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Problem Example 1: Spread of Rumor

= 2012 = end!




Problem Example 2: Viral Marketing

= ezPad 1 beats iPad 3




Problem Definition

G: a social network (n nodes)

Model: spread process

S: Initially active subset (k seeds)
o(S): #final active nodes (achievement)

Task: Choose S*

Goal: g (S=+mXa(S) NP-Hard

Realistic Goal:
Approximate the maximum with a guarantee
Choose S: g(S) >r-0(S%)
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Model 1:
Independent Cascade Model



Model 1: Cascade Model

Each active node try to activate his neighbors
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Model 1: Cascade Model
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Model 1: Cascade Model

» S={4,C}, o(S)=5




Model 2:
Linear Threshold Model



Model 2: Threshold Model

Each inactive node picks a random 6, € [0,1]
0 Active condition: X..,. 4ctive neighbor of v Puv = 0y

HD =0.3
bep = 0.2 D lteration 2: 0.2 < 0.3
O b p = 0.7 Iteration 4. E - active
E lteration 5: 0.2+0.7 > 0.3

D - active



Model 2: Threshold Model

lteration: P




Model 2: Threshold Model

» S={4,C}, o(S) =4




How to Prove the Guarantee?

4 R 4 R
Given a & find S, s.t.
spread model o(S)=r-o(S%)
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Submodularity

U: a finite ground set
P(U): power set of U

fO:PU) - R
Submodularity: Vnode v, VS €T

fSU})) - f(S) = f(Tuv}) - f(T)



Example: Submodularity

= f(S): number of vertexes
reachable from vertexes in S
4 N
(v (v




How to Prove the Guarantee?
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Given a — find S, s.t.
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We Want to Prove...

Model o(S)is NP-hard
Submodular
Independent ¢
Cascade ,

Linear ¢
Threshold |




Prove:
Submodularity

Cascade Model



Submodularity (Cascade Model)

= Recall: flip coin
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Submodularity (Cascade Model)

Why not flip all the coins in the begining?
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Submodularity (Cascade Model)

= Live edges -2 live paths
= blocked edges




Simplity Cascade Model

Node v ends up active

!

A live path: some seed - v



Achievement(Simplified Model)

X: coin flipping outcome

A
0 e.g. X1, X2
Rx(v) B
- RX]_(A) — {A,B}
Q RX]_(C) — {C,D,E} A

0x(S) = | Upes Rx (V)
. O-Xl({A’ C}) — |{A,B, C,D,E}l — 5 B



Submodularity (Cascade Model)

Fix X, ox(S) is submodular ¢

Linear combination of submodular functions
IS still submodular

o(S) = Z Prob[X] - ox(S)
X



Summary of the proot
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Active = Has a live path
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Prove:

NP-hard

Simplified Cascade Model



NP-Hard (Cascade Model)

Set Cover Problem: k subsets cover all?

K=1: No
K=2: No
K=3: Yes
K=4: ...
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NP-Hard (Cascade Model)

Solve Set Cover Influence maximization
Q: 2 subsets coverall? Q:[S|=2,0(5) =2+ 57
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NP-Hard (Cascade Model)

Influence Maximization Problem

IS at least as difficult as

Set Cover Problem



Prove:
Submodularity

Linear Threshold Model



Recall: Threshold Model




Gamble: Roulette




Gamble: Roulette

None

V
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Submodularity (Threshold Model)

None

9=0.3®




Submodularity (Threshold Model)

Live edges - live paths 6=0.3
D
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Correctness of Simplitication

For node v:

P( active in Iteration t + 1 |inactive in Iterations < t)

P(active in Iterationt + 1)

~ P(inactive in Iterations < t)




Simplified Model

(O Active before iteration 5
O becomes active in iteration 5

N1



Simplified Model

A;. Nodes becoming active in iteration t

ZuEAt bu,v

1- Zue A1UAU--UA;—4 bu,v



Original Model

N2

N6

N4

N3

None




Original Model

A;. Nodes becoming active in iteration t

ZuEAt bu,v

1- Zue A1UAU--UA;—4 bu,v



Simplify Threshold Model

Node v ends up active

!

A live path: some seed - v



Similarly, we have...
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Active = Has a live path
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Prove:

NP-hard

Linear Threshold Model



NP-Hard (Threshold Model)

Vertex Cover Problen O

o k vertexes (S)

each edge
IS Incident to

at least one vertex in S "9




NP-Hard (Threshold Model)

Vertex Set Cover Influence maximization
Q: 3 vertexes cover all ?  Q: S| =3,0(S) =67




Influence Maximization

Q:|S| =3,0(5) =67 Q: S| =2,0(5) =67

YES




NP-Hard (Threshold Model)

Influence Maximization Problem

IS at least as difficult as

Vertex Cover Problem



End of Proofs

o Influence Maximization Problem

Model o(S) is NP-hard
Submodular
Independent
Cascade ¢ ¢
Linear ¢ ¢
Threshold | |




Initial Problem

4 ) « (. )
Given a find S, s.t. .
spread model l o) = (1———¢€)-0(S")
- y - e y
N\

(find S, s.t.
1
f(S) = (1 —2) - f(57)
.

Prove:
o(S) is
Submodular

Greedy Hill Climbing

MAX, f(Su{v}) — f(S)
(Maximize Marginal Gain)

f(S):
Non-negative
monotone

Submodular




Summary

Problem Description

Two Models

o Independent Cascade Model

o Linear Threshold Model
Submodular Functions
Proof of Approximation Guarantee
Proof of NP-Hardness



Q&A




