# Scalable Rational Secret Sharing Dani et al. University of New Mexico


Talk by Tanja Werthmüller

April 04, 2012

イロン イロン イヨン イヨン 三日

1/27

# Starting Example



### Starting Example



Setting

• A secret should be divided into different shares.

Setting

- A secret should be divided into different shares.
- The shares are distributed among the players.

Setting

- A secret should be divided into different shares.
- The shares are distributed among the players.
- Each share on its own should not reveal the secret.

Setting

- A secret should be divided into different shares.
- The shares are distributed among the players.
- Each share on its own should not reveal the secret.
- Combining all the shares reconstructs the secret.

Setting

- A secret should be divided into different shares.
- The shares are distributed among the players.
- Each share on its own should not reveal the secret.
- Combining all the shares reconstructs the secret.
- The players are selfish and rational.

Setting

- A secret should be divided into different shares.
- The shares are distributed among the players.
- Each share on its own should not reveal the secret.
- Combining all the shares reconstructs the secret.
- The players are selfish and rational.
- Each player prefers to
  - 1. learn the secret by him self
  - 2. learn the secret together with other
  - 3. not learn the secret at all.

### Starting Example



# Secure Secret Sharing

A secure secret sharing scheme distributes shares so that anyone with fewer than n shares has no additional information about the secret than someone with no shares at all.

### Classical secure secret sharing Scheme

**Shamir's Scheme:** A polynomial of degree n - 1 can be reconstructed using *n* points.

### Classical secure secret sharing Scheme

**Shamir's Scheme:** A polynomial of degree n - 1 can be reconstructed using *n* points.

- ► Encode the secret as the first coefficient of a random polynomial f of degree n 1
- The shares are points (i, f(i)) on the polynomial
- Any n players can reconstruct the polynomial using interpolation

### The Problem with Selfish Players

A selfish player will never send his share to the other players, as he has to fear, that he will not get the other players shares back.

### The Problem with Selfish Players

A selfish player will never send his share to the other players, as he has to fear, that he will not get the other players shares back.

 $\Rightarrow$  We need to adapt the protocol.

Scalable Rational Secret Sharing

# Solution

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の Q (C 8/27 Scalable Rational Secret Sharing

**Our Goals** 

If our group of n agents follow the protocol they will all learn the secret.

### Our Goals

- ► If our group of *n* agents follow the protocol they will **all** learn the secret.
- No player can improve substantially by deviating from the protocol.

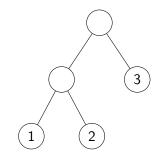
### Our Goals

- ► If our group of *n* agents follow the protocol they will **all** learn the secret.
- No player can improve substantially by deviating from the protocol.
- The protocol is scalable:
  - message complexity per agent: O(1)
  - time complexity: O(log |agents|)

### Outline

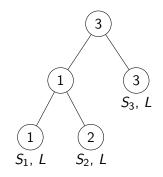
- Dealer's Protocol
  - is only active at the beginning
  - prepares the input for the player's protocol
- Player's Protocol
  - ► is played in rounds
  - in round X the secret is revealed

Scalable Rational Secret Sharing


Scalable Rational Secret Sharing

Protocols

# Dealer's Protocols


<ロ><回><週><見><見><見><見><見><見><見、 11/27

### Dealer's Protocol



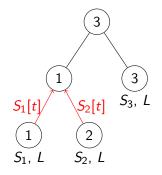
assign all players to leaves

### Dealer's Protocol



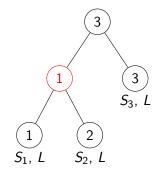
- assign all except for one player to remaining nodes
- give each player his share list
  S<sub>i</sub> and a list of potential secrets L

イロト イヨト イヨト イヨト


3

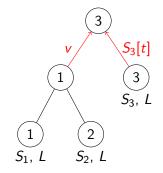
Scalable Rational Secret Sharing

Protocols


# Player's Protocols

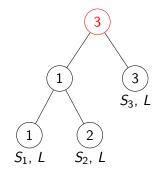
### Player's Protocol – Up-Stage




 children send their shares to parent

### Player's Protocol – Up-Stage



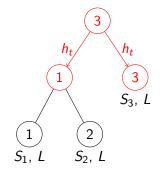

- ▶ verify S<sub>1</sub>[t]
- ▶ verify S<sub>2</sub>[t]
- construct new share v

### Player's Protocol – Up-Stage



 children send their shares to parent

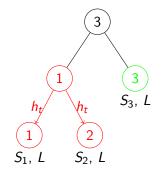
### Player's Protocol – Up-Stage




- ► verify v
- ▶ verify S<sub>3</sub>[t]
- construct h<sub>t</sub>

<ロ> <四> <四> <四> <三</p>

14 / 27


### Player's Protocol – Down-Stage

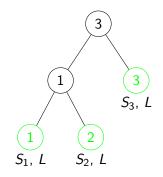


▶ send *h*<sub>t</sub> to children

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 14 / 27

### Player's Protocol – Down-Stage




- verify h<sub>t</sub>
- send  $h_t$  to children

イロト イヨト イヨト イヨト

3

14 / 27

### Player's Protocol



- verify h<sub>t</sub>
- > all players know  $h_t$
- if  $h_t = 0$  then t = X

イロン イボン イヨン トヨ

14 / 27

Scalable Rational Secret Sharing

Scalable Rational Secret Sharing

Protocols

# Analysis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Truthfulness

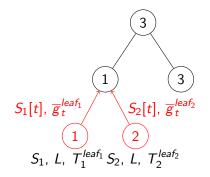
There are only two ways in which a player can deviate from the protocol:

- 1. Send fake messages
- 2. Leave the protocol before the secret was revealed

# Verification by Tag Values

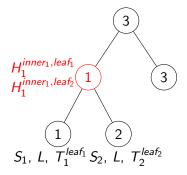
#### Dealer prepares

- $T_i^w$ : a tag list for the sending node w
- $H_i^{w',w}$ : a list of verification tokens for the receiving node w'
- Node w sends a tag  $\overline{g}$  from  $T_i^w$  along with its share v.
- ► Node w' asserts


$$c = a \cdot v + b \cdot \overline{g}$$

where  $(a, b, c) \in H_j^{w', w}$ .

► All entries in the lists S, T and H are elements taken from a finite field F<sub>q</sub>.


Scalable Rational Secret Sharing Scalable Rational Secret Sharing Proof of Truthfulness

#### Verification by Tag Values



 children send their shares and tags to parent Scalable Rational Secret Sharing Scalable Rational Secret Sharing Proof of Truthfulness

### Verification by Tag Values



- $\mathsf{verify that } c_t^{leaf_i} = \\ a_t^{leaf_i} \cdot S_i[t] + b_t^{leaf_i} \cdot \overline{g}_t^{leaf_i}$
- construct new share v

### Send a Fake Message

#### Proposition (3.1)

# The probability that a faked message will satisfy the verification function is $\frac{1}{q-1}$ .

## Send a Fake Message

#### Proposition (3.1)

The probability that a faked message will satisfy the verification function is  $\frac{1}{q-1}$ .

Send a fake message v' with the corresponding g' (not known by the sender).



If at any time during a round t of the player's protocol some player i catches some other player cheating, i outputs the current secret L[t] and leaves the protocol.

#### Leave the Protocol

- Don't transmit the fact  $h_t = 0$ .
- Guess the real secret with a sufficiently high probability.

#### Leave the Protocol

#### Lemma (3.2)

A player deviating from the protocol cannot increase his expected payoff by more than  $\epsilon$  unless his probability of successfully learning the secret by deviating is at least  $p = \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$ .

#### Lemma (3.3)

A player who initially received a list of length  $\alpha$  has at most  $\frac{1}{\alpha-t}$  chance of (correctly) guessing the position of the secret on round t if it has not already been revealed.

We need  $p \ge \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$  for cheating to be profitable and we know that  $p = \frac{1}{\alpha - t}$ :

We need  $p \ge \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$  for cheating to be profitable and we know that  $p = \frac{1}{\alpha - t}$ :

$$\frac{1}{\alpha-t} \geq \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$$

We need  $p \ge \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$  for cheating to be profitable and we know that  $p = \frac{1}{\alpha - t}$ :

$$\frac{1}{\alpha-t} \geq \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$$

$$\alpha - t \leq \frac{(U_+ - U_-)}{(U - U_- + \epsilon)}$$

We need  $p \ge \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$  for cheating to be profitable and we know that  $p = \frac{1}{\alpha - t}$ :

$$\frac{1}{\alpha-t} \geq \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$$

$$\underbrace{\alpha - t}_{>Y} \leq \frac{(U_+ - U_-)}{(U - U_- + \epsilon)}$$

We need  $p \ge \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$  for cheating to be profitable and we know that  $p = \frac{1}{\alpha - t}$ :

$$\frac{1}{\alpha-t} \geq \frac{(U-U_-+\epsilon)}{(U_+-U_-)}$$

$$\underbrace{\alpha - t}_{>Y} \leq \frac{(U_+ - U_-)}{(U - U_- + \epsilon)}$$

 $\Rightarrow$  Choose padding  $Y \geq \frac{(U_+ - U_-)}{(U - U_- + \epsilon)}$  to ensure truthfulness.

**Proof of Efficiency** 

- The expected number of messages sent by each player is O(1).
- The expected number of bits sent is O(log(q)).
- The expected overall latency is O(log(n)).

## Conclusions

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 回 > の Q () 25 / 27

## Summary

- An algorithm for rational secret sharing, where no player can improve substantially by deviating from the protocol.
- The mechanism is scalable in terms of latency and number of messages sent by each player.

## Summary

- An algorithm for rational secret sharing, where no player can improve substantially by deviating from the protocol.
- The mechanism is scalable in terms of latency and number of messages sent by each player.

|                     | Scalable RSS | Previous Work         |
|---------------------|--------------|-----------------------|
| messages per player |              |                       |
| per round           | O(1)         | O(n)                  |
| latency per round   | $O(\log n)$  | <i>O</i> ( <i>n</i> ) |
| E[# rounds]         | <i>O</i> (1) | <i>O</i> ( <i>n</i> ) |

Scalable Rational Secret Sharing  $\[\]_Questions?$ 

Questions?



↓ ◆ E ▶ ◆ E ▶ E ∽ Q (~ 27 / 27