Maximizing the Spread of Influence through a Social Network

Han Wang Department of Computer Science ETH Zürich

Problem Example 1: Spread of Rumor

2012 = end!

Problem Example 2: Viral Marketing

ezPad 1 beats iPad 3

Problem Definition

- G: a social network (n nodes)
- Model: spread process
- S: initially active subset (k seeds)
- $\sigma(S)$: #final active nodes (achievement)
- Task: Choose S*
- Goal: $\sigma(S^*) \rightarrow \max \sigma(S)$ NP-Hard
 - Realistic Goal:

Approximate the maximum with a guarantee Choose S: $\sigma(S) \ge r \cdot \sigma(S^*)$

Contents in This Talk

- G: a social network (n nodes)
- Model: spread process Two Models
- S: initially active subset (k seeds)
- $\sigma(S)$: #final active nodes (achievement)
- Task: Choose S*
 Goal: $\sigma(S^*) = \max \sigma(S)$ NP-Hard
 Realistic Goal: Prove:
 Approximate the maximum with a guarantee
 Choose S: $\sigma(S) \ge r \cdot \sigma(S^*)$

Model 1: Independent Cascade Model

Model 1: Cascade Model

Each active node try to activate his neighbors

Model 1: Cascade Model

Model 1: Cascade Model

Model 2: Linear Threshold Model

Model 2: Threshold Model

■ Each inactive node picks a random $\theta_v \in [0,1]$ □ Active condition: $\sum_{u: active \ neighbor \ of \ v} b_{u,v} \ge \theta_v$

 $\theta_{D} = 0.3$ $b_{C,D} = 0.2$ D $b_{E,D} = 0.7$ E $Iteration 4: E \rightarrow active$ $D \rightarrow active$

Model 2: Threshold Model

Model 2: Threshold Model

How to Prove the Guarantee?

Submodularity

- U: a finite ground set
- P(U): power set of U
- $f(\cdot): P(U) \to R^*$
- Submodularity: \forall node v, $\forall S \subseteq T$

 $f(\mathbf{S} \cup \{v\}) - f(\mathbf{S}) \ge f(\mathbf{T} \cup \{v\}) - f(\mathbf{T})$

Example: Submodularity

f(S): number of vertexes
 reachable from vertexes in S

How to Prove the Guarantee?

Model	$\sigma(S)$ is Submodular	NP-hard
Independent Cascade		
Linear Threshold		

Prove: Submodularity

Cascade Model

Recall: flip coin

Why not flip all the coins in the begining?

- Live edges \rightarrow live paths
- blocked edges

Simplify Cascade Model

Node v ends up active

A live path: some seed \rightarrow v

Achievement(Simplified Model)

- X: coin flipping outcome
 e.g. X1, X2
- $R_X(v)$ • $R_{X1}(A) = \{A, B\}$ • $R_{X1}(C) = \{C, D, E\}$
- $\sigma_X(S) = |\bigcup_{v \in S} R_X(v)|$ • $\sigma_{X1}(\{A, C\}) = |\{A, B, C, D, E\}| = 5$

- Fix x, $\sigma_X(S)$ is submodular
- Linear combination of submodular functions is still submodular

$$\sigma(S) = \sum_{X} Prob[X] \cdot \sigma_X(S)$$

Summary of the proof

Prove: NP-hard

Simplified Cascade Model

NP-Hard (Cascade Model)

- Set Cover Problem: k subsets cover all?
- K=1: No
- K=2: No
- K=3: Yes
- K=4: ...

NP-Hard (Cascade Model)

- Solve Set Cover
 Influence maximization
- Q: 2 subsets cover all ? Q: $|S| = 2, \sigma(S) \ge 2 + 5$?

NP-Hard (Cascade Model)

Influence Maximization Problem

is at least as difficult as

Set Cover Problem

Prove: Submodularity

Linear Threshold Model

Recall: Threshold Model

Gamble: Roulette

Gamble: Roulette

Submodularity (Threshold Model)

Submodularity (Threshold Model)

Correctness of Simplification

For node v:

 $P(active in Iteration t + 1 | inactive in Iterations \leq t)$

 $= \frac{P(active in Iteration t + 1)}{P(inactive in Iterations \le t)}$

Simplified Model

 A_t : Nodes becoming active in iteration t

$$\frac{\sum_{u \in A_t} b_{u,v}}{1 - \sum_{u \in A_1 \cup A_2 \cup \cdots \cup A_{t-1}} b_{u,v}}$$

Original Model

Original Model

 A_t : Nodes becoming active in iteration t

$$\frac{\sum_{u \in A_t} b_{u,v}}{1 - \sum_{u \in A_1 \cup A_2 \cup \cdots \cup A_{t-1}} b_{u,v}}$$

Simplify Threshold Model

Node v ends up active

A live path: some seed \rightarrow v

Similarly, we have...

Prove: NP-hard

Linear Threshold Model

NP-Hard (Threshold Model)

Vertex Cover Problen
 k vertexes (S)

each edge is incident to at least one vertex in S

NP-Hard (Threshold Model)

- Vertex Set Cover
 Influence maximization
- Q: 3 vertexes cover all ? Q: $|S| = 3, \sigma(S) = 6$?

Influence Maximization

NP-Hard (Threshold Model)

Influence Maximization Problem

is at least as difficult as

Vertex Cover Problem

End of Proofs

Influence Maximization Problem

Model	$\sigma(S)$ is Submodular	NP-hard
Independent Cascade		
Linear Threshold		

Initial Problem

Summary

- Problem Description
- Two Models
 - Independent Cascade Model
 - Linear Threshold Model
- Submodular Functions
- Proof of Approximation Guarantee
- Proof of NP-Hardness

