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ABSTRACT
We give two new randomized algorithms for strong renam-
ing, both of which work against an adaptive adversary in
asynchronous shared memory. The first uses repeated sam-
pling over a sequence of arrays of decreasing size to assign
unique names to each of n processes with step complexity
O(log3 n). The second transforms any sorting network into
a strong adaptive renaming protocol, with an expected cost
equal to the depth of the sorting network. Using an AKS
sorting network, this gives a strong adaptive renaming al-
gorithm with step complexity O(log k), where k is the con-
tention in the current execution. We show this to be optimal
based on a classic lower bound of Jayanti. We also show that
any such strong renaming protocol can be used to build a
monotone-consistent counter with logarithmic step complex-
ity (at the cost of adding a max register) or a linearizable
fetch-and-increment register (at the cost of increasing the
step complexity by a logarithmic factor).
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1. INTRODUCTION
The availability of unique names, or identifiers, is a funda-

mental prerequisite for efficiently solving a variety of prob-
lems in distributed systems. In some settings unique names
are available, but come from a very large, practically un-
bounded namespace, which reduces their usefulness. Thus,
the renaming problem, in which a set of processes are as-
signed distinct names from a small namespace, is one of the
fundamental problems in distributed computing, and a sig-
nificant amount of research, e.g. [1–7], studied its solvability
and complexity in fault-prone distributed systems.

Renaming deterministically in the presence of crash faults
can be expensive, and there are inherent limitations on the
size of the achievable namespace. In particular, tight de-
terministic renaming, where the size of the namespace is
exactly n, the size of the set of processes, is known to be
impossible [1–3], and even the best known loose renaming
algorithms, which relax the tight namespace requirement,
have total step complexity at least Θ(n2) [8, 9].

On the other hand, randomized solutions to renaming,
e.g. [10–12], are known to be able to circumvent these lim-
itations. The general strategy behind these algorithms is
the following: we start from a list of randomized test-and-
set objects, implemented using e.g. [10,12,13], and associate
each test-and-set object with a unique name, which is usu-
ally its index in the list. By winning a certain test-and-set,
a process acquires the associated name. In the simplest such
algorithm [4,11], a process starts at the head of the list and
competes in test-and-set objects of increasing index, until
it acquires a name. This simple strategy ensures a tight
namespace, and is also adaptive, in that the size of the re-
sulting namespace depends on the number of participants
k, not on the maximum number of processes n. However,
this algorithm has linear step complexity1 in the number of
participating processes.

Other, more complex strategies have been used, e.g. [10,
12], however the existence of a renaming algorithm that
achieves a tight adaptive namespace using step complex-
ity less than linear has remained an open problem. One of
the challenges in building such algorithms is that each pro-
cess has to acquire a unique name without probing linearly
through the namespace, even though a large portion of the
identifiers may be already taken. Moreover, the algorithm
has to work in spite of a strong adversary, which may adjust

1In the following, by step complexity we always mean local,
per process, step complexity.



concurrency and failures dynamically. Even worse, in the
case of adaptive algorithms, the size of the namespace is not
known initially, and has to be adjusted to match exactly the
size of the set of participants.

Contribution. In this paper, we present two new random-
ized algorithms for strong renaming, both of which work
against a strong adaptive adversary, and have polylogarith-
mic step complexity, with high probability.
Our first algorithm, called BitBatching, is a strong renam-

ing algorithm that allows process to find a single available
test-and-set among n such objects using O(log2 n) random
probes, with high probability. To accomplish this, we start
from a vector of n randomized test-and-set objects, which
we partition into segments of decreasing size n/2, n/4, etc.,
down to Θ(log n). Each process attempts to grab Θ(log n)
randomly chosen test-and-set objects in each segment se-
quentially; if it fails to win one of these objects, it proceeds
to the next segment. We prove that if a process makes it
through all O(log n) segments without finding a free test-
and-set, then, with high probability, all n objects have been
acquired by the n − 1 other processes, which is impossible.
The proof is based on a backward induction argument: we
show that if a segment is full, then the previous segment
must also be full with high probability. The algorithm is
presented in Section 4.
Our second algorithm is the first to achieve a namespace

that is both tight and adaptive in sub-linear time. The ap-
proach is different from those presented so far: we start from
a sorting network [14] where the comparators are replaced
with two-process test-and-set objects, which we call a re-
naming network, and prove that it solves strong adaptive
renaming. The mechanism is that each process is assigned a
distinct input port corresponding to its unique initial name,
and follows a path through the network determined by leav-
ing each comparator on its lower output wire if it wins the
test-and-set, and on the upper output wire otherwise; the
output name is the index of the output port it reaches. The
expected step complexity of the algorithm is equal to the
depth of the sorting network.
The procedure described above has the disadvantage that

its complexity depends on the size of the initial namespace,
since each process needs a distinct input port. We eliminate
this limitation in Section 6, where we present a construction
with unboundedly many ports, which maintains the proper-
ties of a sorting network when truncated to a finite number
of input and output ports. In particular, when using an
optimal AKS sorting network [15] as the basis for our re-
naming network construction, we obtain an adaptive strong
renaming algorithm whose step complexity is O(log k), in
expectation, and O(log2 k), with high probability.
We show that this algorithm is optimal in terms of time

complexity in Section 7 by adapting a lower bound of Jayanti
on the wakeup problem [16]. We prove that, for any c, any
adaptive strong renaming algorithm that terminates with
probability c has worst-case step complexity Ω(c log k). The
lower bound holds even if test-and-set objects with unit cost
are available.
We find that being able to assign unique consecutive iden-

tifiers with logarithmic cost also has applications to count-
ing. In Section 8.1, the strong adaptive algorithm is used
to implement a monotone-consistent counter with O(log k)
step complexity. To increment, a process requests a new
name, and then writes it to a max-register, implemented in

logarithmic time using the construction from [17]. To read
the counter, a process simply returns the value of the max-
register. Our counter implementation is more efficient by a
logarithmic factor than the best previously known [17], but
only guarantees monotone consistency, not linearizability.

We also show how to implement a linearizable fetch-and-
increment object from any strong adaptive renaming proto-
col. In Section 8.2, we obtain a linearizable m-valued fetch-
and-increment with O(log k logm) cost, which can be shown
to be optimal within a logarithmic factor by the same lower
bound technique. The lower bound in Section 7 shows that
this implementation is optimal within a logarithmic factor.

Discussion. Our results reveal a connection between sort-
ing networks, adaptive strong renaming, and distributed
counting, and provide tight bounds for adaptive tight ran-
domized renaming.

The impossibility of wait-free strong renaming [1–3] is cir-
cumvented since we use randomization. There exist infinite
length executions, in which the algorithms do not terminate,
however these occur with probability 0.

The renaming network construction, the counter and fetch-
and-increment implementations can be made deterministic
with no loss in terms of step complexity if two-process test-
and-set or compare-and-swap objects with unit cost are avail-
able in hardware.

The efficient counting upper bounds require renaming im-
plementations that are tight and locally efficient, so they
cannot be obtained from previous renaming upper bounds.
Also, note that our adaptive tight algorithm supersedes the
BitBatching algorithm since it is adaptive and has better
step complexity; however, the latter is superior in terms of
space complexity.

We use AKS sorting networks [15] as the basis of our
renaming networks in order to achieve optimal time com-
plexity; however, these networks are known to be imprac-
tical [14]. Since our results hold for any sorting networks,
an alternative would be to use constructible networks such
as bitonic networks [14]; this trades constructibility for a
logarithmic increase in running time.

Our renaming algorithms also show a separation in terms
of step complexity between randomized renaming and ran-
domized consensus. The results in [18] imply a lower bound
of Ω(n) on the step complexity of randomized consensus,
while we achieve randomized renaming in O(log n) steps per
process, i.e. exponentially faster.

Due to space limitations, we only present proof sketches
for some of our results, and some proofs are omitted. A
full version of the paper with complete proofs can be found
in [19].

2. MODEL AND PROBLEM STATEMENT
Model. We assume an asynchronous shared memory model
with n processes, t < n of which may fail by crashing. Let
M be the size of the space of initial identifiers that pro-
cesses in the system may have, which may be arbitrarily
large. In the case of adaptive algorithms, we consider k to
denote total contention, i.e. the total number of processes
that take steps during a certain execution. We assume that
processes know n, but do not know k. Processes commu-
nicate through multiple-writer-multiple-reader atomic reg-
isters. Our algorithms are randomized, i.e. the processes’
actions may depend on random local coin flips. We assume



that the process failures and the scheduling are controlled
by a strong adaptive adversary. In particular, the adversary
knows the results of the random coin flips that the processes
make, and can adjust the schedule and the failure pattern
accordingly.

Problem Statement. The renaming problem [1] requires
that each correct process should eventually return a name,
and that the names returned should be unique. The size of
the resulting namespace should only depend on n and on t.
In the case of the adaptive renaming problem, the size of the
namespace should depend on k, the contention in the cur-
rent execution. The tight renaming problem requires that
the size of the namespace be exactly n, while the adaptive
tight renaming problem requires that the resulting names-
pace be of size exactly k. The complexity of our solutions
is measured in terms of process steps (reads and writes, in-
cluding random coin flips; we count all coin flips between
two shared memory operations as one step). Therefore, by
step complexity we mean the number of steps a given pro-
cess takes during an execution. Total step complexity is the
total number of steps that all processes take in an execution.
Since atomic test-and-set operations are available on most
modern machines, we state some of the complexity upper
bounds also counting test-and-set operations as having unit
cost.

Preliminaries. In the following, we say that an event hap-
pens “with high probability” (w.h.p.) if it occurs with prob-
ability ≥ 1 − 1/nc, with c ≥ 1 constant. In the case of
the adaptive algorithms, the probability bound is at least
≥ 1− 1/kc, with c ≥ 1. Note that the failure probability in
the adaptive case may be tuned to depend on n, at the cost
of increased complexity (i.e., a log n factor).
In our algorithms, we use probabilistic implementations of
test-and-set objects. It is known that such objects are im-
plementable in asynchronous shared memory using random-
ization [13]. The implementation we use for n-process test-
and-set is that of [12], which is adaptive to total contention;
more precisely, the number of steps per process required by
a test-and-set operation is O(log2 k) w.h.p., where k is the
number of participating processes. For 2-process test-and-
set, we use the algorithm by Tromp and Vitányi [20], which
has expected step complexity O(1), and O(log n) step com-
plexity with probability at least 1−1/nc for c > 1 constant.
We say that a process wins a test-and-set if it returns 1 from
the object; otherwise, the process loses the test-and-set. A
test-and-set is acquired if it has been won by a process.

3. RELATED WORK
The renaming problem was introduced in [1] by Attiya

et al., where the authors also introduce a wait-free solution
using (2n − 1) names in an asynchronous message-passing
system, and show that at least (n+1) names are required in
the wait-free case. The lower bound on the size of the names-
pace for deterministic solutions was improved to (2n− 2) in
a landmark paper by Herlihy and Shavit [2], later improved
by Rajsbaum and Castañeda [3]. Adaptive renaming has
been shown to be related to the set agreement task by Gafni
et al. [21].
Considerable research has analyzed the complexity of de-

terministic implementations, e.g. [7,9,22–24]. For a detailed
description of the deterministic results, we refer the reader
to [12, 24]. Note that the deterministic lower bound on the

namespace size does not apply in the case of our protocols
since the “bad” executions in the lower bound occur with a
probability that goes to 0 as the protocol takes more steps.

The first paper to analyze randomized renaming in an
asynchronous system is by Panconesi et al. [10]. The authors
present a non-adaptive solution ensuring a namespace of size
(1+ǫ)n, for ǫ > 0 constant, with expected O(M log2 n) total
step complexity, whereM is the size of the initial namespace.
Their strategy is to introduce a new test-and-set implemen-
tation, and to assign names to processes based on the index
of the test-and-set object they acquire. Along the same vein,
Eberly et al. [11] obtained tight non-adaptive randomized re-
naming based on the test-and-set by Afek et al. [13]. Their
implementation has O(n log n) amortized step complexity
per process, under a given cost measure. The average-case
total step complexity of their algorithm is Ω(n3).

A recent paper by Alistarh et al. [12] introduced an adap-
tive test-and-set implementation with logarithmic step com-
plexity called RatRace. They use this object to obtain a
non-adaptive tight algorithm with O(n polylogn) total step
complexity, and an adaptive loose algorithm with polylog-
arithmic step complexity. Our strong adaptive algorithm
uses the randomized splitter tree idea to reduce the size of
the namespace to polynomial in k. This procedure has first
been analyzed in [25] in the context of collect algorithms.

Compared to previous work, our algorithms achieve a tight
namespace using only logarithmic step complexity.

We derive an Ω(log k) lower bound on the time complexity
of adaptive randomized renaming using the lower bound on
the wakeup problem by Jayanti [16]. To the best of our
knowledge, this is the first non-trivial lower bound on the
time complexity of randomized renaming.

Monotone consistency has been introduced in reference [17],
where the authors also present max-register and counter im-
plementations with sub-linear time complexity. Their counter
is deterministic and linearizable, and has O(log2 n) complex-
ity for polynomially many increments. Our counter imple-
mentation has complexity O(log n) in expectation, but is
only monotone-consistent, and not linearizable.

Counting networks, introduced in [26], are other shared
objects related to sorting networks. However, since their
aim is to balance the number of processes exiting on the
output ports, their applications and structure are in general
different than those of renaming networks. The fact that any
sorting network can be used as a counting network when only
one process enters on each wire was observed by Attiya et
al. [27] to follow from earlier results of Aspnes et al. [26]; this
is equivalent to our use of sorting networks for non-adaptive
renaming in Section 5.

4. A NON-ADAPTIVE ALGORITHM
In this section, we present an algorithm that renames into

n names, using polylogarithmic operations per process, with
high probability. The algorithm assigns unique names to
processes by repeatedly sampling over batches of test-and-
set bits of decreasing size.

Description. The n processes share a vector of n test-
and-set objects, each implemented using the RatRace algo-
rithm [12]. For simplicity, we will assume that n = 2κ,
for an integer κ. We partition the vector of n test-and-
set objects in batches as follows. Let ℓ = ⌊log(n/ log n)⌋.
For 1 ≤ i < ℓ, batch Bi consists of vector positions from
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Figure 1: The BitBatching algorithm. The process

makes Θ(log n) random trials in each batch, until it

first wins a test-and-set object.

n(2i−1 − 1)/2i−1 + 1 to n(2i − 1)/2i. In particular, batch
B1 consists of the first half of the vector (from left to right),
batch B2 consists of the next quarter, and so on. Batch Bℓ,
which does not follow the above formula, consists of posi-
tions from n(2ℓ−1−1)/2ℓ−1+1 to position n. For 1 ≤ i < ℓ,
the length of batch Bi is n/2

i. Batch Bℓ has length between
log n and 2 log n (see Figure 1 for an illustration).
Given this partitioning of the vector, processes (sequen-

tially) compete inO(log n) test-and-set objects in each batch,
starting from batch number 1 up to batch ℓ, and stopping
when they first win a test-and-set object. More precisely,
we define two stages in the algorithm. In the first stage,
for every 1 ≤ i < ℓ, each process p (sequentially) competes
in 3 log n randomly chosen test-and-set objects from every
batch Bi. If it did not stop before entering batch Bℓ, the
process competes in every test-and-set object in this batch.
If the process finishes competing in batch Bℓ and still did not
win a test-and-set, then it enters the second stage, where it
competes in all test-and-set objects from 1 to n, in sequence,
from left to right. In the following, we will show that, with
high probability, every process wins a test-and-set while in
the first stage.

Analysis. The termination property holds with probability
1, by the properties of test-and-set, and by the structure of
the algorithm. The name uniqueness property follows since
no two processes may win the same test-and-set. In the
following, we prove upper bounds on the step complexity of
the algorithm.
The first lemma shows that, with high probability, every

process gets a name while doing the first pass through the
test-and-set vector.

Lemma 1 (Local Trials). With high probability, ev-
ery process terminates while executing the first stage, i.e.
it returns a name after competing in O(log2 n) test-and-set
objects.

Proof (Sketch). Consider a process p that competes
in test-and-set objects in all batches (Bi)i∈{1,...,ℓ} without
winning any test-and-set objects. In particular, this implies
that p has competed in all the test-and-set objects in batch
Bℓ. Since p did not win any test-and-set in this batch, it
follows that this batch is already “full,” i.e. there are at
least log n distinct processes that won each of the test-and-
set objects in this batch2. Let Sℓ be this set of processes.
It follows that each of the processes in Sℓ has performed

3 log n random trials in the batch Bℓ−1, and did not succeed
2We consider the linearization order at each of these objects.

in acquiring a name in this batch. By a standard coupon-
collector analysis [28], we obtain that, for each batch index
i ≥ 1, if at least |Bi|/2 processes perform 3 log n random
trials each in batch Bi, then the batch is “full” with high
probability, i.e. there exists a set of processes Fi that each
won a distinct test-and-set in batch Bi, with Sℓ ∩ Fi = ∅.
In particular, we obtain that batch Bℓ−1 is full with high
probability. The processes occupying batches Bℓ and Bℓ−1

have tried for 3 log n times each in batch Bℓ−2, without suc-
cess. In this case, the previous argument implies that batch
Bℓ−2 is full w.h.p. By backward induction over the batch
number, we obtain that all batches (Bi)i∈{ℓ,...,1} are full
w.h.p.

By the union bound, it follows that the vector is full with
high probability if process p executes stage two of the algo-
rithm. Assuming the vector is full, then, since the algorithm
guarantees that a process may win a single test-and-set ob-
ject, it follows that there are at least n + 1 participating
processes in this execution, which is impossible. Therefore
the event that process p terminates while in stage one occurs
with high probability.

Using this bound on the number of trials, we obtain bounds
on the local and total step complexity of our algorithm, by
carefully bounding the maximum number of processes that
access a test-and-set object.

Corollary 1. With high probability, every process re-
turns after O(log3 n log log n) local steps. The expected step
complexity is O(log2 n log log n).

Corollary 2. With high probability, the total step com-
plexity of the algorithm is O(n log2 n log log n). The expected
total step complexity is O(n log n log log n). The total num-
ber of test-and-set operations performed in an execution is
O(n log n) with high probability.

5. RENAMING USING
A SORTING NETWORK

In this section, we present a solution for adaptive strong
renaming using a sorting network. For simplicity, we first
describe the solution when the bound on the size of the
initial namespace, M , is finite and known. We circumvent
this limitation in Section 6.

Description. We start from an arbitrary sorting network
of size M , in which we replace the comparator modules with
two-process test-and-set objects to obtain a renaming net-
work. We use the renaming network to solve adaptive strong
renaming as follows. Each participating process enters the
execution on the input wire in the sorting network corre-
sponding to its unique initial value. The process competes
in two-process test-and-set instances as follows: if the pro-
cess wins a two-process test-and-set, then it moves “up” in
the network; otherwise it moves “down.” The process con-
tinues until it reaches an output port. The process returns
the index of the output port as its output value.

Analysis. In the following, we show that the renaming net-
work construction solves adaptive strong renaming, i.e. that
processes return values between 1 and k, the total contention
in the execution, as long as the size of the initial namespace
is bounded by M . In particular, if we use the optimal AKS
sorting network [15] as the basis for the renaming network,
then we solve strong renaming using expected O(logM) step



complexity. In Section 6.1, we show how to use this idea to
obtain an adaptive strong renaming algorithm with O(log k)
step complexity, which is optimal, as per Section 7.

Theorem 1. The renaming network construction solves
strong adaptive renaming with probability 1.

Proof (Sketch). Termination with probability 1 follows
from the structure of the sorting network and from the ter-
mination property of the two-process test-and-set implemen-
tation [20].
We prove name uniqueness and namespace tightness in

the following. The proof is based on a simulation argument
from an execution of a renaming network to an execution of
a sorting network. We start from an arbitrary execution E
of the renaming network, and we build a valid execution of a
sorting network. The structure of the outputs in the sorting
network execution will imply that the tightness and unique-
ness properties hold in the renaming network execution.
Let P be the set of processes that have taken at least one

step in E . Each of these processes has assigned a unique
input port i of the renaming network. Let I denote the set
of input ports on which there is a process present. We then
introduce a new set of “ghost” processes G, each assigned to
one of the input ports not in I.
The next step in the transformation is to assign input val-

ues to these processes. We assign input value 0 to processes
in P (and correspondingly to their input ports), and input
value 1 to processes in G.
Note that, in execution E , not all test-and-set objects in

the renaming network may have been accessed by processes
(e.g., the test-and-set objects corresponding to processes in
G), and not all processes have reached an output port (e.g.,
crashed processes and ghost processes). The next step is to
simulate the output of these processes by extending the cur-
rent renaming network execution. The rules for deciding the
outputs of test-and-set objects for these processes are the fol-
lowing: if the current test-and-set already has a winner, i.e.
a (distinct) process that goes “up”, then the current process
automatically goes “down” at this test-and-set. Otherwise,
if the winner has not yet been decided, then we decide the
test-and-set according to the input value corresponding to
the two processes: the process with the smaller input value
goes “up,”while the other process goes “down.”Test-and-set
objects where both processes have the same corresponding
value are decided arbitrarily.
In this way, we obtain an execution of a renaming network

in which M processes participate, and each test-and-set ob-
ject has a winner and a loser. Notice that we can re-order
these test-and-set operations into stages, such that all test-
and-set operations that may be performed in parallel are
assigned to the same stage. The final step in this trans-
formation is to replace every test-and-set operation with a
comparator between the binary values corresponding to the
two processes that participate in the test-and-set. Thus,
we obtain a sequence of comparator operations ordered in
stages, in which each stage contains only comparison opera-
tions that may be performed in parallel. The key observation
now is that all these test-and-set operations obey the com-
parison property of the comparators in a sorting network,
applied to the values we assigned to the corresponding pro-
cesses. In particular, when input values are different, the
lower value (corresponding to participating processes) al-
ways goes “up,” while the higher value always goes “down.”
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Figure 2: One stage in the construction of the adap-

tive sorting network. The original network B is

“sandwiched” between the larger networks A and C.

Thus, the execution resulting from the last transformation
step is in fact a valid execution of the sorting network from
which the renaming network has been obtained. Recall that
we have associated each process that took a step to a 0
input value, and each ghost process to a 1 input value to
the network. Since no two input values may be sorted to
the same output port, we first obtain that the output port
values the processes in P return are unique. For namespace
tightness, recall that we have obtained an execution of a
sorting network with M input values, M − k of which are 1.
By the sorting property of the network, it follows that the
lowerM−k output ports of the sorting network are occupied
by 1 values. Therefore the M − k processes that have not
taken a step in E must be associated with the lower M − k
output ports of the sorting network. Conversely, processes
that have returned a value in the execution E must have
returned a value between 1 and k.

We can then obtain an upper bound on the step com-
plexity of the protocol when starting from an AKS sorting
network [15]. The key observation is that that the number
of test-and-set objects a process enters is bounded by the
depth of the original sorting network.

Corollary 3. The renaming network obtained from an
AKS sorting network [15] with M inputs solves the strong
adaptive renaming problem with M initial names. It guar-
antees termination with probability 1 and name uniqueness
in all executions, using expected O(logM) local steps. The
step complexity is O(logM log n) w.h.p., and the total step
complexity is O(k logM) w.h.p. for M = Θ(n), where k is
the contention in the execution.

6. STRONG ADAPTIVE RENAMING
In this section, we present an algorithm for adaptive strong

renaming based on an adaptive sorting network construc-
tion. In particular, the algorithm works irrespective of the
size of the initial namespace.

6.1 An Adaptive Sorting Network
We present a recursive construction of a sorting network of

arbitrary size. We will guarantee that the resulting construc-
tion ensures the properties of a sorting network whenever
truncated to a finite number of input (and output) ports.
The sorting network is adaptive, in the sense that any value
entering on wire n and leaving on wire m traverses at most
O(logmax(n,m)) comparators.



The basic observation is that we can extend a small sorting
network B to a wider range by inserting it between two much
larger sorting networks A and C. The resulting network
is non-uniform—different paths through the network have
different lengths, with the lowest part of the sorting network
having the same width as B.
Formally, let us suppose we have sorting networks A, B,

and C, where A and C have width m and B has width k.
Label the inputs of A as A1, A2, . . . , Am and the outputs
as A′

1, A
′
2, . . . , A

′
m, where i < j means that A′

i receives a
value less than or equal to A′

j . Similarly, label the inputs
and outputs of B and C. Fix ℓ ≤ k/2 and construct a new
sorting network ABC with inputs B1, B2, . . . Bℓ, A1, . . . Am

and outputs B′
1, B

′
2, . . . B

′
m, A′

1, A
′
2, . . . A

′
m. Internally, in-

sert B between A and C by connecting outputs A′
1, . . . , A

′
k−ℓ

to inputs Bℓ+1, . . . , Bk; and outputs B′
ℓ+1, . . . B

′
k to inputs

C′
1, . . . C

′
k−ℓ. The remaining outputs of A are wired di-

rectly across to the corresponding inputs of C: outputs
A′

k−ℓ+1, . . . , A
′
m are wired to inputs Ck−ℓ+1, . . . , Cm (see

Figure 2). We now show that the resulting construction
is a sorting network.

Lemma 2. The network ABC constructed as described
above is a sorting network.

Proof. The proof uses the well-known Zero-One Princi-
ple [14]: we show that the network correctly sorts all input
sequence of zeros and ones, and deduce from this fact that
it correctly sorts all input sequences.
Given a particular 0-1 input sequence, let zB and zA be

the number of zeros in the input that are sent to inputs
B1 . . . Bℓ and A1 . . . Am. Because A sorts all of its incoming
zeros to its lowest outputs, B gets a total of zB +max(k −
ℓ, zA) zeros on it inputs, and sorts those zeros to outputs
B′

1 . . . B
′
zB+max(k−ℓ,zA). An additional zA −max(k − ℓ, zA)

zeros propagate directly from A to C. We consider two cases,
depending on the value of the max:
Case 1 : zA ≤ k − ℓ. Then B gets zB + zA zeros (all of
them), sorts them to its lowest outputs, and those that reach
outputs B′

ℓ+1 and above are not moved by C. The sorting
network works in this case.
Case 2 : zA > k − ℓ. Then B gets zB + k − ℓ zeros, while
zA − (k − ℓ) zeros are propagated directly from A to C.
Because ℓ ≤ k/2, zB + k− ℓ ≥ k/2 ≥ ℓ, and B sends ℓ zeros
out its direct outputs B′

1 . . . Bℓ. All remaining zeros are fed
into C, which sorts them to the next zA + zB − ℓ positions.
Again the sorting network works.

When building the adaptive network, it will be useful to
constrain which parts of the network particular values tra-
verse. The key tool is given by the following lemma, whose
proof is immediate from the construction and Lemma 2.

Lemma 3. If a value v is supplied to one of the inputs B1

through Bℓ in the network ABC, and is one of the ℓ smallest
values supplied on all inputs, then v never leaves B.

Now let us show how to recursively construct a large sort-
ing network with polylogN depth when truncated to the
first N positions. We assume that we are using a construc-
tion of a sorting network that requires at most a logc n depth
to sort n values, where a and c are constants. For the AKS
sorting network [15], we have c = 1; for constructible net-
works (e.g., the bitonic sorting network [14]), we have c = 2.
Start with a sorting network S0 of width 2. In general, we

will let wk be the width of Sk; so we have w0 = 2. We also

write dk for the depth of Sk (the number of comparators on
the longest path through the network).

Given Sk, construct Sk+1 by appending two sorting net-
works Ak+1 and Ck+1 with width w2

k − wk/2, and attach
them to the top half of Sk as in Lemma 2, setting ℓ = wk/2.

Observe that wk+1 = w2
k and dk+1 = 2a logc(w2

k−wk/2)+
dk ≤ 4a logc wk + dk. Solving these recurrences gives wk =

22
k

and dk =
∑k

i=0 2
c(i+2)a = O(2ck).

If we setN = 22
k

, then k = lg lgN , and dk = O(2c lg lgN ) =
O(logc N). This gives us polylogarithmic depth for a net-
work with N lines, and a total number of comparators of
O(N logc N).

But we can in fact state something stronger:

Theorem 2. Each of the networks Sk constructed above
is a sorting network, with the property that any value that
enters on the n-th input and leaves on the m-th output tra-
verses O(logc max(n,m)) comparators.

Proof. That Sk is a sorting network follows from in-
duction on k using Lemma 2. For the second property,
let Sk′ be the smallest stage in the construction of Sk to
which input n and output m are directly connected. Then
wk′−1/2 < max(n,m) ≤ wk′/2, which we can rewrite as

22
k
′
−1

< 2max(n,m) ≤ 22
k
′

or k′ − 1 < lg lgmax(n,m) ≤
k′, implying k′ = ⌈lg lgmax(n,m)⌉. By Lemma 3, the
given value stays in Sk′ , meaning it traverses at most dk′ =

O
(

2ck
′

)

= O
(

2c⌈lg lg max(n,m)⌉
)

= O (lgc max(n,m)) com-

parators.

6.2 Strong Adaptive Renaming Algorithm
We show how to apply the adaptive sorting network con-

struction to solve strong adaptive renaming when the size
of the initial namespace, M , is unknown, and may be arbi-
trarily large.

Description. Our algorithm is composed of two stages.
In the first stage, each process obtains a unique temporary
name in a namespace of size polynomial in k, with high
probability. The algorithm, which we call TempName, is as
follows. We allocate a binary tree of randomized splitters
(as previously defined in [25]), of unbounded height. (In
brief, a randomized splitter is a component such that at
most one process may “win” the splitter; losing processes go
left or right with probability 1/2.) Each process starts the
protocol at the root splitter in the tree; if it does not stop
at the current splitter, it goes either left or right, each with
probability 1/2, until it manages to acquire a splitter. Notice
that, by the properties of the splitter, the process will stop
at height at most k in the tree. Once it stops at a splitter,
the process adopts a temporary name corresponding to the
index of the splitter in a breadth-first search labeling of the
tree nodes. Variants of this algorithm have been previously
analyzed in [12,25].

In the second stage, we consider a renaming network as
defined in Section 5, instantiated using the adaptive sorting
network of Section 6.1. Let R be the resulting renaming
network. Each process uses the temporary name it has ac-
quired in the first stage as the index of its input port to the
renaming network R. The process then executes the renam-
ing network R starting at the given input port, and returns
the index of its output port as its name.

Wait-freedom. Notice that, technically, our algorithm
may not be wait-free if k is unbounded. In particular, if



the number of processes k participating in an execution is
infinite, then it is possible that a process either fails to ac-
quire a temporary name during the first stage, or it con-
tinually fails to reach an output port by always losing the
test-and-set objects it participates in. Therefore, in the fol-
lowing, we assume that k is finite, and present bounds on
step complexity that depend on k.

Analysis. Before we proceed with the proof of the main
theorem, please recall that the TempName algorithm has the
following properties: (1) given k participating processes, it
assigns names from 1 to kc with probability 1 − 1/kc−1,
where c > 1 is a constant; (2) its step complexity is O(log k)
with high probability in k. The proof can be found in [12,25].
We now prove the following.

Theorem 3. For any finite k > 0, the adaptive renam-
ing network construction based on the AKS sorting network
solves adaptive strong renaming for k processes. The local
time complexity of the protocol is O(log2 k) with high proba-
bility, and O(log k) in expectation.

Proof. We first prove that the resulting construction
solves adaptive strong renaming for any k > 0. First, we
know that the temporary names obtained in stage one are
between 1 and kc, with high probability, for a constant c ≥ 1.
Therefore we will assume that, during the current execution,
each process enters an input port of the renaming network
between 1 and kc. We will truncate the renaming network
after the first kc input ports. By Theorem 2, we obtain that
the original comparison network truncated after the first kc

input ports is in fact a sorting network. From Theorem 1,
we obtain that the second stage of the construction imple-
ments adaptive strong renaming for at most kc processes.
The first claim follows.
For the complexity bound, first recall that any process

takes O(log k) steps during the first stage, with high proba-
bility. Second, from Theorem 2 we obtain that the number
of test-and-sets a process competes in during an execution
of the renaming network is O(logmax(ℓ,m)), where ℓ is the
number of the input port for the process, and m is the num-
ber of the output port for the process. Notice that ℓ ≤ kc,
with high probability, and m ≤ k, by the adaptive tight
property of the renaming network.
Therefore a process competes in O(log k) test-and-set in-

stances in the second stage. By the properties of the two-
process test-and-set, we obtain that a process takes expected
O(log k) steps in an execution, and at most O(log2 k) steps,
with high probability in k.

7. LOWER BOUND
We prove that our adaptive renaming algorithm is opti-

mal in terms of local time complexity starting from a lower
bound for the wakeup problem. Recall that the wakeup prob-
lem for n processes [16] is specified as follows: (1) Every
process terminates in a finite number of its steps, returning
either 0 or 1, (2) In every run in which all processes termi-
nate, at least one process returns 1, and (3) In every run in
which one or more processes return 1, every process takes
at least one step before any process returns 1. We start by
re-stating the lower bound result by Jayanti.

Theorem 4 (Jayanti, [16]). Consider any algorithm
for the n-process wakeup problem in shared memory where
only LL, SC, validate, move, and swap operations may be

used. If the algorithm terminates with probability c, then its
worst-case expected shared-access time complexity is at least
c log n.

Based on this, we prove the following lower bound on adap-
tive strong renaming. Note that the lower bound holds even
when test-and-set operations are available, and are assumed
to have unit cost. Also, since shared-access time complexity
as used in [16] is a lower bound on the (local) step complex-
ity of the algorithm, we claim our lower bound for expected
step complexity.

Theorem 5 (Lower bound). Consider a randomized
algorithm for adaptive strong renaming in shared memory
augmented with test-and-set operations, which terminates
with probability c. Then the algorithm has worst-case ex-
pected step complexity Ω(c log k), where k is the number of
participating processes.

Proof (Sketch). We assume for contradiction that there
exists an algorithm A that solves adaptive strong renaming
and terminates with probability c, which has worst-case ex-
pected time complexity o(c log k), for any k.

We first transform algorithm A from an algorithm using
read, write, and test-and-set operations, to an algorithm
that uses only LL, SC and move operations. (Recall that
the move operation takes as arguments a register R and a
value v, and changes the value of R to v atomically. It is es-
sentially the same as a write operation in read-write shared
memory. For a precise definition of the LL/SC and move
operations, please see [16]). We first replace all registers
and test-and-set bits with registers supporting LL/SC and
move, initialized to ⊥. Any read operation on a register is
replaced with a LL operation on the corresponding register.
Any write(v) operation on a register R is replaced with a
move(R, v) operation on that register. Any test-and-set op-
eration is replaced with a LL operation followed by a SC
operation with value 1 on the same register. Clearly, this
transforms algorithm A into an algorithm A′ that uses only
LL/SC and move operations, with a constant increase in
time complexity.

We now consider the algorithm A′ in a system where k,
the number of participating processes, is fixed and known.
We can use the algorithm A′ to solve the wakeup problem as
follows: if a process receives name k from A′, then it returns
1. Otherwise, it returns 0. We now check that this solves
the wakeup problem.

First, if every process terminates, then, by the strong
adaptivity of the namespace, there has to exist a process
that obtains name k and returns 1 in the wakeup problem.
On the other hand, if a process p returns 1, then it has ob-
tained name k, therefore, by the strong adaptivity of the
namespace, there have to exist k − 1 other processes that
took at least one step in this execution. (Otherwise, by in-
distinguishability, process p would have to return name k−1
or smaller.) Hence, this algorithm solves the wakeup prob-
lem in a system with k processes.

Termination is ensured with the same probability c, and
the time complexity of the protocol is o(c log k). There-
fore, we obtain that the wakeup problem can be solved in a
system with k processes using o(c log k) local steps by an al-
gorithm which terminates with probability c, contradicting
Theorem 4.

Based on the same rationale, we can obtain a lower bound
for linearizable fetch-and-increment objects.



Corollary 4 (Fetch-and-increment). A fetch-and-
increment object in asynchronous shared memory augmented
with test-and-set operations which terminates with probabil-
ity c has worst-case expected local time complexity Ω(c log k),
where k is the number of participating processes.

8. APPLICATIONS TO COUNTING

8.1 A Monotone-Consistent Counter
We now build a monotone-consistent counter algorithm

with logarithmic step complexity, based on the strong adap-
tive renaming algorithm.

Description. The processes share an adaptive renaming
object implemented using the construction from Section 6.2,
and a linearizable max register, implemented using the loga-
rithmic construction from [17]. For the increment operation,
a process acquires a new name from the adaptive renaming
object. It then writes the newly obtained name to the max
register and returns. For the read operation, the process
simply reads the value of the max register and returns it.

Analysis. We now prove the properties of the counter.

Lemma 4 (Counter Properties). The counter imple-
mentation is monotone-consistent, and has expected step com-
plexity O(log v) per increment, where v is the number of
increment operations started before the operation returns. A
read operation has cost O(min(log v,O(n))).

Proof. Termination with probability 1 for finite v follows
from the properties of the objects we use. For monotone
consistency, we need to prove the following.
(1) There exists a total ordering < on the read operations
such that if an operation R1 finishes before some operation
R2 starts, then R1 < R2, and if R1 < R2, then the value
returned by R1 is less than or equal to the value returned
by R2. For this, we order the read operations by their lin-
earization points when reading the max register object. This
ordering clearly has the required properties.
(2) The value v returned by a read is always ≥ the number
of completed increment operations. Let y be the number of
completed increment operations. Notice that each completed
operation obtains a unique name, and writes it to the max
registers (this holds also if a single process performs multiple
increment operations). It then follows that the value in the
max register at the time of the read is at least y.
(3) The value v returned by a read is always ≤ the num-
ber of started increment operations. Let z be the number
of started increment operations. Assume for contradiction
that a process returns a value v which is larger than z. In
this case, there must exist a process that returned a name
which is strictly larger than the number of name requests on
the adaptive renaming object. This contradicts the adaptive
property of the object.
Therefore the counter object is monotone-consistent. For

the complexity bound on the increment operation, notice
that the complexity of the first stage of the adaptive renam-
ing protocol is O(log v), and the number of temporary names
is O( poly v) with high probability. It then follows that the
complexity of the adaptive renaming object is O(log v) in
expectation, and O(log2 v) with high probability in v. By
the properties of the max register, it follows that that the
complexity of an increment operation is O(log v). The com-
plexity of the read operation is the same as the complexity
of the max register.

Shared: boolean doorway , initially open;

procedure ℓ-test-and-set();
if O .doorway = closed then

return false
else

name← tight-renaming();
if name ≤ ℓ then return true
else

O .doorway ← closed
return false

Algorithm 1: The ℓ-test-and-set implementation.

Shared: test, an ℓ/2-test-and-set object;
left , an ℓ/2-valued f&inc object;
right , an ℓ/2-valued f&inc object;

procedure ℓ-fetch-and-increment();
if ℓ = 0 then return 0;
if ℓ/2-test-and-set(O.test) then

return fetch-and-increment(O .left)
else

return ℓ/2 + fetch-and-increment(O.right)

Algorithm 2: The ℓ-fetch-and-increment object.

Linearizability. We show a non-linearizable execution of
our counter implementation. Consider three processes p1, p2,
and p3. Process p2 obtains name 2 and writes it to the max
register. After p2’s operation terminates, p1 starts its in-
crement operation and obtains name 1 from the renaming
network and writes it to the max register (this is possible
in a renaming network). We insert a read operation R1 be-
tween the end point of p2’s operation and the start point
of p1’s operation. We insert a second read operation R2 be-
tween the end point of p1’s operation and before p3 writes to
the max register. Both read operations have to return value
2 for the counter. Notice that, in this case, p1’s operation
cannot be properly linearized, since it is located between
two read operations returning the same value.

8.2 Linearizable Bounded-Value
Fetch-and-Increment

In this section, we show how to use an adaptive strong re-
naming protocol to construct a linearizable m-valued fetch-
and-increment object, i.e. a fetch-and-increment object that
supports only values up tom. The sequential specification of
the object is the same as that of fetch-and-increment, except
that the object keeps returning m − 1 once it has reached
the threshold value m.

Description. We first use the strong adaptive renaming
protocol to build a linearizable ℓ-test-and-set object, which
generalizes a standard test-and-set object by providing ℓ
winners instead of a single one. We implement such an ob-
ject by having processes run the adaptive strong renaming
algorithm and return true if and only if their acquired name
is at most ℓ. To ensure this is linearizable, we protect the re-
naming protocol with a doorway bit, which guarantees that
processes arriving after some process returns false cannot
prevent a process that already started the operation earlier
from winning. Algorithm 1 presents the pseudocode.



The second part of the m-valued fetch-and-increment con-
struction is based on a recursive tree construction, whose
pseudocode is presented in Algorithm 2. For simplicity, we
present the construction when m is a power of two. (The
construction for general m can be easily obtained from the
construction for the smallest power of two larger than m,
by returning m− 1 instead of any value larger than m− 1.)
For ℓ ≥ 1, we build an ℓ-fetch-and-increment object out of
(a) one ℓ/2-test-and-set object, and (b) two ℓ/2-fetch-and-
increment objects (the left child, and the right child of the
current node, respectively). If a process wins in the ℓ/2-test-
and-set object, then it calls the left ℓ/2-valued fetch-and-
increment object; otherwise it calls the right object. The
two children of a 1-fetch-and-increment are two 0-fetch-and-
increment objects. We implement such an object with an
empty data structure on which the fetch-and-increment op-
eration always returns 0.
The construction starts at level m and unfolds to a tree,

whose leaves are 0-valued fetch-and-increment objects. For
each level ℓ at which it accesses the right fetch-and-increment
child, the process adds the value ℓ/2 in a local variable, and
returns the final value of this variable.

Analysis. We start by precisely defining the ℓ-test-and-set
object.

Definition 1. An ℓ-test-and-set object O supports one
type of operation which returns either true or false. The
sequential specification of the object is that the first ℓ in-
vocations of the operation return true and the rest return
false.

We now show the correctness of our ℓ-test-and-set imple-
mentation. Intuitively, we show that exactly ℓ processes may
get true, by the adaptivity and tightness of the namespace;
any operation that starts later sees the doorway closed, and
must therefore must return false.

Lemma 5 (ℓ-test-and-set). The ℓ-test-and-set proce-
dure presented in Algorithm 1 implements a linearizable ℓ-
test-and-set object with expected step complexity O(log k).

Proof. By the correctness of the adaptive strong renam-
ing algorithm, ℓ processes obtain a name whose value is at
most m, and therefore exactly ℓ processes return true. For
linearizability, we partition the operations into two disjoint
categories, Ctrue and Cfalse, according to their return val-
ues. We order all operations in Ctrue before the time that
the doorway is set to closed, and all operations in Cfalse

afterwards. Within each category we order the operations
according to the order of non-overlapping operations. It is
clear that this order satisfies the sequential specification of
the ℓ-test-and-set object, since all operations that return
true are linearized before those that return false, and there
are exactly ℓ of those.
To show that this procedure preserves the order of non-

overlapping operations, we only need to argue about non-
overlapping operations in different categories, since this or-
der is preserved within each category by construction. Let
op1 be an operation that returns true and op2 be an opera-
tion that returns false and assume, towards a contradiction,
that op2 finishes before op1 starts. Then op2 must set the
doorway to closed, implying that after op1 reads the door-
way it returns false. This contradiction concludes the proof
that the above implements a linearizable ℓ-test-and-set ob-
ject.

We conclude with a proof of correctness of the fetch-and-
increment implementation. The basic idea is that the lin-
earizability of the ℓ/2-test-and-set object allows us to lin-
earize any operation incrementing to value v before any op-
eration incrementing to value v′ > v. The complexity bound
follows from the construction.

Theorem 6 (m-fetch-and-increment). The m-fetch-
and-increment implementation in Algorithm 2 is lineariz-
able, and has step complexity O(log k logm) in expectation,
and O(log2 k logm) with high probability.

Proof. Since O .left and O .right are linearizable, we can
associate each access to them with its linearization point.
We partition the operations into two disjoint categories, Cleft

and Cright , according to the ℓ/2-fetch-and-increment object
they access. We linearize operations in Cleft before those in
Cright .

Within each category, we linearize the operations accord-
ing to the order of their linearization points with respect to
the ℓ/2-fetch-and-increment object they access (O .left for
Cleft, and O.right for Cright). By correctness of the ℓ/2-
test-and-set object, exactly ℓ/2 processes return true and the
rest return false. Hence, this ordering preserves the sequen-
tial specification of an ℓ-fetch-and-increment, given the as-
sumption that O .left and O.right are linearizable ℓ/2-fetch-
and-increment objects. To show this preserves the order of
non-overlapping operations, we need to argue only about
non-overlapping operations in different categories, since this
order is preserved within each category by the assumption
on the linearizability of O .left and O.right.

Let op1 be an operation in Cleft and op2 be an operation in
Cright and assume, towards a contradiction, that op2 finishes
before op1 starts. Since op2 is in Cright then its return value
of the ℓ/2-test-and-set object is false. Since op1 starts after
op2 finishes it must also return false by correctness of the
ℓ/2-test-and-set object, and therefore op1 must be in Cright

as well. This contradicts the assumption that op1 is in Cleft ,
which completes the proof.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce new randomized algorithms

for adaptive strong renaming which work against a strong
adaptive adversary. Our upper bound in the strong adap-
tive case is time-optimal, and shows a connection between
sorting networks, renaming, and distributed counting. In
particular, it can be used to obtain a monotone-consistent
counter implementation with logarithmic complexity, and a
linearizable fetch-and-increment implementation with poly-
logarithmic complexity.

The renaming network technique and the resulting counter
implementations can be made deterministic with no loss
in terms of step complexity if two-process test-and-set or
compare-and-swap objects are available in hardware, which
is common on modern machines.

One immediate direction of future work is to see if our
techniques can be used to obtain a linearizable counter im-
plementation with optimal logarithmic cost. A more general
direction would be to see whether we can use the connec-
tion between counting, renaming and sorting to obtain lower
bounds for counting or renaming from sorting lower bounds.
A third direction would be to try to apply our techniques to
other problems, such as long-lived renaming [24], resource
allocation, or mutual exclusion.
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