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Abstract

We provide further evidence that the study of complex

self-organizing systems can benefit from an algorithmic

perspective. The subject has been traditionally viewed

through the lens of physics and control theory. Using tools

typically associated with theoretical computer science, we

settle an old question in theoretical ecology: bounding the

convergence of bird flocks. We bound the time to reach

steady state by a tower-of-twos of height linear in the number

of birds. We prove that, surprisingly, the tower-of-twos

growth is intrinsic to the model. This unexpected result

demonstrates the merits of approaching biological dynamical

systems as “natural algorithms” and applying algorithmic

techniques to them.

1 Introduction

What do migrating geese, flocking cranes, bait balls of
fish, prey-predator systems, and synchronously flashing
fireflies have in common? All of them are instances of
natural algorithms, ie, algorithms designed by evolution
over millions of years. By and large, their study has
been the purview of dynamical systems theory within
the fields of zoology, ecology, evolutionary biology, etc.
The main purpose of this work is to show that tools from
theoretical computer science might be of benefit to the
study of natural algorithms. We consider two standard
bird flocking models that have been extensively studied
in the literature and for which convergence bounds have
been elusive. We establish both upper and lower bounds
on the time to reach steady state. In doing so, we exhibit
a remarkably exotic behavior.

Bird flocking has received considerable attention
in the scientific and engineering literature, including
the now-classical Boids model of Reynolds [15, 19–21].
Close scrutiny has been given to leaderless models where
birds update their velocities by averaging them out over
their nearest neighbors. Computer simulations support
the intuitive belief that, by repeated averaging, each
bird should eventually converge to a fixed speed and
heading. This has been proven theoretically, but how
long it takes for the system to converge has remained
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an open question. This paper addresses this problem
by giving an upper bound on the convergence time. It
is surprisingly high: a tower-of-twos in the number of
birds. A bigger surprise still is that this rate of growth
is inevitable.

The existential question (does the system con-
verge?) has been settled in many different ways, and
it is useful to review its history briefly. A “recurrent
connectivity” assumption stipulates that, over any time
interval of a fixed length, every pair of birds should be
able to communicate with each other, directly or indi-
rectly via other birds. Jadbabaie, Lin, and Morse [5]
proved the first of several convergence results under
that assumption (eg, [11,12,17,20]). Several authors ex-
tended these results to variable-length intervals [4,8,10].
They established that the bird group always ends up
as a collection of separate flocks (perhaps only one),
each one converging toward its own speed and head-
ing. Some authors have shown how to do away with
the recurrent connectivity assumption by changing the
model suitably. Tahbaz-Salehi and Jadbabaie [18], for
example, assume that the birds fly on the surface of a
torus. Cucker and Smale [3] use a broadcast model that
extends a bird’s influence to the entire group while scal-
ing it down as a function of distance. In a similar vein,
Ji and Egerstedt [6] introduce a hysteresis rule to en-
sure that connectivity only increases over time. Recent
work suggests the use of topological as well as metric
criteria [1], but the bulk of work on leaderless flocking
has been based on nearest-neighbor rules. We are not
aware of any bounds on the convergence time.

Rather than trying to build an abstract framework
to capture as many models as possible, we consider
two specific examples that are highly representative of
the many variants considered in the literature. Model
K (for kinematic) is a variant of the classical Vicsek
model [22]. The control does not allow for variations
in speed—only headings can change—so the model is
nonholonomic. Model D (for dynamic) averages over
velocities: it includes inertia and is fully actuated,
as in [3]. In both models, the flocking network is a
geometric graph: given n birds B1, . . . ,Bn, represented
at time t by points x1(t), . . . , xn(t) in some Euclidean
space, the flocking network Gt has a vertex for each bird
and an edge between any two of them within distance 1
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of each other. By convention, Gt has no self-loops. The
connected components of Gt are called flocks. If di(t)
denotes the number of birds adjacent to Bi at time t,
the total number of birds within the closed unit disk
centered at Bi is precisely di(t) + 1.

Model K. The input consists of a speed σ > 0 and two
vectors: the initial position of the birds, x1(t), . . . , xn(t),
for t = 0, and their flight headings, θ1(t), . . . , θn(t), for
t = 1. In this model, birds live in two dimensions,
so we represent each xi(t) as a complex number and
assume that 0 ≤ θi(t) < 2π. For any integer t ≥ 1 and
1 ≤ i ≤ n,

xi(t) = xi(t − 1) + σeiθi(t),

where

θi(t + 1) =
1

di(t) + 1

(

θi(t) +
∑

(i,j)∈Gt

θj(t)
)

,

We can rewrite this recurrence more simply in matrix
form.1 Let P (t) be the n-by-n matrix defined by
pij(t) = (di(t) + 1)−1 if i = j or (i, j) ∈ Gt. For t ≥ 1,

(1.1)

{

x(t) = x(t − 1) + σeiθ(t);

θ(t + 1) = κ + P (t)θ(t).

We inserted the vector κ ∈ Cn for added generality.
It may depend on t as well as on the positions and
velocities at any time. One can think of it as a
control parameter or an adversarial mechanism; or,
more simply, as in the Vicsek model, as noise.

Model D. The input consists of the initial position
x(0) and velocity v(1). Both vectors belong to Ed (for
constant d ≥ 1). For t ≥ 1 and 1 ≤ i ≤ n,

xi(t) = xi(t − 1) + vi(t),

where

vi(t + 1) − vi(t) = ci(t)
∑

(i,j)∈Gt

(vj(t) − vi(t)),

where ci(t) satisfies 0 < ci(t)di(t) < 1. For simplicity,
we assume that ci(t) may vary only when Gt does.
The model has a simple mechanical interpretation. The
difference vi(t + 1) − vi(t) is the discrete analogue of

1Adding or removing subscripts is how we distinguish between
a vector and its coordinates; eg, x(t) = (xi(t)). We denote the
elements of a matrix P (t) by pij(t) and write eiθ(t) to refer to
the column vector of Cn with coordinates eiθi(t); judging the
disambiguation obvious, we use i both as an index and as the
imaginary unit.

the acceleration. By Newton’s Law, F = ma, a bird
is subject to a force that grows in proportion to the
difference between its velocity and its neighbors’. Again,
it is convenient to express the dynamics in matrix form.
Let P (t) = In − CtLt, where Ct = diag c(t) and Lt is
the Laplacian of Gt:

(Lt)ij =







di(t) if i = j;

−1 if (i, j) ∈ Gt;

0 else.

One final piece of notation is the Kronecker product
⊗, which we need to extend the averaging to all the
coordinates.2 We form the vector x(t) by stacking
x1(t), . . . , xn(t) together into one big column vector
of dimension dn. Given a matrix A, the product
(A ⊗ Id)x(t) stacks together the result of multiplying A
by the vector formed by k-th coordinate of each xi(t).
In this way, for t ≥ 1,

(1.2)

{

x(t) = x(t − 1) + v(t);

v(t + 1) = K(P (t) ⊗ Id)v(t).

As with model K, we’ve inserted a dn-by-dn matrix K
for control or noise.

We add to both models a tie-breaking hysteresis
rule: an existing edge (i, j) of Gt remains in place if
the distance between Bi and Bj changes by less than

εh
def
= n−n4

from time t − 1 to time t. (In the case of
model K, we add an extra rule to simplify the proofs.)

Remark 1. What does it mean for the bird group to
converge? The standard definition is that each bird’s
velocity should converge to a fixed (perhaps distinct)
vector. It seems difficult to get a handle on this ques-
tion, however, without also considering the convergence
of the flocking network. So, we say that the bird group
has reached steady state if the flocking network no longer
changes. Network convergence easily implies velocity
convergence. The converse is not true: velocities might
reach steady state while the network does not. This is
an interesting but somewhat peripheral issue that it is
best to bypass, as is done in [6], by injecting a minute
amount of hysteresis into the system. This is necessary:
flocking networks may not always converge without hys-
teresis. In Section 3, indeed, we specify a group of birds

2The Kronecker product of two matrices A and B is the matrix
we get if we replace each aij by the block aijB. Formally, if A is
m-by-n and B is p-by-q, then the product A ⊗ B is the mp-by-
nq matrix C such that cip+j,kq+l = ai,kbj,l. We will often use,
with no further mention, the tensor identity (A ⊗ B)(C ⊗ D) =
AC ⊗ BD.
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that alternates forever between one and two flocks with-
out ever converging. Hysteresis prevents edge breaks
based on microscopic changes. Note that if n−n4

does
not look microscopic enough for small n, then we can
always set εh = 2−100 n−n4

without changing any of
our results. While one might debate the best choice of
hysteresis—our rule is one of many possible variants—it
is important to choose a sound rule, where soundness is
defined for our purposes by the guarantee that any two
birds at distance ever so slightly away from 1 should
have the right pairing status (ie, as determined by the
unit distance rule). In that sense, hysteresis is, indeed,
a tie-breaking rule.

Remark 2. In model K, the transition matrix P (t)
can also be expressed as In − CtLt if we set ci(t) =
(di(t) + 1)−1. Our investigation into P (t) will thus
apply equally to both models. The condition 0 ≤
ci(t)di(t) < 1 enforces two desirable properties: P (t)
is row-stochastic and its diagonal is strictly positive. A
natural question thus arises. If we ignore the control
parameters, can’t we solve the problem of convergence
by simple linear algebra? Let’s sketch an approach.
Cucker and Smale [3] diagonalize the Laplacian and note
that, since only differences are of interest, the vectors
might as well be assumed to lie in the space 1⊥. Not
only is that space invariant under the Laplacian but
it contracts at an exponential rate set by the Fiedler
number (the second eigenvalue). From this, a quadratic
Lyapunov function quickly emerges. When the graph is
connected, the Fiedler number is bounded away from
0 by an inverse polynomial, so differences between
velocities decay to 0 at a rate of 2t/nc

for some constant
c > 0. Of course, unlike Cucker and Smale, who
assume the complete graph, we would have to track the
connectivity of the flocking network. But, that aside, we
could simply let “Fiedler do the work.” Alas, such an
approach is doomed in our models, both for deep and for
obvious reasons. The deep reason is that, in general, the
dynamical systems under consideration do not admit
of any suitable quadratic Lyapunov function [5, 14].
Cucker and Smale’s transition matrices are symmetric
(and not stochastic) so this objection does not hold. It
is the reverse in our case: our matrices are stochastic
but not symmetric. This comes at a price. Even
though P (t) is diagonalizable, the right eigenspace for
the subdominant eigenvalues is not orthogonal to 1. So,
1⊥ is not invariant and unfortunately the map P (t)
might not be contractive. For example, suppose that
the matrix in model D is of the form

P (t) = 1
15

(
12 3
10 5

)

.

The two eigenvalues are 1 and 0.133; yet P (t) stretches
the unit vector (1, 0) to one of length 1.041. In other
words, even though its spectrum is confined to [0, 1], the
map P (t) increases some Euclidean distances. Linear
algebra alone seems unable to prove convergence; we
complement it with combinatorial arguments.

Remark 3. The initial angle between two birds can be
made arbitrarily small, thus delaying their interaction
as long as we wish. If we want to bound the convergence
time, therefore, we need to take into account the
encoding lengths of the input positions, velocities, and
angles. We assume that all these inputs are rationals
with O(log n)-bit long numerators and denominators.3

We use this particular bound only for convenience. A
mere glance at our astronomical bounds shows that
much longer encodings would not make a dent into our
results.

To express these results, we need to define the
third level of the Ackermann hierarchy, the so-called
“tower-of-twos” function: 2 ↑↑ 1 = 2 and, for n > 1,
2 ↑↑ n = 22↑↑(n−1). We mention our result for the
simple case: κ = 0 and K(t) = Idn.

Theorem 1.1. In both models K and D, a group of n
birds reaches steady state in at most 2 ↑↑ O(n) steps.

The total number of network switches is nO(n3).

This result is extremely robust in terms of hysteresis
and initial conditions: drastic changes there would still
lead to the same bounds. Our hysteresis rule is sound in
a very strong sense, too: (i) any two birds within unit
distance of each other at time t are always joined by
an edge of the flocking network Gt; (ii) no two birds at

distance greater than 1 + n−n3

are ever adjacent in Gt.
We note that, with this particular choice of hysteresis,
the flocking network can lose edges only during the first
n2n4

steps. After that, birds that join together into a
flock can never split up.

It is quite surprising that, on the one hand, the
network stabilizes in “only” an exponential number
of steps (in the sense that adjacent birds stay joined
forever), but on the other hand if a few more pairs
of birds want to be joined later into a common flock,
they may have to wait an extraordinarily long time.
Another surprise is that the astronomical “tower-of-
twos” growth rate is intrinsic to flocking. Indeed,
we provide initial conditions for the birds, using only
O(log n) bits per bird, that lead to steady state only
after 2 ↑↑ Ω(log n) steps. The proof is technical (and

3All logarithms are taken to the base 2. Throughout this
paper, n is assumed to be large enough.
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omitted from this extended abstract), but the initial
configuration is straightforward. The flocks are single
paths, with the matrix P (t) corresponding to a lazy
random walk with probability 1

3 of staying in place. The
birds fly in two dimensions at constant y-speed 1. Their
projections onto the X-axis have the following initial
conditions; c is a constant:






x(0) =
(

0, 2
3 , . . . , 2l, 2l + 2

3 , . . . , n − 2, n − 4
3

)T

;

v(1) =
(

n−c, 0, −n−c, 0, . . . , n−c, 0, −n−c, 0
︸ ︷︷ ︸

n

)T

.

In the remainder of this abstract, we will focus on
model D and the case K(t) = Idn. Because of space
limitations, many of the proofs will be omitted.

2 Preliminaries

We begin with some simple geometry relating the rel-
ative displacement of birds with the transition matrix.
Define ∆ij(t) = |distt(Bi, Bj) − distt−1(Bi, Bj)|.
Lemma 2.1. For t ≥ 1, ∆ij(t) ≤ ‖vi(t) − vj(t)‖2.

Numerical Complexity. We mention a few basic
facts, most of them known, about products of stochastic
matrices. The footprint of a matrix A is the matrix
A derived from A by replacing each nonzero entry
by 1. For t ≥ s, we use P (t, s) as shorthand for
P (t)P (t−1) · · · P (s). This matrix plays a crucial rule in
both models: indeed, as can be seen from equations (1.1,
1.2): θ(t + 1) = P (t, 1) θ(1) and v(t + 1) = (P (t, 1) ⊗
Id)v(1). A bird may influence another one over a
period of time without the converse being true; in other
words, the matrices P (t, s) and P (t, s) are in general
not symmetric; the exception is P (t), which not only is
symmetric but has its diagonal full of ones. Before we
get to the structural properties of P (t, s), we need to
answer two basic questions: how small can the nonzero
entries be and how many bits do we need to represent
them? As was shown in [4, 9], nonzero elements of
P (t, s) can be bounded uniformly, ie, independently of
t. Note that this relies critically on the positivity of the
diagonals. Indeed, without the condition ci(t)di(t) < 1,
we could choose P (t) = A for even t and P (t) = B for
odd t, where

A =





0 1 0
1 0 0
0 0 1



 , B = 1
2





0 2 0
1 0 1
0 2 0



 .

For even t > 0,

P (t, 1) = (AB)t/2 =





2−t/2 1 − 21−t/2 2−t/2

0 1 0
0 1 0



 .

Lemma 2.2. For any 1 ≤ s ≤ t, the elements of
P (t, s) are same-denominator rational coordinates over
O((t − s + 1)n log n) bits. Its nonzero elements are in

n−O(n2).

Lemma 2.3. For any t ≥ 1, the vectors v(t) and
x(t) have same-denominator rational coordinates over
O(tn log n) bits.

Velocities are polynomially bounded at the outset.
They remain so all the time since the transition matrices
can only average out their coordinates. This simple
bound will prove very useful. For any t ≥ 1,

(2.3) ‖v(t)‖2 = nO(1).

Ergodicity. Let τp(A) denote the `p-diameter of
the convex hull formed by the rows of a matrix A, ie,
τp(A) = maxi,j ‖ai∗ − aj∗‖p, where ai∗ denotes the i-
th row of A. In the case p = 1, for reasons soon to be
apparent, we divide the diameter by two. To understand
why τp(A) relates to ergodicity (and why we divide by
2), assume that A is row-stochastic. We observe then
that

0 ≤ τ1(A) = 1 − min
i,j

∑

k

min {aik , ajk} ≤ 1.

There are many fascinating relations between these di-
ameters [16]. For our purposes, the following submulti-
plicativity result will suffice [9].

Lemma 2.4. Given two row-stochastic matrices A, B
that can be multiplied, τ2(AB) ≤ τ1(A)τ2(B).

3 Steady-State Flocking

We leave the convergence time for later and try, first, to
bound the number of changes in the flocking network.
We also focus on the time-invariant case and establish
the soundness of the hysteresis rule.

Counting Network Switches. Let N(n) denote
the maximum number of switches in the flocking net-
work, ie, the number of times t such that P (t) 6=
P (t + 1). (Note that, by our requirement that Ct may
vary only when Gt does, we could use footprints equiv-
alently in the definition.) The function N(n) maxi-
mizes the number of switches uniformly over all initial
conditions. Bounding this function involves putting a
quantitative framework around the existential analyses
in [4, 8–10] We prove the network switching bound of
Theorem 1.1.

Lemma 3.1. The number of flocking network switches
is bounded by N(n) = nO(n3).
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Proof. Fix s > 0 once and for all. For t > s, let N(t, s)
be the number of network changes between times s and
t, ie, the number of integers u (s < u ≤ t) such that
P (u) 6= P (u − 1). Since the diagonal of each P (t)
is positive, P (t, s) can never lose a 1 as t grows, so
there exists a smallest T1 such that P (t, s) = P (T1, s)
for all t > T1. Consider the first column and let
1 ≤ n1 < · · · < nl ≤ n be its successive Hamming
weights (ie, number of ones). How many switches
can take place between the time tk when the column
acquires weight nk and the time tk+1 when the weight
reaches nk+1? Note that tl ≤ T1 and, for consistency,
put t0 = s. In other words, how large can N(tk+1, tk)
be for 0 ≤ k < l? Let H denote the subgraph of Gtk+1

consisting of the connected components (ie, flocks) that
include the nk birds indexed by the first column of
P (tk, s). If H contains more than nk birds then, at
time tk + 1, at least one of these extra birds, Bi, is
adjacent in Gtk+1

to one of the nk birds, say, Bj. Then,
pij(tk + 1) > 0 and pj1(tk, s) > 0; hence pi1(tk + 1, s) ≥
pij(tk + 1)pj1(tk, s) > 0. Since pi1(tk, s) = 0, the first
column of P (t, s) acquires a new 1, so tk+1 = tk + 1
and N(tk+1, tk) = 1. Assume now that H has exactly
nk vertices. The flocking network Gtk+1 consists of
a set of flocks totalling nk birds and a separate set
of flocks including the n − nk others. After at most
N(nk) + N(n − nk) network switches and no contact
between the two sets, the only possible further change
is an interaction between two birds, one from each set.
It follows by monotonicity of N(n) that

N(tk+1, tk) ≤ 1 + N(nk) + N(n − nk) ≤ 2N(n − 1) + 1

and

N(tl, s) =

l∑

k=1

N(tk, tk−1) ≤ 2nN(n − 1) + n.

Of course, there is nothing special about bird B1. We
can apply the same argument for each column and
conclude that the time T1 when the matrix P (t, s) has
finally stabilized satisfies

(3.4) N(T1, s) ≤ 2nN(n − 1) + n.

A technical subtlety is that the recursive definition of
N(n) must treat the O(log n)-bit requirement on initial
velocities as a global condition, ie, independent of the
argument of the function N . For this reason, we will
use ν to denote the global value of n. The index set V1

corresponding to the ones in the first column of P (T1, s)
is called the first stabilizer. For t > T1, no edge of Gt can
join V1 to its complement, since this would immediately
add more ones to the first column of P (t, s). Relabel the

rows and columns so that all the ones in P (T1, s)’s first
column appear on top. Then, for any t > T1, P (t) is a
diagonal 2-block matrix with the top left block, indexed
by V1 ×V1, providing the transitions among the vertices
of V1 at time t. (Note that a set defined similarly to V1

for another column might partly overlap with V1.) This
property is invariant under composition, so P (t, T1 + 1)
is also a diagonal block matrix of the same type. Let
A|V ×W denote the submatrix of A with rows indexed
by V and columns by W . Writing V0 = [n],

P|V1×V0
(t, s) = P|V1×V1

(t, T1 + 1)P|V1×V0
(T1, s).

By setting s to T1+1 we can repeat the same argument,
the only difference being that the transition matrices
are now |V1|-by-|V1|. This leads to the second stabilizer
V2 ⊆ V1, which, by relabeling, can be assumed to index
the top of the subsequent matrices. We define T2 as
the smallest integer such that P |V1×V1

(t, T1 + 1) =
P |V1×V1

(T2, T1 + 1) for all t > T2. The set V2 indexes
the ones in the first column of P |V1×V1

(T2, T1 + 1).
Iterating in this fashion leads to an infinite sequence
of time T1 < T2 < · · · and stabilizers V1 ⊇ V2 ⊇ · · ·
such that, for any t > Tk,

(3.5)
P|Vk×V0

(t, s) = P|Vk×Vk
(t, Tk+1)P|Vk×Vk−1

(Tk, Tk−1+1)

· · · P|V2×V1
(T2, T1 + 1)P|V1×V0

(T1, T0 + 1),

where P|Vi×Vi−1
(Ti, Ti−1 + 1) is a |Vi|-by-|Vi−1| matrix

and T0 = s − 1. What is the benefit of rewriting the
top rows of P (t, s) in such a complicated way? The first
column of each P|Vi×Vi−1

(Ti, Ti−1 + 1) consists entirely
of positive entries. By Lemma 2.2, they are at least
ν−O(ν2), so half the `1-distance between any two rows

is at most 1 − ν−O(ν2) ≤ e−ν−O(ν2)

and

τ1(P|Vi×Vi−1
(Ti, Ti−1 + 1)) ≤ e−ν−O(ν2)

.

Lemma 2.4 implies that

τ2(A) ≤ τ1(A)τ2(I) ≤
√

2 τ1(A),

and

(3.6) τ2(P|Vk×V0
(t, s)) ≤

√
2 τ1(P|Vk×Vk

(t, Tk + 1))

k∏

i=1

τ1(P|Vi×Vi−1
(Ti, Ti−1 + 1)) ≤

√
2 e−kν−O(ν2)

.

Let χ(i, j) denote the n-dimensional vector with all
coordinates equal to 0, except for χ(i, j)i = 1 and
χ(i, j)j = −1. Note that

vi(t) − vj(t) = ((χ(i, j)P (t − 1, 1)) ⊗ Id)v(1).
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Set k = νbν2

for a large enough constant b > 0. By the
initial conditions, ‖v(1)‖2 = νO(1) and so by (3.6) and
Cauchy-Schwarz, for any t > Tk + 1,

max
i,j∈Vk

‖vi(t)−vj(t)‖2 ≤ τ2(P|Vk×V0
(t−1, 1))νO(1) < e−νν

2

.

By Lemma 2.1, it then follows that

∆ij(t) ≤ ‖vi(t) − vj(t)‖2 < ν−ν4

= εh.

By the hysteresis rule, this means that if birds Bi and Bj

are joined after time Tk +1, they will always remain so.
This leaves at most

(
|Vk|
2

)
extra network changes (final

pairings), so the total number is conservatively bounded
by

N(Tk, Tk−1) + · · · + N(T1, 1) +

(|Vk|
2

)

.

But (3.4) holds for any pair (Ti, Ti−1 + 1), so

N(n) < n2 + k(2nN(n − 1) + n) < νO(nν2).

2

Time-Invariant Flocking. There will be times,
for example, post-convergence, when flocks are governed
by a fixed network. We investigate this case separately.
In this section, Gt = G is time-invariant; for notational
convenience, we assume there is a single flock, ie, Gt is
connected. In both models K and D, we can express
the stochastic matrix P as In − CL: it has the simple
dominant eigenvalue 1 with right and left eigenvectors
1 and π = (tr C−1)−1C−1 1, respectively. Lack of
symmetry does not keep P from being diagonalizable,
though it denies us eigenvector orthogonality. Define

(3.7) M = C−1/2PC1/2 = In − C1/2LC1/2.

Being symmetric, M can be diagonalized as
∑n

k=1 λkukuT
k , where the uk’s are orthonormal

eigenvectors and the eigenvalues are real. By the
connectivity of Gt, stochasticity of P , and other
standard properties [2], 1 = λ1 > λ2 ≥ · · · ≥ λn ≥ −1
and u1 = (

√
π1, . . . ,

√
πn )T . It follows that P can be

diagonalized as well, with the same eigenvalues. Since
∑

k ukuT
k = In, the following identity holds for all

nonnegative s, including s = 0:

(3.8) P s = 1πT +
∑

k>1

λs
kC1/2ukuT

k C−1/2.

The left and right eigenvectors of P for λk are given (in
column form) by C−1/2uk and C1/2uk and form inverse
matrices; in general, neither group forms an orthogonal
basis. We can bound the second largest eigenvalue by
standard algebraic graph theory.

Lemma 3.2. If µ
def
= max k>1 |λk|, then µ = 1−n−O(1).

By (3.8), for all i, j, s > 0, (P s)ij ≥ πj −
∑

k>1 |λk|s
√

ci/cj |(uk)i(uk)j | ≥ πj − nO(1)µs. A simi-
lar derivation gives us the corresponding upper bound;
so, by Lemma 3.2,

(3.9) |(P s)ij − πj | ≤ nO(1)e−sn−O(1)

.

Similarly, for s > nc0 , for a constant c0 large enough,

(3.10) τ(P s) ≤ 1 −
n∑

k=1

(πk − nO(1)e−sn−O(1)

) < 1
2 .

The Rationality of Model D. Unlike in model
K, the locations of the birds in model D remain rational
at all times. Does that mean their limit remains so? We
prove that this is, indeed, the case. For t > 0, define

(3.11) Γt = −1πT t +

t−1∑

s=0

P s.

We begin with a simple characterization of the limit
of Γt, using the notation (Y | y) to refer to the n-by-n
matrix derived from Y by replacing its last column with
the vector y.

Lemma 3.3. As t → ∞, Γt converges to

Γ = (In − 1πT |0) (In − P |1 )−1.

The motion equation (1.2) becomes, for t ≥ 1,

(3.12) x(t) = x(0) +
( t−1∑

s=0

P s ⊗ Id

)

v(1)

or, equivalently, by (3.11),

(3.13) x(t) = x(0) + t((1πT )⊗ Id)v(1) + (Γt ⊗ Id)v(1).

We call mπ[x(t)] = (πT ⊗ Id)x(t) the mass center of the
flock. It moves at constant speed along a fixed line in
d-space: Indeed, by (3.12),

(πT ⊗ Id)x(t) = (πT ⊗ Id)x(0) +

t−1∑

s=0

(πT ⊗ Id)(P
s ⊗ Id)v(1)

= (πT ⊗ Id)x(0) + t(πT ⊗ Id)v(1).

The vector mπ[v(1)] = (πT ⊗ Id)v(1) is called the
stationary velocity of the flock. Moving the origin to
the mass center of the birds, we express x(t), relative to
this moving frame, as

xr(t) = x(t) − (1 ⊗ Id)mπ[x(t)].
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By (3.13) and simple tensor manipulation, we find that

xr(t) = ((In − 1πT )⊗ Id)x(0) + (Γt ⊗ Id)v(1)

and, by Lemma 3.3,

Lemma 3.4. If G is connected, the relative flocking
configuration xr(t) converges to the limit

xr = ((In − 1πT )⊗ Id)x(0)

+ ((In − 1πT |0) (In − P |1 )−1 ⊗ Id)v(1).

The mass center of the configuration moves in Rd at
constant speed in a fixed direction.

Lemma 3.5. The coordinates of the limit configuration
xr as well as the elements of Γ are same-denominator
rationals over O(n log n) bits.

Soundness of Hysteresis Rule. We begin with a
proof that hysteresis is required to ensure convergence.
We build a 4-bird flock in one dimension in model D,
whose network cannot converge without a hysteresis
rule. The speed of the birds will decay exponentially.
In real life, the birds would stall. It is immediate to
lift our construction in two dimensions, however, to
ensure that the birds’ speeds never fall below a constant,
thus making stalling a nonissue. These are the initial
conditions:

{

x(0) = 1
16 (0, 8, 21, 29);

v(1) = 1
8 (1, −1, 1, −1).

The flocking network alternates between a pair of 2-
bird edges and a single 4-bird path, whose respective
transition matrices are:

1

3







1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1







and
1

3







1 2 0 0
1 1 1 0
0 1 1 1
0 0 2 1







.

The beauty of the initial velocity v(1) is that it is
a right eigenvector for both flocking networks for the
same eigenvalue − 1

3 ; therefore, v(s) = (−3)1−sv(1) and,
by (1.2),
(3.14)

x(t) = x(0) +
t∑

s=1

v(s) = x(0) + 3
4

(

1 − (− 1
3 )t

)

v(1).

Thus, for t ≥ 1,

xi+1(t) − xi(t) =

{
1
16

(

5 − (− 1
3 )t−1

)

if i = 1, 3;

1 + 1
16 (− 1

3 )t−1 if i = 2.

The distance between the first and second birds stays
comfortably between 1

4 and 1
2 ; same with birds B3 and

B4. The distance between the middle birds B2 and B3

oscillates around 1, so the network forever alternates
between one and two connected components.

Lemma 3.6. The hysteresis rule is sound: (i) any two
birds within unit distance of each other at time t are
always joined by an edge of the flocking network Gt; (ii)

no two birds at distance greater than 1 + n−n3

are ever
adjacent in Gt.

The Geometry of Flocking. Can birds fly in
giant loops and come back to their point of origin? Are
there constraints on their trajectories? We show that,
after enough time has elapsed, two birds can be newly
joined only if they fly almost parallel to each other. We
assume model D, but a similar reasoning leads to the
same results in model K. It is convenient to lift the
birds into Rd+1 by adding time as an extra dimension:
x(t) 7→ (x1(t), . . . , xd(t), t); v(t) 7→ (v1(t), . . . , vd(t), 1).
Since 1 is a right eigenvector, this lifting still satisfies
the equation of motion. The hysteresis rule kicks in
at precisely the same time and in the same manner as
before. The behavior of the birds is unchanged but it
lends itself to a better geometric interpretation.

We begin with a simple observation. Define w =
1
t xi(t); note that w depends on both i and t (we omit
these arguments for notational simplicity). Consider
the triangle formed by having the vectors w and vi(t)
pointing away from the same corner A of the triangle.
By (2.3) and the lifting, the two sides incident to A have
length between 1 and nO(1); therefore, the smaller angle
β not at A satisfies n−O(1) < β < π/2. By the law of
sines, it follows easily that, if vi(t) 6= w,

(3.15) n−O(1) <
∠(xi(t), vi(t))

‖vi(t) − w‖2
= O(1).

Lemma 3.7. For any bird Bi, at any time t > nbn3

, for
a large enough constant b,

∠(xi(t), vi(t)) =
log t

t
nO(n3).

Suppose that birds Bi and Bj are joined in Gt,

for some t > nbn3

, where b is defined in Lemma 3.7.
By (3.15) and Lemma 2.1,

∆ij(t) ≤ ‖vi(t) − vj(t)‖2 = log t
t nO(n3).

By hysteresis, edges of Gt can break only if t < n2n4

.
This means that, past that time, flocks can only merge.

Lemma 3.8. After time n2n4

, the flocking network Gt

can only gain new edges and never lose any.
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The remaining number of network switches after
time n2n4

can be at most
(
n
2

)
. We now examine how long

one must wait for all these switches to be completed.

Lemma 3.9. Assume that the flocking network Gt stays
invariant during the period [t1, t − 1], where t1 > n2n4

.
If two birds are adjacent in Gt but not in Gt−1, then
either the birds are in distinct flocks at time t − 1, in
which case t = nO(t1n), or they belong to the same flock,

in which case t = t12
nO(1)

.

Proof. Assume that the flocking network Gt stays in-
variant during the period [t1, t − 1]. Consider two
birds Bi and Bj that are adjacent in Gt but not during
[t1, t−1]. Note that the two birds may or may not be in
the same flock. Let the flock for Bi (resp. Bj) consist of
m (resp. m′) birds; m + m′ ≤ n. By abuse of notation,
we use the terminology of (3.8), ie, P , π, C, uk, λk, to
refer to the flock of m birds, and we add primes to refer
to the flock of Bj . We wish to place an upper bound on
t − t1. Let χ(i) denote the n-dimensional vector with
all coordinates equal to 0, except for χ(i)i = 1. By (3.8,
3.12), for t ≥ t1,

xi(t) = xi(t1) +
(

χ(i)T
t−t1−1∑

s=0

P s ⊗ Id

)

v(t1 + 1)

= xi(t1) + (t − t1)y +

m∑

k=2

1 − λt−t1
k

1 − λk
Φk,

where
(3.16)

{

y = (πT ⊗ Id)v(t1 + 1) ;

Φk = ((χ(i)T C1/2ukuT
k C−1/2) ⊗ Id)v(t1 + 1).

Note that, by (3.11),
∑m

k=2
1

1−λk

Φk = ((χ(i)T Γ) ⊗
Id)v(t1 + 1); therefore,

xi(t) = xi(t1) + ((χ(i)T Γ) ⊗ Id)v(t1 + 1)

+ (t − t1)y −
m∑

k=2

λt−t1
k

Φk

1 − λk
.

Adding primes to distinguish between the flocks of Bi

and Bj , we find that

(3.17) xi(t) − xj(t) = A + B(t − t1) −
m0∑

k=2

Ψk µt−t1
k ,

where

(i) A = xi(t1)−xj(t1)+((χ(i)T Γ−χ(j)T Γ′)⊗Id)v(t1+
1): By Lemma 2.3, the vectors v(t1+1), xi(t1), and
xj(t1) have same-denominator rational coordinates
over O(t1n log n) bits. In view of Lemma 3.5, this
implies that the same is true of the vector A.

(ii) B = y − y′: The stationary distribution π =
(tr C−1)−1C−1 1 is a same-denominator ratio-
nal vector over O(n log n) bits. Together with
Lemma 2.3, this implies that B has same-
denominator rational coordinates over O(t1n logn)
bits; hence either B = 0 or ‖B‖2 > n−O(t1n).

(iii) µ2 ≥ · · · ≥ µm0 : Each µk is an eigenvalue λl or λ′
l

(l, l′ > 1) and |µk| < 1.

(iv) Each Ψk is a d-dimensional vector of the form
Φl/(1 − λl) or −Φ′

l/(1 − λ′
l). Since the eigenvalues

are bounded away from 1 by n−O(1) (Lemma 3.2),
the obvious bounds on C, v(t1 + 1) and uk show
that ‖Ψk‖2 = nO(1).

We distinguish among three cases:

Case I. B 6= 0: Note that the two flocks must be
distinct. Indeed, having the two birds in the same
flock implies that π = π′; hence y = y′. By (i, ii,
iv) respectively, ‖A‖2 = nO(t1n), ‖B‖2 > n−O(t1n), and
‖ ∑

Ψk µt−t1
k ‖2 = nO(1). It follows that, if the two birds

are to be joined in Gt, then t − t1 = nO(t1n). Beyond
that, indeed, at least one coordinate of xi(t) − xj(t)
becomes too big for the unit-distance rule to kick in.

Case II. B = 0 and ‖A‖2 6= 1: By (i), ‖A‖2 is bounded
away from 1 by n−O(t1n). Since, by (iv), the length of
any vector Ψk is nO(1) and the eigenvalue gap, 1−µk, is

at least n−O(1), ‖ ∑

k Ψk µt−t1
k ‖2 = nO(1)e−(t−t1)n

−O(1)

.
It follows from (3.17) and the triangle inequality that

| ‖xi(t) − xj(t)‖2 − 1 | ≥ n−O(t1n) − nO(1)e−(t−t1)n
−O(1)

.

This implies that, for a large enough constant b0, the
distance between the two birds remains bounded away
from 1 by n−O(t1n) for any t > t1n

b0 . Not only that, but
the sign of ‖xi(t)−xj(t)‖2−1 can no longer change after
t1n

b1 , for constant b1 large enough, since the distance
can vary by increments of at most ‖ ∑

k Ψk µt−t1
k ‖2 =

nO(1)e−(t−t1)n
−O(1)

. We conclude that if the two birds
must join in Gt then t = t1n

O(1).

Case III. B = 0 and ‖A‖2 = 1: The distance between
the two birds tends toward 1. The issue is that the
two birds might stay safely away from each other for
a long period of time and then decide to join into an
edge of the network by moving within distance 1 of each
other. We show that this is impossible. In other words,
if ‖xi(t)−xj(t)‖2 ever falls below 1 for t > t1, this must
happen relatively soon. Recall that, by (3.17),

xi(t) − xj(t) = A −
m0∑

k=2

Ψk µt−t1
k ,
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where A is a unit vector. We investigate the behavior
of the birds’ distance locally around 1.

‖xi(t) − xj(t)‖2
2 = 1 − 2

∑

k

AT Ψk µt−t1
k

+
∑

k,k′

ΨT
k Ψk′ (µkµk′ )t−t1 .

Let 1 > ρ1 > · · · ρN > 0 be all the distinct nonzero
values among {|µk|, |µkµk′ |‖ (N < n2). We can rewrite
the expression above as

(3.18) ‖xi(t) − xj(t)‖2
2 − 1 =

N∑

k=1

Υk ρt−t1
k ,

where
Υk = Υ+

k + (−1)t Υ−
k .

We distinguish between odd and even values of t so as
to keep each Υk time-invariant. We assume that t is
even; the odd case is similar and justifiably skipped. Of
course we may also assume that each Υk = Υ+

k + Υ−
k

is nonzero. We know that
∑

k Υk ρt−t1
k tends to 0, as t

goes to infinity, but we need to find out if it oscillates or
keeps a constant sign in the long run. For this we must
derive bounds on eigenvalue gaps and on |Υk|. Much
tighter results can be obtained from current spectral
technology, but they would not make any difference
for our purposes, so we settle for simple, conservative
estimates.

Lemma 3.10. For all k > 1 and k ≥ 1, respectively,

ρk < (1 − 2−nO(1)

)ρ1 and 2−t12
n

O(1)

< |Υk| = nO(1).

By (3.18), it follows from the lemma that

‖xi(t) − xj(t)‖2
2 − 1 = (1 + o(1))Υ1 ρt−t1

1 ,

for t > t12
nb2

, where b2 is a large enough constant.
The same argument for odd values of t shows that after

t12
nb2

, either ‖xi(t) − xj(t)‖2
2 stays on one side of 1

forever or it constantly alternates. In both cases, the
permanent edge status between the two birds is settled
by that time. This concludes Case III.

Putting all three cases together, we find that the
bound from Case I is the most severe: t = nO(t1n).
When the two birds are in the same flock at time t − 1,
however, the bound from Case III takes precedence. 2

Lemmas 3.8 and 3.9 show that all network switches
take place within the first 2 ↑↑ O(n) steps. This
completes the proof of Theorem 1.1.
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