initialization phase, the network is partitioned into clusters of small diameter.
In each cluster, a leader node is chosen and a BFS tree rooted at this leader
node is computed. These trees are called the intracluster trees. Two clusters
Cy and Cy are called neighboring if there are nodes v € €y and v € Cy for
which (u,v) € E. For every two neighboring clusters, an intercluster edge is
chosen, which will serve for communication between these clusters. Figure 12.1
illustrates this partitioning into clusters. We will discuss the details of how to
construct such a partition in the next section. We say that a cluster is safe if
all its nodes are safe.
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Synchronizer v works in two phases. In a first phase, synchronizer 3 is
applied separately in each cluster by using the intracluster trees. Whenever
the leader of a cluster learns that its cluster is safe, it reports this fact to all
the nodes in the clusters as well as to the leaders of the neighboring clusters.
Now, the nodes of the cluster enter the second phase where they wait until
all the neighboring clusters are known to be safe and then generate the next
pulse. Hence, we essentially apply synchronizer a between clusters. A detailed
description is given by Algorithm 51.

Algorithm 51 Synchronizer v (at node v)

wait until v is safe
wait until v receives SAFE messages from all children in intracluster tree
if v is not cluster leader then
send SAFE message to parent in intracluster tree
wait until CLUSTERSAFE message received from parent
end if
send CLUSTERSAFE message to all children in intracluster tree
send NEIGHBORSAFE message over all intercluster edges of v
wait until v receives NEIGHBORSAFE messages from all adjacent inter-
cluster edges and all children in intracluster tree
10: if v is not cluster leader then
11:  send NEIGHBORSAFE message to parent in intracluster tree
12:  wait until PULSE message received from parent
13: end if
14: send PULSE message to children in intracluster tree
15: start new pulse

© 0 NP U W e

Theorem 12.7. Let m¢ be the number of intercluster edges and let k be the
mazimum cluster radius (i.e., the mazimum distance of a leaf to its cluster
leader). The time and message complezities of synchronizer y are

T(y) = O(k) and M(y) = O(n+mg).

Proof. We ignore acknowledgements, as they do not affect the asymptotic com-
plexities. Let us first look at the number of messages. Over every intraclus-
ter tree edge, exactly one SAFE message, one CLUSTERSAFE message, one
NEIGHBORSAFE message, and one PULSE message is sent. Further, one
NEIGHBORSAFE message is sent over every intercluster edge. Because there
are less than n intracluster tree edges, the total message complexity therefore
is at most 4n + 2me = O(n + me).

For the time complexity, note that the depth of each intracluster tree is at
most k. On each intracluster tree, two convergecasts (the SAFE and NEIGH-
BORSAFE messages) and two broadcasts (the CLUSTERSAFE and PULSE
messages) are performed. The time complexity for this is at most 4k. There
is one more time unit needed to send the NEIGHBORSAFE messages over the
intercluster edges. The total time complexity therefore is at most 4k + 1 =

o(k). O
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12.5 Network Partition

We will now look at the initialization phase of synchronizer . Algorithm 52
describes how to construct a partition into clusters that can be used for syn-
chronizer . In Algorithm 52, B(v,r) denotes the ball of radius r around v,
ie., B(v,r) = {u €V :d(u,v) < r} where d(u,v) is the hop distance between
w and v. The algorithm has a parameter p > 1. The clusters are constructed
sequentially. Each cluster is started at an arbitrary node that has not been
included in a cluster. Then the cluster radius is grown as long as the cluster
grows by a factor more than p.

Algorithm 52 Cluster construction

1: while unprocessed nodes do
2 select an arbitrary unprocessed node v;
3 r:=0;
4:  while |B(v,r + 1)| > p|B(v,r)| do
5: ri=r+1
6: end while
7. makeCluster(B(v,r)) // all nodes in B(v,r) are now processed
8: end while
Remarks:

e The algorithm allows a trade-off between the cluster diameter k (and thus
the time complexity) and the number of intercluster edges m¢ (and thus
the message complexity). We will quantify the possibilities in the next
section.

e Two very simple partitions would be to make a cluster out of every single
node or to make one big cluster that contains the whole graph. We then
get synchronizers « and /3 as special cases of synchronizer .

Theorem 12.8. Algorithm 52 computes a partition of the network graph into
clusters of radius at most log,n. The number of intercluster edges is at most

(p—1)-n.

Proof. The radius of a cluster is initially 0 and does only grow as long as it
grows by a factor larger than p. Since there are only n nodes in the graph, this
can happen at most log, n times.

To count the number of intercluster edges, observe that an edge can only
become an intercluster edge if it connects a node at the boundary of a cluster
with a node outside a cluster. Consider a cluster C' of size |C|. We know that
C = B(v,r) for some v € V and r > 0. Further, we know that |B(v,r + 1) <
p - |B(v,r)|. The number of nodes adjacent to cluster C' is therefore at most
|B(v,r+1)\ B(v,7)| < p-|C|—|C|. Because there is only one intercluster edge
connecting two clusters by definition, the number of intercluster edges adjacent
to C'is at most (p — 1) - |C|. Summing over all clusters, we get that the total
number of intercluster edges is at most (p — 1) - n. OJ

Corollary 12.9. Using p = 2, Algorithm 52 computes a clustering with cluster
radius at most logy n and with at most n intercluster edges.
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Corollary 12.10. Using p = n'/*, Algorithm 52 computes a clustering with

cluster radius at most k and at most O(n*+t/*) intercluster edges.

Remarks:

e Algorithm 52 describes a centralized construction of the partitioning of
the graph. For p > 2, the clustering can be computed by an asynchronous
distributed algorithm in time O(n) with O(m+mnlogn) (reasonably sized)
messages (showing this will be part of the exercises).

It can be shown that the trade-off between cluster radius and number of
intercluster edges of Algorithm 52 is asymptotically optimal. There are
graphs for which every clustering into clusters of radius at most k requires
n'*e/k intercluster edges for some constant c.

The above remarks lead to a complete characterization of the complexity of
synchronizer ~.

Corollary 12.11. The time and message complexities of synchronizer ~ per
synchronous round are

T(y) = O(k) and M(y) = O(n'*'/F).
The time and message complezities for the initialization are
Twit(y) = O(n) and My (y) = O(m+nlogn).
Remarks:

e The synchronizer idea and the synchronizers discussed in this chapter are
due to Baruch Awerbuch.

In Chapter 3, you have seen that by using flooding, there is a very simple
synchronous algorithm to compute a BFS tree in time O(D) with mes-
sage complexity O(m). If we use synchronizer v to make this algorithm
asynchronous, we get an algorithm with time complexity O(n + D logn)
and message complexity O(m + nlogn + D - n) (including initialization).

The synchronizers «, 3, and « achieve global synchronization, i.e. ev-
ery node generates every clock pulse. The disadvantage of this is that
nodes that do not participate in a computation also have to participate in
the synchronization. In many computations (e.g. in a BFS construction),
many nodes only participate for a few synchronous rounds. An improved
synchronizer due to Awerbuch and Peleg can exploit such a scenario and
achieves time and message complexity Gcomw n) per synchronous round
(without initialization).

It can be shown that if all nodes in the network need to generate all pulses,
the trade-off of synchronizer v is asymptotically optimal.

Partitions of networks into clusters of small diameter and coverings of net-
works with clusters of small diameters come in many variations and have
various applications in distributed computations. In particular, apart from
synchronizers, algorithms for routing, the construction of sparse spanning
subgraphs, distributed data structures, and even computations of local
structures such as a MIS or a dominating set are based on some kind of
network partitions or covers.
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12.6 Clock Synchronization

“A man with one clock knows what time it is — a man with two is never sure.”

Synchronizers can directly be used to give nodes in an asynchronous network a
common notion of time. In wireless networks, for instance, many basic protocols
need an accurate time. Sometimes a common time in the whole network is
needed, often it is enough to synchronize neighbors. The purpose of the time
division multiple access (TDMA) protocol is to use the common wireless channel
as efficiently as possible, i.e., interfering nodes should never transmit at the
same time (on the same frequency). If we use synchronizer § to give the nodes
a common notion of time, every single clock cycle costs D time units!

Often, each (wireless) node is equipped with an internal clock. Using this
clock, it should be possible to divide time into slots, and make each node send
(or listen, or sleep, respectively) in the appropriate slots according to the media
access control (MAC) layer protocol used.

However, as it turns out, synchronizing clocks in a network is not trivial.
As nodes’ internal clocks are not perfect, they will run at speeds that are time-
dependent. For instance, variations in temperature or supply voltage will affect
this clock drift. For standard clocks, the drift is in the order of parts per million,
i.e., within a second, it will accumulate to a couple of microseconds. Wireless
TDMA protocols account for this by introducing guard times. Whenever a node
knows that it is about to receive a message from a neighbor, it powers up its
radio a little bit earlier to make sure that it does not miss the message even
when clocks are not perfectly synchronized. If nodes are badly synchronized,
messages of different slots might collide.

In the clock synchronization problem, we are given a network (graph) with
n nodes. The goal for each node is to have a logical clock such that the logical
clock values are well synchronized, and close to real time. Each node is equipped
with a hardware clock, that ticks more or less in real time, i.e., the time between
two pulses is arbitrary between [1 — €, 1 + €], for a constant € < 1. Similarly as
in our asynchronous model, we assume that messages sent over the edges of the
graph have a delivery time between [0,1]. In other words, we have a bounded
but variable drift on the hardware clocks and an arbitrary jitter in the delivery
times. The goal is to design a message-passing algorithm that ensures that the
logical clock skew of adjacent nodes is as small as possible at all times.

Theorem 12.12. The global clock skew (the logical clock difference between any
two nodes in the graph) is Q(D), where D is the diameter of the graph.

Proof. For a node u, let ¢, be the logical time of u and let (v — v) denote a
message sent from u to a node v. Let ¢(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then all the messages sent by u and v at time
i according to the clock of the sender arrive at time ¢ 4+ 1/2 according to the
clock of the receiver.

Then consider the following cases

o t,=t,+1/2, t(u—=v)=1,tv—=u)=0

o t,=t,—1/2, t(u—>v)=0,tv—>u)=1,
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where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time ¢ according to the clock of the sender arrive at time i + 1/2 according
to the logical clock of the receiver. Therefore, for nodes w and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes [, cannot
distinguish t; = t, + D/2 from ¢, = ¢, — D/2. O

Remarks:

e From Theorem 12.12, it directly follows that all the clock synchronization
algorithms we studied have a global skew of (D).

e Many natural algorithms manage to achieve a global clock skew of O(D).

As both the message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift between neighboring
nodes. As synchronizer a pays most attention to the local synchronization, we
take a look at a protocol inspired by the synchronizer a. A pseudo-code repre-
sentation for the clock synchronization protocol « is given in Algorithm 53.

Algorithm 53 Clock synchronization « (at node v)

1: repeat

2 send logical time ¢, to all neighbors

3 if Receive logical time t,, where t,, > t,, from any neighbor v then
4: ty =1,

5 end if

6: until done

Lemma 12.13. The clock synchronization protocol a has a local skew of Q(n).

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1,Vs,...,vp from left to right and the logical clock of node v; by ¢;. Apart
from the left-most node vy all hardware clocks run with speed 1 (real time).
Node vy runs at maximum speed, i.e. the time between two pulses is not 1 but
1 — e. Assume that initially all message delays are 1. After some time, node vy
will start to speed up vy, and after some more time vy will speed up vz, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular ¢ =tp + D — 1.

Now we start playing around with the message delays. Let ¢; = T. First we
set the delay between the v; and vy to 0. Now node vo immediately adjusts its
logical clock to T'. After this event (which is instantaneous in our model) we set
the delay between vy and v to 0, which results in v3 setting its logical clock to T'
as well. We perform this successively to all pairs of nodes until vp_o and vp_1.
Now node vp_1 sets its logical clock to T, which indicates that the difference
between the logical clocks of vp_y and vp isT — (T —(D—-1))=D-1. O
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Remarks:

e The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown that
any natural clock synchronization algorithm must have a bad local skew.
In particular, a protocol that averages between all neighbors is even worse
than the introduced « algorithm. This algorithm has a clock skew of
Q(D?) in the linked list, at all times.

Recently, there was a lot of progress in this area, and it was shown that
the local clock skew is ©(log D), i.e., there is a protocol that achieves this
bound, and there proof that no algorithm can be better than this bound!

Note that these are worst-case bounds. In practice, clock drift and message
delays may not be the worst possible, typically the speed of hardware
clocks changes at a comparatively slow pace and the message transmission
times follow a benign probability distribution. If we assume this, better
protocols do exist.

Chapter Notes

The idea behind synchronizers is quite intuitive and as such, synchronizers o and
8 were implicitly used in various asynchronous algorithms [Gal76, Cha79, CL85]
before being proposed as separate entities. The general idea of applying syn-
chronizers to run synchronous algorithms in asynchronous networks was first
introduced by Awerbuch [Awe85a]. His work also formally introduced the syn-
chronizers « and 3, whereas other constructions were presented in [AP90, PU87].

Naturally, as synchronizers are motivated by practical difficulties with local
clocks, there are plenty of real life applications. Studies regarding applications
can be found in, e.g., [SM86, Awe85b, LTC89, AP90, PU8T7]. Synchronizers in
the presence of network failures have been discussed in [AP88, HS94].

It has been known for a long time that the global clock skew is ©(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Q(log D/loglog D) for the local skew. The first algorithm providing a non-
trivial local skew of O(v/D) was given in [LWO06]. Later, matching upper and
lower bounds of ©(log D) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE(02, GKS03,
MKSLO04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvVRW07, SW09, LSW09, FW10, FZTS11].
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Chapter 13

Peer-to-Peer Computing

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of [sorting and] searching!”

Donald E. Knuth, The Art of Computer Programming

13.1 Introduction

Unfortunately, the term peer-to-peer (P2P) is ambiguous, used in a variety of
different contexts, such as:

In popular media coverage, P2P is often synonymous to software or proto-
cols that allow users to “share” files, often of dubious origin. In the early
days, P2P users mostly shared music, pictures, and software; nowadays
books, movies or tv shows have caught on. P2P file sharing is immensely
popular, currently at least half of the total Internet traffic is due to P2P!

In academia, the term P2P is used mostly in two ways. A narrow view
essentially defines P2P as the “theory behind file sharing protocols”. In
other words, how do Internet hosts need to be organized in order to deliver
a search engine to find (file sharing) content efficiently? A popular term
is “distributed hash table” (DHT), a distributed data structure that im-
plements such a content search engine. A DHT should support at least a
search (for a key) and an insert (key, object) operation. A DHT has many
applications beyond file sharing, e.g., the Internet domain name system
(DNS).

A broader view generalizes P2P beyond file sharing: Indeed, there is a
growing number of applications operating outside the juridical gray area,
e.g., P2P Internet telephony & la Skype, P2P mass player games on video
consoles connected to the Internet, P2P live video streaming as in Zattoo
or StreamForge, or P2P social storage such as Wuala. So, again, what is
P2P7?! Still not an easy question... Trying to account for the new applica-
tions beyond file sharing, one might define P2P as a large-scale distributed
system that operates without a central server bottleneck. However, with
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this definition almost everything we learn in this course is P2P! More-
over, according to this definition early-day file sharing applications such
as Napster (1999) that essentially made the term P2P popular would not
be P2P! On the other hand, the plain old telephone system or the world
wide web do fit the P2P definition...

From a different viewpoint, the term P2P may also be synonymous for
privacy protection, as various P2P systems such as Freenet allow publish-
ers of information to remain anonymous and uncensored. (Studies show
that these freedom-of-speech P2P networks do not feature a lot of content
against oppressive governments; indeed the majority of text documents
seem to be about illicit drugs, not to speak about the type of content in
audio or video files.)

In other words, we cannot hope for a single well-fitting definition of P2P, as
some of them even contradict. In the following we mostly employ the academic
viewpoints (second and third definition above). In this context, it is generally
believed that P2P will have an influence on the future of the Internet. The P2P
paradigm promises to give better scalability, availability, reliability, fairness,
incentives, privacy, and security, just about everything researchers expect from
a future Internet architecture. As such it is not surprising that new “clean slate”
Internet architecture proposals often revolve around P2P concepts.

One might naively assume that for instance scalability is not an issue in
today’s Internet, as even most popular web pages are generally highly available.
However, this is not really because of our well-designed Internet architecture,
but rather due to the help of so-called overlay networks: The Google website for
instance manages to respond so reliably and quickly because Google maintains a
large distributed infrastructure, essentially a P2P system. Similarly companies
like Akamai sell “P2P functionality” to their customers to make today’s user
experience possible in the first place. Quite possibly today’s P2P applications
are just testbeds for tomorrow’s Internet architecture.

13.2 Architecture Variants

Several P2P architectures are known:

o Client/Server goes P2P: Even though Napster is known to the be first P2P
system (1999), by today’s standards its architecture would not deserve the
label P2P anymore. Napster clients accessed a central server that managed
all the information of the shared files, i.e., which file was to be found on
which client. Only the downloading process itself was between clients
(“peers”) directly, hence peer-to-peer. In the early days of Napster the
load of the server was relatively small, so the simple Napster architecture
made a lot of sense. Later on, it became clear that the server would
eventually be a bottleneck, and more so an attractive target for an attack.
Indeed, eventually a judge ruled the server to be shut down, in other
words, he conducted a juridical denial of service attack.

Unstructured P2P: The Gnutella protocol is the anti-thesis of Napster,
as it is a fully decentralized system, with no single entity having a global
picture. Instead each peer would connect to a random sample of other
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peers, constantly changing the neighbors of this virtual overlay network
by exchanging neighbors with neighbors of neighbors. (In such a system
it is part of the challenge to find a decentralized way to even discover a
first neighbor; this is known as the bootstrap problem. To solve it, usu-
ally some random peers of a list of well-known peers are contacted first.)
When searching for a file, the request was being flooded in the network
(Algorithm 11 in Chapter 3). Indeed, since users often turn off their client
once they downloaded their content there usually is a lot of churn (peers
joining and leaving at high rates) in a P2P system, so selecting the right
“random” neighbors is an interesting research problem by itself. However,
unstructured P2P architectures such as Gnutella have a major disadvan-
tage, namely that each search will cost m messages, m being the number
of virtual edges in the architecture. In other words, such an unstructured
P2P architecture will not scale.

Hybrid P2P: The synthesis of client/server architectures such as Napster
and unstructured architectures such as Gnutella are hybrid architectures.
Some powerful peers are promoted to so-called superpeers (or, similarly,
trackers). The set of superpeers may change over time, and taking down
a fraction of superpeers will not harm the system. Search requests are
handled on the superpeer level, resulting in much less messages than in
flat /homogeneous unstructured systems. Essentially the superpeers to-
gether provide a more fault-tolerant version of the Napster server, all
regular peers connect to a superpeer. As of today, almost all popular
P2P systems have such a hybrid architecture, carefully trading off relia-
bility and efficiency, but essentially not using any fancy algorithms and
techniques.

Structured P2P: Inspired by the early success of Napster, the academic
world started to look into the question of efficient file sharing. The pro-
posal of hypercubic architectures lead to many so-called structured P2P
architecture proposals, such as Chord, CAN, Pastry, Tapestry, Viceroy,
Kademlia, Koorde, SkipGraph, SkipNet, etc. In practice structured P2P
architectures are not yet popular, apart from the Kad (from Kademlia)
architecture which comes for free with the eMule client.

13.3 Hypercubic Networks

In this section we will introduce some popular families of network topologies.
These topologies are used in countless application domains, e.g., in classic paral-
lel computers or telecommunication networks, or more recently (as said above)
in P2P computing. Similarly to Chapter 4 we employ an All-to-All communi-
cation model, i.e., each node can set up direct communication links to arbitrary
other nodes. Such a virtual network is called an overlay network, or in this
context, P2P architecture. In this section we present a few overlay topologies
of general interest.

The most basic network topologies used in practice are trees, rings, grids or
tori. Many other suggested networks are simply combinations or derivatives of
these. The advantage of trees is that the routing is very easy: for every source-
destination pair there is only one possible simple path. However, since the root
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of a tree is usually a severe bottleneck, so-called fat trees have been used. These
trees have the property that every edge connecting a node v to its parent u has
a capacity that is equal to all leaves of the subtree routed at v. See Figure 13.1
for an example.

Figure 13.1: The structure of a fat tree.

Remarks:

e Fat trees belong to a family of networks that require edges of non-uniform
capacity to be efficient. Easier to build are networks with edges of uniform
capacity. This is usually the case for grids and tori. Unless explicitly
mentioned, we will treat all edges in the following to be of capacity 1. In
the following, [z] means the set {0,...,z — 1}.

Definition 13.1 (Torus, Mesh). Let m,d € N. The (m,d)-mesh M (m,d) is a
graph with node set V= [m]? and edge set

d
E=<{(a1,...,aa),(b1,...,ba)} | ai,b; € [m], MUT:. —bil=1

i=1

The (m,d)-torus T'(m,d) is a graph that consists of an (m,d)-mesh and addi-
tionally wrap-around edges from nodes (ai,...,a;—1,M,a;y1,...,aq) to nodes
(a1,...,ai—1,1,ai41,...,aq) for alli € {1,...,d} and all aj € [m] with j # i.
In other words, we take the expression a;—b; in the sum modulo m prior to com-
puting the absolute value. M(m,1) is also called a line, T(m,1) a cycle, and
M(2,d) = T(2,d) a d-dimensional hypercube. Figure 13.2 presents a linear
array, a torus, and a hypercube.

Remarks:

e Routing on mesh, torus, and hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring d one only
needs to fix each “wrong” bit, one at a time; in other words, if the source
and the target differ by k bits, there are k! routes with k hops.
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Figure 13.2: The structure of M(m, 1), T(4,2), and M (2,3).

e The hypercube can directly be used for a structured P2P architecture. It
is trivial to construct a distributed hash table (DHT): We have n nodes,
n for simplicity being a power of 2, i.e., n = 2¢. As in the hypercube, each
node gets a unique d-bit ID, and each node connects to d other nodes,
i.e., the nodes that have IDs differing in exactly one bit. Now we use a
globally known hash function f, mapping file names to long bit strings;
SHA-1 is popular in practice, providing 160 bits. Let f; denote the first d
bits (prefix) of the bitstring produced by f. If a node is searching for file
name X, it routes a request message f(X) to node fq(X). Clearly, node
fa(X) can only answer this request if all files with hash prefix f4(X) have
been previously registered at node fq(X).

e There are a few issues which need to be addressed before our DHT works,
in particular churn (nodes joining and leaving without notice). To deal
with churn the system needs some level of replication, i.e., a number of
nodes which are responsible for each prefix such that failure of some nodes
will not compromise the system. We give some more details in Section
13.4. In addition there are other issues (e.g., security, efficiency) which
can be addressed to improve the system. These issues are beyond the
scope of this lecture.

e The hypercube has many derivatives, the so-called hypercubic networks.
Among these are the butterfly, cube-connected-cycles, shuffle-exchange,
and de Bruijn graph. We start with the butterfly, which is basically a
“rolled out” hypercube (hence directly providing replication!).

Definition 13.2 (Butterfly). Let d € N. The d-dimensional butterfly BF(d)
is a graph with node set V = [d + 1] x [2]? and an edge set E = Ey U Ey with

Ey = {{(,a),(i +1,)} | i€ [d], o€ [2]"}

and

By = {{G,0),(i+1,8)}]icld], a,p € 2% aand B differ

only at the it" position} .

A node set {(i,a) | a € [2]?} is said to form level i of the butterfly. The
d-dimensional wrap-around butterfly W-BF(d) is defined by taking the BF(d)
and identifying level d with level 0.
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Remarks:

e Figure 13.3 shows the 3-dimensional butterfly BF(3). The BF(d) has
(d+1)2¢ nodes, 2d-2¢ edges and degree 4. It is not difficult to check that
combining the node sets {(i, ) | i € [d]} into a single node results in the
hypercube.

Butterflies have the advantage of a constant node degree over hypercubes,
whereas hypercubes feature more fault-tolerant routing.

The structure of a butterfly might remind you of sorting networks from
Chapter 4. Although butterflies are used in the P2P context (e.g.
Viceroy), they have been used decades earlier for communication switches.
The well-known Benes network is nothing but two back-to-back butter-
flies. And indeed, butterflies (and other hypercubic networks) are even
older than that; students familiar with fast fourier transform (FFT) will
recognize the structure without doubt. Every year there is a new applica-
tion for which a hypercubic network is the perfect solution!

Indeed, hypercubic networks are related. Since all structured P2P archi-
tectures are based on hypercubic networks, they in turn are all related.

Next we define the cube-connected-cycles network. It only has a degree
of 3 and it results from the hypercube by replacing the corners by cycles.

000 001 010 011 100 101 110 111

Figure 13.3: The structure of BF(3).

Definition 13.3 (Cube-Connected-Cycles). Let d € N. The cube-connected-
cycles network CCC(d) is a graph with node set V = {(a,p) | a € [2]%,p € [d]}
and edge set

E = i?i&,ff (p+1)modd)} |a € E&% c E:
U{{(a.p), (b,p)} | a,b € [2]*,p € [d],a = b except for a,}
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011.2)

000 o1 010 o 100 101 1o 1

w010y

Figure 13.4: The structure of CCC(3).

Remarks:
e Two possible representations of a CCC can be found in Figure 13.4.

e The shuffle-exchange is yet another way of transforming the hypercubic
interconnection structure into a constant degree network.

Definition 13.4 (Shuffle-Exchange). Let d € N. The d-dimensional shuffle-
exchange SFE(d) is defined as an undirected graph with node set V = [2]* and
an edge set E = Fy1 U Ey with

E = {{(a1,...,aq),(a1,...,aq)} | (a1,..., ,aq=1—aq}

and

100 101 1000 1001 1100 1101

010 011 0010 0011 0110 ottl

Figure 13.5: The structure of SE(3) and SE(4).

Definition 13.5 (DeBruijn). The b-ary DeBruijn graph of dimension d
DB(b,d) is an undirected graph G = (V,E) with node set V = {v € [b]¢}
and edge set E that contains all edges {v,w} with the property that w €
{(z,v1,...,04-1) : @€ [b]}, where v = (v1,...,vq).
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01 001
010 101
00 1 000 111
10 100 110

Figure 13.6: The structure of DB(2,2) and DB(2,3).

Remarks:

e Two examples of a DeBruijn graph can be found in Figure 13.6. The
DeBruijn graph is the basis of the Koorde P2P architecture.

e There are some data structures which also qualify as hypercubic networks.
An obvious example is the Chord P2P architecture, which uses a slightly
different hypercubic topology. A less obvious (and therefore good) exam-
ple is the skip list, the balanced binary search tree for the lazy programmer:

Definition 13.6 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

e Search, insert, and delete can be implemented in O(logn) expected time
in a skip list, simply by jumping from higher levels to lower ones when
overshooting the searched position. Also, the amortized memory cost of
each object is constant, as on average an object only has two forward
pointers.

The randomization can easily be discarded, by deterministically promoting
a constant fraction of objects of level i to level i 4+ 1, for all i. When
inserting or deleting, object o simply checks whether its left and right
level i neighbors are being promoted to level ¢ + 1. If none of them is,
promote object o itself. Essentially we establish a MIS on each level, hence
at least every third and at most every second object is promoted.

There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always promote
all the nodes, similarly to a balanced binary tree: All nodes are part of
the root level of the binary tree. Half the nodes are promoted left, and
half the nodes are promoted right, on each level. Hence on level ¢ we have
have 2¢ lists (or, more symmetrically: rings) of about n/2? objects. This
is pretty much what we need for a nice hypercubic P2P architecture.

One important goal in choosing a topology for a network is that it has a
small diameter. The following theorem presents a lower bound for this.
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Theorem 13.7. Every graph of maximum degree d > 2 and size n must have
a diameter of at least [(logn)/(log(d —1))] — 2.

Proof. Suppose we have a graph G = (V, E) of maximum degree d and size
n. Start from any node v € V. In a first step at most d other nodes can be
reached. In two steps at most d- (d — 1) additional nodes can be reached. Thus,
in general, in at most k steps at most

(d-DF-1 _d-(d-1)*
d-1)—-1 - d-2

k-1
1+Y d-(d-1)=1+d-
i=0

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V' within k steps. Hence,

& k>logy (((d—2)-n/d).

Since logy_,((d — 2)/d) > -2 for all d > 2, this is true only if k¥ >
[(log )/ (log(d — 1))] - 2. O

Remarks:

e In other words, constant-degree hypercubic networks feature an asymp-
totically optimal diameter.

There are a few other interesting graph classes, e.g., expander graphs (an
expander graph is a sparse graph which has high connectivity properties,
that is, from every not too large subset of nodes you are connected to
a larger set of nodes), or small-world graphs (popular representations of
social networks). At first sight hypercubic networks seem to be related to
expanders and small-world graphs, but they are not.

13.4 DHT & Churn

As written earlier, a DHT essentially is a hypercubic structure with nodes having
identifiers such that they span the ID space of the objects to be stored. We
described the straightforward way how the ID space is mapped onto the peers
for the hypercube. Other hypercubic structures may be more complicated: The
butterfly network, for instance, may directly use the d+ 1 layers for replication,
i.e., all the d + 1 nodes with the same ID are responsible for the same hash
prefix. For other hypercubic networks, e.g., the pancake graph (see exercises),
assigning the object space to peer nodes may be more difficult.

In general a DHT has to withstand churn. Usually, peers are under control of
individual users who turn their machines on or off at any time. Such peers join
and leave the P2P system at high rates (“churn”), a problem that is not existent
in orthodox distributed systems, hence P2P systems fundamentally differ from
old-school distributed systems where it is assumed that the nodes in the system
are relatively stable. In traditional distributed systems a single unavailable
node is a minor disaster: all the other nodes have to get a consistent view of the
system again, essentially they have to reach consensus which nodes are available.
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In a P2P system there is usually so much churn that it is impossible to have a
consistent view at any time.

Most P2P systems in the literature are analyzed against an adversary that
can crash a fraction of random peers. After crashing a few peers the system
is given sufficient time to recover again. However, this seems unrealistic. The
scheme sketched in this section significantly differs from this in two major as-
pects. First, we assume that joins and leaves occur in a worst-case manner. We
think of an adversary that can remove and add a bounded number of peers; it
can choose which peers to crash and how peers join. We assume that a joining
peer knows a peer which already belongs to the system. Second, the adversary
does not have to wait until the system is recovered before it crashes the next
batch of peers. Instead, the adversary can constantly crash peers, while the sys-
tem is trying to stay alive. Indeed, the system is never fully repaired but always
fully functional. In particular, the system is resilient against an adversary that
continuously attacks the “weakest part” of the system. The adversary could for
example insert a crawler into the P2P system, learn the topology of the system,
and then repeatedly crash selected peers, in an attempt to partition the P2P
network. The system counters such an adversary by continuously moving the
remaining or newly joining peers towards the sparse areas.

Clearly, we cannot allow the adversary to have unbounded capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove O(logn) peers, n being the total number of peers currently in the sys-
tem. This model covers an adversary which repeatedly takes down machines by
a distributed denial of service attack, however only a logarithmic number of ma-
chines at each point in time. The algorithm relies on messages being delivered
timely, in at most constant time between any pair of operational peers, i.e., the
synchronous model. Using the trivial synchronizer this is not a problem. We
only need bounded message delays in order to have a notion of time which is
needed for the adversarial model. The duration of a round is then proportional
to the propagation delay of the slowest message.

In the remainder of this section, we give a sketch of the system: For sim-
plicity, the basic structure of the P2P system is a hypercube. Each peer is part
of a distinct hypercube node; each hypercube node consists of ©(logn) peers.
Peers have connections to other peers of their hypercube node and to peers of
the neighboring hypercube nodes.! Because of churn, some of the peers have to
change to another hypercube node such that up to constant factors, all hyper-
cube nodes own the same number of peers at all times. If the total number of
peers grows or shrinks above or below a certain threshold, the dimension of the
hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dynamic
token distribution problem on the hypercube. Each node of the hypercube has a
certain number of tokens, the goal is to distribute the tokens along the edges of
the graph such that all nodes end up with the same or almost the same number
of tokens. While tokens are moved around, an adversary constantly inserts and
deletes tokens. See also Figure 13.7.

In summary, the P2P system builds on two basic components: i) an algo-
rithm which performs the described dynamic token distribution and ii) an in-

!Having a logarithmic number of hypercube neighbor nodes, each with a logarithmic num-
ber of peers, means that each peers has ©(log? n) neighbor peers. However, with some addi-
tional bells and whistles one can achieve ©(logn) neighbor peers.
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Figure 13.7: A simulated 2-dimensional hypercube with four nodes, each con-
sisting of several peers. Also, all the peers are either in the core or in the
periphery of a node. All peers within the same node are completely connected
to each other, and additionally, all peers of a node are connected to the core
peers of the neighboring nodes. Ounly the core peers store data items, while the
peripheral peers move between the nodes to balance biased adversarial changes.

formation aggregation algorithm which is used to estimate the number of peers
in the system and to adapt the dimension of the hypercube accordingly:

Theorem 13.8 (DHT with Churn). We have a fully scalable, efficient P2P
system which tolerates O(logn) worst-case joins and/or crashes per constant
time interval. As in other P2P systems, peers have O(logn) neighbors, and the
usual operations (e.g., search, insert) take time O(logn).

Remarks:

e Indeed, handling churn is only a minimal requirement to make a P2P
system work. Later studies proposed more elaborate architectures which
can also handle other security issues, e.g., privacy or Byzantine attacks.

It is surprising that unstructured (in fact, hybrid) P2P systems dominate
structured P2P systems in the real world. One would think that structured
P2P systems have advantages, in particular their efficient logarithmic data
lookup. On the other hand, unstructured P2P networks are simpler, in
particular in light of non-exact queries.

13.5 Storage and Multicast

As seen in the previous section, practical implementations often incorporate
some non-rigid (flexible) part. In a system called Pastry, prefix-based overlay
structures similar to hypercubes are used to implement a DHT. Peers main-
tain connections to other peers in the overlay according to the lengths of the
shared prefixes of their respective identifiers, where each peer carries a d-bit
peer identifier. Let § denote the number of bits that can be fixed at a peer
to route any message to an arbitrary destination. For i = {0, ,253,38,...}, a
peer chooses, if possible, 26 — 1 neighbors whose identifiers are equal in the i
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most significant bits and differ in the subsequent 3 bits by one of 2% — 1 pos-
sibilities. If peer identifiers are chosen uniformly at random, the length of the
longest shared prefix is bounded by O(logn) in an overlay containing n peer:
thus, only O(logn(2® — 1)/B) connections need to be maintained. Moreover,
every peer reaches every other peer in GA_ow:V hops by repetitively selecting
the next hop to fix 8 more bits toward the destination peer identifier, yielding
a logarithmic overlay diameter.

The advantage of prefix-based over more rigid DHT structures is that there
is a large choice of neighbors for most prefixes. Peers are no longer bound to
connect to peers exactly matching a given identifier. Instead peers are enabled to
connect to any peer matching a desired prefix, regardless of subsequent identifier
bits. In particular, among half of all peers can be chosen for a shared prefix of
length 0. The flexibility of such a neighbor policy allows the optimization of
secondary criteria. Peers may favor peers with a low-latency and select multiple
neighbors for the same prefix to gain resilience against churn. Regardless of
the choice of neighbors, the overlay always remains connected with a bounded
degree and diameter.

Such overlay structures are not limited to distributed storage. Instead, they
are equally well suited for the distribution of content, such as multicasting of
radio stations or television channels. In a basic multicasting scheme, a source
with identifier 00...0 may forward new data blocks to two peers having identi-
fiers starting with 0 and 1. They in turn forward the content to peers having
identifiers starting with 00, 01, 10, and 11. The recursion finishes once all peers
are reached. This basic scheme has the subtle shortcoming that data blocks
may pass by multiple times at a single peer because a predecessor can match a
prefix further down in its distribution branch.

The subsequent multicasting scheme M avoids this problem by modifying
the topology and using a different routing scheme. For simplicity, the neighbor
selection policy is presented for the case 5 = 1. In order to use M, the peers
must store links to a different set of neighbors. A peer v with the identifier

0 - by_, stores links to peers whose identifiers start with bgby ... b7 ;b7b7,

and bgby ... by bybY, | for alli € {0,...,d —2}. For example, the peer with the
identifier 0000 has to maintain connections to peers whose identifiers start with
the prefixes 10, 11, 010, 011, 0010, and 0011. Pseudo-code for the algorithm is

given in Algorithm 54.

The parameters are the length 7 of the prefix that is not to be modified and
at most one critical predecessor v.. If 8 = 1, any node v tries to forward the
data block to two peers v; and vy. The procedure is called at the source vy with
arguments 7 := 0 and v, := (), resulting in the two messages forward(1,v) to
vy and forward(1,0) to va. The peer vy is chosen locally such that the prefix its
identifier shares with the identifier of v is the shortest among all those whose
shared prefix length is at least m + 1. This value £(v1,v) and v itself are the
parameters included in the forward message to peer vy, if such a peer exists.
The second peer is chosen similarly, but with respect to v, and not v itself. If no
suitable peer is found in the routing table, the peer v, is queried for a candidate
using the subroutine getNext which is described in Algorithm 55. This step is
required because node v cannot deduce from its routing table whether a peer
vo with the property ¢(ve,v.) > 7 + 1 exists. In the special case when v, = 0,
vy is chosen locally, if possible, such that £(vs,v) = 7. In Figure 13.8, a sample
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Algorithm 54 M: forward(m,v.) at peer v.

1 S:={v eN, | {(v,v) >m+1}
choose v1 € S: £(vy,v) < L(V,v) Vo €S
if vy # 0 then
forward(¢(vy, v), v) to vy
end if
if v. # 0 then
choose vy € Ny: L(v2,v.) =7+ 1
if vo = () then
vy := getNext(v) from v,
end if
if vy # 0 then
forward(€(va, v¢), ve) to va
13:  end if
14: else
15:  choose vy € Nyt L(vg,v) =7
16:  if vy # () then

=
T ReRIIaR @y

-
v

17: forward(m + 1,v.) to vy
18:  end if
19: end if

spanning tree resulting from the execution of M is depicted.

Algorithm 55 getNext(v,) at peer v

1 S:i={v e N, | {(v,v) > L(vs,v)}
2: choose v, € St L(vy,v) < L(v,v) Vo €S
3: send v, to vg

The presented multicasting scheme M has the property that, at least in a
static setting, wherein peers neither join nor leave the overlay, all peers can be
reached and each peer receives a data block exactly once as summarized by the
following theorem:

Theorem 13.9. In a static overlay, algorithm M has the following properties:
(a) It does not induce any duplicate messages (loop-free), and

(b) all peers are reached (complete).

Remarks:

e The multicast scheme M benefits from the same overlay properties as
DHTs; there is a bounded diameter and peer degree. Peers can maintain
backup neighbors and favor low-latency, high-bandwidth peers as neigh-
bors. Most importantly, intermediate peers have the possibility to choose
among multiple (backup) neighbors to forward incoming data blocks.
This, in turn, allows peers to quickly adapt to changing network conditions
such as churn and congestion. It is not necessary to rebuild the overlay
structure after failures. In doing so, a system can gain both robustness
and effiency.
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Figure 13.8: The spanning tree induced by a forward message initiated at peer
vg is shown. The fixed prefix is underlined at each peer, whereas prefixes in
bold print indicate that the parent peer has been constrained to forward the
packet to peers with these prefixes.

e In contrast, for more rigid data structures, such as trees, data blocks are
forced to travel along fixed data paths, rendering them susceptible to any
kind of failure.

Conversely, unstructured and more random overlay networks lack the
structure to immediately forward incoming data blocks. Instead, such
systems have to rely on the exchange of periodic notifications about avail-
able data blocks and requests and responses for the download of missing
blocks, significantly increasing distribution delays. Furthermore, the lack
of structure makes it hard to maintain connectivity among all peers. If the
neighbor selection is not truly random, but based on other criertia such
as latency and bandwidth, clusters may form that disconnect themselves
from the remaining overlay.

There is a varierty of further flavors and optimizations for prefix-based overlay
structures. For example, peers have a logarithmic number of neighbors in the
presented structure. For 100,000 and more peers, peers have at least 20 neigh-
bors. Selecting a backup neighbor doubles the number of neighbors to 40. Using
M further doubles their number to 80. A large number of neighbors accrues
substantial maintenance costs. The subsequent variation limits the number of
neighbors with a slight adjustment of the overlay structure. It organizes peers
into disjoint groups Go,Gi,...,Gn of about equal size. The introduction of
groups is motivated by the fact that they will enable peers to have neighboring
connections for a subset of all shared prefixes while maintaining the favorable
overlay properties. The source, feeding blocks into the overlay, joins group Go.
The other peers randomly join groups. Let g(v) denote the function that assigns
each peer v to a group, i.e., v € Gy(y)-

Peers select neighboring peers based not solely on shared prefixes but also on
group membership. A peer v with the identifier b ...b5_; stores links to neigh-
boring peers whose identifiers start with b3bY...b7_ b7 and belong to group
g(v) + 1 mod m for all i € {g(v), g(v) +m, g(v) + 2m, g(v) 4+ 3m,...}. Further-
more, let f denote the first index 7 where no such peer exists. As fallback, peer
v stores further links to peers from arbitrary groups whose identifiers start with
bgby ... b7 _,by for all k > f —m + 1. The fallback connections allow a peer to
revert to the regular overlay structure for the longest shared prefixes where only
few peers exist.
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As an example, a scenario with m = 4 groups is considered. A peer with
identifier 00...0 belonging to group G, has to maintain connections to peers
from group Gz that share the prefixes 001, 0000001, 00000000001, etc. In an
overlay with 100 peers, the peer is unlikely to find a neighbor for a prefix length
larger than log(100), such as prefix 00000000001. Instead, he further maintains
fallback connections to peers from arbitrary groups having identifiers starting
with the prefixes 00000001, 000000001, 000000001, etc. (if such peers exist).

Remarks:

e By applying the presented grouping mechanism, the total number of neigh-
bors is reduced to N_ww " +¢ with constant ¢ for fallback connections. (Note
that peers have both outgoing neighbors to the next group and incoming

neighbors from the previous group, doubling the number of neighbors.)

e Setting the number of groups m = log n gives a constant number of neigh-
bors regardless of the overlay size.

Chapter Notes

The paper of Plaxton, Rajaraman, and Richa [PRR97] laid out a blueprint for
many so-called structured P2P architecture proposals, such as Chord [SMKT01],
CAN [RFHT01], Pastry [RDO01], Viceroy [MNRO2], Kademlia [MMO02], Koorde
[KKO03], SkipGraph [AS03], SkipNet [HJST03], or Tapestry [ZHS*04]. Also the
paper of Plaxton et. al. was standing on the shoulders of giants. Some of
its eminent precursors are: linear and consistent hashing [KLL*97], locating
shared objects [AP90, AP91], compact routing [SK85, PU8S|, and even earlier:
hypercubic networks, e.g. [AJ75, Wit81, GS81, BA84].

Furthermore, the techniques in use for prefix-based overlay structures are
related to a proposal called LAND, a locality-aware distributed hash table pro-
posed by Abraham et al. [AMDO04].

More recently, a lot of P2P research focussed on security aspects, describing
for instance attacks [LMSWO06, SENB07, Lar07], and provable countermeasures
[KSW05, AS09, BSS09]. Another topic currently garnering interest is using
P2P to help distribute live streams of video content on a large scale [LMSWO07].
There are several recommendable introductory books on P2P computing, e.g.
[SW05, SG05, MS07, KW08, BYLO08].

Some of the figures in this chapter have been provided by Christian Schei-
deler.
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