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Abstract—Anonymity in Bitcoin, a peer-to-peer electronic
currency system, is a complicated issue. Within the system,
users are identified by public-keys only. An attacker wishing
to de-anonymize its users will attempt to construct the one-
to-many mapping between users and public-keys and associate
information external to the system with the users. Bitcoin
frustrates this attack by storing the mapping of a user to his
or her public-keys on that user’s node only and by allowing
each user to generate as many public-keys as required. In this
paper we consider the topological structure of two networks
derived from Bitcoin’s public transaction history. We show
that the two networks have a non-trivial topological structure,
provide complementary views of the Bitcoin system and have
implications for anonymity. We combine these structures with
external information and techniques such as context discovery
and flow analysis to investigate an alleged theft of Bitcoins, which,
at the time of the theft, had a market value of approximately
half a million U.S. dollars.

I. INTRODUCTION

Bitcoin is a peer-to-peer electronic currency system first
described in a paper by Satoshi Nakamoto (probably a
pseudonym) in 2008 [1]. It relies on digital signatures to
prove ownership and a public history of transactions to prevent
double-spending. The history of transactions is shared using a
peer-to-peer network and is agreed upon using a proof-of-work
system [2], [3].

The first Bitcoins were transacted in January 2009 and
by June 2011 there were 6.5 million Bitcoins in circulation
among an estimated 10,000 users [4]. In recent months, the
currency has seen rapid growth in both media attention and
market price relative to existing currencies. It has featured
in both The Economist and Forbes magazine. At its peak, a
single Bitcoin traded for more than US$30 on popular Bitcoin
exchanges. At the same time, U.S. Senators and lobby groups
in Germany, such as Der Bundesverband Digitale Wirtschaft
(BVWD) or the Federal Association of Digital Economy, have
raised concerns regarding the untraceability of Bitcoins and
their potential to harm society through tax evasion, money
laundering and illegal transactions. The implications of the de-
centralized nature of Bitcoin for authorities’ ability to regulate
and monitor the flow of currency is as yet unclear.

Many users adopt Bitcoin for political and philosophical
reasons, as much as pragmatic ones. While there is an under-
standing amongst Bitcoin’s technical users that anonymity is
not a prominent design goal of the system, we believe that this
awareness is not shared throughout the community. For exam-
ple, WikiLeaks, an international organization for anonymous

whistleblowers, recently advised its Twitter followers that it
now accepts anonymous donations via Bitcoin (see Fig. 1)
and states that1:

“Bitcoin is a secure and anonymous digital currency.
Bitcoins cannot be easily tracked back to you, and
are a [sic] safer and faster alternative to other dona-
tion methods.”

They proceed to describe a more secure method of donating
Bitcoins that involves the generation of a one-time public-key
but the implications for those who donate using the tweeted
public-key are unclear. Is it possible to associate a donation
with other Bitcoin transactions performed by the same user or
perhaps identify them using external information? At present,
there is little detailed work on Bitcoin anonymity in the public
domain – the extent to which this anonymity holds in the face
of determined analysis remains to be tested.

Fig. 1. Screen capture of a tweet from WikiLeaks announcing their
acceptance of ‘anonymous Bitcoin donations’.

This paper is organized as follows. In Sect. II we con-
sider some existing work relating to electronic currencies and
anonymity. The economic aspects of the system, interesting
in their own right, are beyond the scope of this work. In
Sect. III we present an overview of the Bitcoin system; we
focus on three features that are particularly relevant to our
analysis. In Sect. IV we construct two network structures, the
transaction network and the user network using the publicly
available transaction history. We study the static and dynamic
properties of these networks. In Sect. V we consider the
implications of these network structures for anonymity. We
also combine information external to the Bitcoin system with
techniques such as flow and temporal analysis to illustrate how
various types of information leakage can contribute to the de-
anonymization of the system’s users. Finally, we conclude in
Sect. VI.

1http://wikileaks.org/support.html – Retrieved: 22-07-2011
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A. A Note Regarding Motivation and Disclosure

Our motivation for this analysis is not to de-anonymize indi-
vidual users of the Bitcoin system. Rather, it is to demonstrate,
using a passive analysis of a publicly available dataset, the
inherent limits of anonymity when using Bitcoin. This will
ensure that users do not have expectations that are not being
fulfilled by the system.

In security-related research, there is considerable tension
over how best to disclose vulnerabilities [5]. Many researchers
favor full disclosure where all information regarding a vulner-
ability is promptly released. This enables informed users to
promptly take defensive measures. Other researchers favor lim-
ited disclosure; while this provides attackers with a window in
which to exploit uninformed users, a mitigation strategy can be
prepared and implemented before public announcement, thus
limiting damage, e.g. through a software update. Our analysis
does not show a vulnerability of the Bitcoin system per se, but
does illustrate some potential risks and pitfalls with regard to
anonymity. However, there is no central authority which can
fundamentally change the system’s behavior. Furthermore, it
is not possible to mitigate analysis of the existing transaction
history.

There are also two noteworthy features of the dataset when
compared with, say, contentious social network datasets, e.g.
the Facebook profiles of Harvard University students [6].
Firstly, the delineation between what is considered public and
private is clear: the entire history of Bitcoin transactions is
publicly available. Secondly, the Bitcoin system does not have
a usage policy. After joining Bitcoin’s peer-to-peer network, a
client can freely request the entire history of Bitcoin transac-
tions; there is no crawling or scraping required.

Thus, we believe the best strategy to minimise the threat
to user anonymity is to be descriptive about the risks of the
Bitcoin system. We do not identify individual users – apart
from those in the case study – but we note that it is not
difficult for other groups to replicate our work. Indeed, given
the passive nature of the analysis, other parties may already
be conducting similar analyses.

II. RELATED WORK

The related work for this paper can be categorized into two
fields: electronic currencies and anonymity.

A. Electronic Currencies

Electronic currencies can be technically classified according
to their mechanisms for establishing ownership, protecting
against double-spending, ensuring anonymity and/or privacy,
and generating and issuing new currency. Bitcoin is particu-
larly noteworthy for the last of these mechanisms. The proof-
of-work system [2], [3] that establishes consensus regarding
the history of transactions also doubles as a minting mech-
anism. The scheme was first outlined in the B-Money Pro-
posal [7]. We briefly consider some alternative mechanisms.
Ripple [8] is an electronic currency where every user can issue
currency. However, the currency is only accepted by peers who
trust the issuer. Transactions between arbitrary pairs of users

require chains of trusted intermediaries between the users.
Saito [9] formalized and implemented a similar system, i-WAT,
in which the the chain of intermediaries can be established
without their immediate presence using digital signatures.
KARMA [10] is an electronic currency where the central
authority is distributed over a set of users that are involved in
all transactions. PPay [11] is a micropayment scheme for peer-
to-peer systems where the issuer of the currency is responsible
for keeping track of it. However, both KARMA and PPay may
incur a large overhead when the rate of transactions is high.
Mondex is a smart-card electronic currency [12]. It preserves a
central bank’s role in the generation and issuance of electronic
currency. Mondex was an electronic replacement for cash in
the physical world whereas Bitcoin is an electronic analog of
cash in the online world.

The authors are not aware of any studies of the net-
work structure of electronic currencies. However, there are
such studies of physical currencies. The community currency
Tomamae-cho was introduced into the Hokkaido Prefecture in
Japan for a three-month period during 2004–05 in a bid to
revitalize local economy. The Tomamae-cho system involved
gift-certificates that were re-usable and legally redeemable into
yen. There was an entry space on the reverse of each certificate
for recipients to record transaction dates, their names and
addresses, and the purposes of use, up to a maximum of
five recipients. Kichiji and Nishibe [13] used the collected
certificates to derive a network structure that represented the
flow of currency during the period. They showed that the
cumulative degree distribution of the network obeyed a power-
law distribution, the network had small-world properties (the
average clustering coefficient was high whereas the average
path length was low), the directionality and the value of
transactions were significant features, and the double-triangle
system [14] was effective. There also exist studies of the
physical movement of currency: ‘Where’s George?’ [15] is
a crowd-sourced method for tracking U.S. dollar bills where
users record the serial numbers of bills in their possession,
along with their current location. If a bill is recorded suffi-
ciently often, its geographical movement can be tracked over
time. Brockmann et al. [16] used this dataset as a proxy
for studying multi-scale human mobility and as a tool for
computing geographic borders inherent to human mobility.

B. Anonymity

Previous work has shown the difficulty of maintaining
anonymity in the context of networked data and online services
which expose partial user information. Backstrom et al. [17]
considered privacy attacks which identify users using the struc-
ture of the network around them and discussed the difficulty
of guaranteeing user anonymity in the presence of network
data. Crandall et at. [18] infer social ties between users
where none are explicitly stated by looking at patterns of ‘co-
incidences’ or common off-network co-occurences. Narayanan
and Shmatikov [19] de-anonymized the Netflix Prize dataset



using information from IMDB2 which had similar user con-
tent, showing that statistical matching between different but
related datasets can be used to attack anonymity. Puzis et
al. [20] simulated the monitoring of a communications net-
work using strategically-located monitoring nodes and show
that, using real-world network topologies, a relatively small
number of nodes can collaborate to pose a significant threat
to anonymity. All of this work points to the difficulty in
maintaining anonymity where network data on user behaviour
is available and illustrates how seemingly minor information
leakages can be aggregated to pose significant risks.

III. THE BITCOIN SYSTEM

The following is a simplified description of the Bitcoin
system; see Nakamoto [1] for a more thorough treatment.
Bitcoin is an electronic currency with no central authority or
issuer. There is no central bank or fractional reserve system
controlling the supply of Bitcoins. Instead, they are generated
at a predictable rate such that the eventual total number will
be 21 million. There is no requirement for a trusted third-
party when making transactions. Suppose Alice wishes to
‘send’ a number of Bitcoins to Bob. Alice uses a Bitcoin
client to join the Bitcoin peer-to-peer network and makes
a public transaction or declaration stating that one or more
identities that she controls (which can be verified using public-
key cryptography), and which previously had a number of
Bitcoins assigned to them, wish to re-assign those Bitcoins to
one or more other identities, at least one of which is controlled
by Bob. The participants of the peer-to-peer network form a
collective consensus regarding the validity of this transaction
by appending it to the public history of previously agreed-upon
transactions (the longest block-chain). This process, known as
mining, involves the repeated computation of a cryptographic
hash function so that the digest of the transaction, along
with other pending transactions, and an arbitrary nonce, has a
specific form. This process is designed to require considerable
computational effort, from which the security of the Bitcoin
mechanism is derived. To encourage users to pay this compu-
tational cost, the process is incentivized using newly generated
Bitcoins and/or transaction fees.

In this paper, there are three features of the Bitcoin system
that are of particular interest. Firstly, the entire history of
Bitcoin transactions is publicly available. This is necessary in
order to validate transactions and prevent double-spending in
the absence of a central authority. The only way to confirm the
absence of a previous transaction is to be aware of all previous
transactions. The second feature of interest is that a transaction
can have multiple inputs and multiple outputs. An input to a
transaction is either the output of a previous transaction or
a sum of newly generated Bitcoins and transaction fees. A
transaction frequently has either a single input from a previous
larger transaction or multiple inputs from previous smaller
transactions. Also, a transaction frequently has two outputs:
one sending payment and one returning change. Thirdly, the

2http://www.imdb.com

payer and payee(s) of a transaction are identified through
public-keys from public-private key-pairs. However, a user
can have multiple public-keys. In fact, it is considered good
practice for a payee to generate a new public-private key-
pair for every transaction. Furthermore, a user can take the
following steps to better protect their identity: they can avoid
revealing any identifying information in connection with their
public-keys; they can repeatedly send varying fractions of
their Bitcoins to themselves using multiple (newly generated)
public-keys; and/or they can use a trusted third-party mixer or
laundry. However, these practices are not universally applied.

The three features above, namely the public availability
of Bitcoin transactions, the input-output relationship between
transactions and the re-use and co-use of public-keys, provide
a basis for two distinct network structures: the transaction
network and the user network. The transaction network rep-
resents the flow of Bitcoins between transactions over time.
Each vertex represents a transaction and each directed edge
between a source and a target represents an output of the
transaction corresponding to the source that is an input to the
transaction corresponding to the target. Each directed edge
also includes a value in Bitcoins and a timestamp. The user
network represents the flow of Bitcoins between users over
time. Each vertex represents a user and each directed edge
between a source and a target represents an input-output pair of
a single transaction where the input’s public-key belongs to the
user corresponding to the source and the output’s public-key
belongs to the user corresponding to the target. Each directed
edge also includes a value in Bitcoins and a timestamp.

We gathered the entire history of Bitcoin transactions from
the first transaction on the 3rd January 2009 up to and
including the last transaction that occurred on the 12th July
2011. We gathered the dataset using the Bitcoin client3 and
a modified version of Gavin Andresen’s bitcointools.4 The
dataset comprises 1 019 486 transactions between 1 253 054
unique public-keys. We describe the construction of the cor-
responding transaction and user networks and their analyses
in the following sections. We will show that the two networks
are complex, have a non-trivial topological structure, provide
complementary views of the Bitcoin system and have impli-
cations for the anonymity of users.

IV. THE TRANSACTION AND USER NETWORKS

A. The Transaction Network

The transaction network T represents the flow of Bitcoins
between transactions over time. Each vertex represents a
transaction and each directed edge between a source and a
target represents an output of the transaction corresponding to
the source that is an input to the transaction corresponding to
the target. Each directed edge also includes a value in Bitcoins
and a timestamp. It is a straight-forward task to construct T
from our dataset.

3http://www.bitcoin.org
4http://github.com/gavinandresen/bitcointools



1.2 BTC

01/05/2011 14:13:26

... t4 has 12 other  

inputs not shown here

1.32 BTC
14:10:54 05/05/2011

0.12 BTC
13:12:19 05/05/2011

t1

t2

t3 t4

Fig. 2. An example sub-network from the transaction network. Each
rectangular vertex represents a transaction and each directed edge represents
a flow of Bitcoins from an output of one transaction to an input of another.

Figure 2 shows an example sub-network of T . t1 is a
transaction with one input and two outputs.5 It was added
to the block-chain on the 1st May 2011. One of its outputs
assigned 1.2 BTC (Bitcoins) to a user identified by the public-
key pk1.6 The public-keys are not shown in Fig. 2. Similarly,
t2 is a transaction with two inputs and two outputs.7 It was
accepted on the 5th May 2011. One of its outputs sent 0.12
BTC to a user identified by a different public-key, pk2.8 t3
is a transaction with two inputs and and one output.9 It was
accepted on the 5th May 2011. Both of its inputs are connected
to the two aforementioned outputs of t1 and t2. The only
output of t3 was redeemed by t4.10

T has 974 520 vertices and 1 558 854 directed edges. The
number of vertices is less than the total number of transactions
in the dataset because we omit transactions that are not
connected to at least one other transaction. These correspond
to newly generated Bitcoins and transactions fees that are not
yet redeemed. The network has neither multi-edges (multiple
edges between the same pair of vertices in the same direction)
nor loops. It is a directed acyclic graph (DAG) since the
output of a transaction can never be an input (either directly
or indirectly) to the same transaction.

Figure 3(a) shows a log-log plot of the cumulative degree
distributions: the solid red curve is the cumulative degree
distribution (in- and out-degree); the dashed green curve is the
cumulative in-degree distribution; and the dotted blue curve
is the cumulative out-degree distribution. We fitted power-
law distributions, p(x) ∼ x−α for x > xmin, to the three
distributions by estimating the parameters α and xmin using

5The transactions and public-keys used in our examples exist
in our dataset. The unique identifier for the transaction t1 is
09441d3c52fa0018365fcd2949925182f6307322138773d52c201f5cc2bb5976.
You can query the details of a transaction or public-key by examining
Bitcoin’s longest block-chain using, say, the Bitcoin Block Explorer
(http://www.blockexplorer.com).

613eBhR3oHFD5wkE4oGtrLdbdi2PvK3ijMC
70c4d41d0f5d2aff14d449daa550c7d9b0eaaf35d81ee5e6e77f8948b14d62378
819smBSUoRGmbH13vif1Nu17S63Tnmg7h9n
90c034fb964257ecbf4eb953e2362e165dea9c1d008032bc9ece5cebbc7cd4697
10f16ece066f6e4cf92d9a72eb1359d8401602a23990990cb84498cdbb93026402

a goodness-of-fit method [21]. Table I shows the estimates
along with the corresponding Kolmogorov–Smirnov goodness-
of-fit (GoF) statistics and p-values. We observe that none of
the distributions for which the empirically-best scaling region
is non-trivial have a power-law as a plausible hypothesis
(p > 0.1). This is likely due to the fact that there is no
preferential attachment [22], [23]: new vertices are joined to
existing vertices whose corresponding transactions are not yet
fully redeemed.

There are 1 949 (maximal weakly) connected components
in the network. Fig. 3(b) shows a log-log plot of the cumu-
lative component size distribution. There are 948 287 vertices
(97.31%) in the giant component. This component also con-
tains a giant biconnected component with 716 354 vertices
(75.54% of the vertices in the giant component).

Variable x̃ x̄ s α xmin GoF p-val.
Degree 3 3.20 6.20 3.24 50 0.02 0.05
In-Degree 1 1.60 5.31 2.50 4 0.01 0.00
Out-Degree 1 1.60 3.17 3.50 51 0.05 0.00

TABLE I
THE DEGREE, IN-DEGREE AND OUT-DEGREE DISTRIBUTIONS OF T .

We also performed a rudimentary dynamic analysis of the
network. Figures 3(c), 3(d) and 3(e) show the edge number,
density and average path length of the transaction network
on a monthly basis. These measurements are not cumulative.
The network’s growth and sparsification are evident. We also
observe some anomalies in the average path length during July
and November 2010.

B. The User Network

The user network U represents the flow of Bitcoins between
users over time. Each vertex represents a user and each
directed edge between a source and a target represents an
input-output pair of a single transaction where the input’s
public-key belongs to the user corresponding to the source and
the output’s public-key belongs to the user corresponding to
the target. Each directed edge also includes a value in Bitcoins
and a timestamp.

We need to perform a preprocessing step before we can
construct U from our dataset. Suppose U is, at first, imperfect
in the sense that each vertex represents a single public-key
rather than a user and that each directed edge between a
source and a target represents an input-output pair of a single
transaction, where the input’s public-key corresponds to the
source and the output’s public-key corresponds to the target.
In order to perfect this network, we need to contract each
subset of vertices whose corresponding public-keys belong to
a single user. The difficulty is that public-keys are Bitcoin’s
mechanism for ensuring anonymity: ‘the public can see that
someone [identified by a public-key] is sending an amount to
someone else [identified by another public-key], but without
information linking the transaction to anyone.’ [1]. In fact, it is
considered good practice for a payee to generate a new public-
private key-pair for every transaction to keep transactions from



(a) A log-log plot of the cumulative degree distributions. (b) A log-log plot of the cumulative component size distribution.
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(c) A temporal histogram showing the number of
edges per month.
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(d) A temporal histogram showing the density per
month.
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Fig. 3. The degree distributions, component size distribution and monthly edge number, density and average path length of the transaction network.

being linked to a common owner. Therefore, it is impossible
to completely perfect the network using our dataset alone.
However, as noted by Nakamoto [1],

“Some linking is still unavoidable with multi-input
transactions, which necessarily reveal that their in-
puts were owned by the same owner. The risk is
that if the owner of a key is revealed, linking could
reveal other transactions that belonged to the same
owner.”

We will use this property of transactions with multiple
inputs to contract subsets of vertices in the imperfect net-
work. We construct an ancillary network where each vertex
represents a public-key and each undirected edge between two
end points represents a pair of inputs of a single transaction
whose public-keys correspond to the end points. Using our
dataset, this network has 1 253 054 vertices (unique public-
keys) and 4 929 950 edges. More importantly, it has 86 641

non-trivial maximal connected components. We deduce that
each maximal connected component corresponds to a user and
each component’s constituent vertices correspond to that user’s
public-keys.

Figure 5 shows an example sub-network of the imperfect
network overlaid onto the example sub-network of T from
Fig. 2. The outputs of t1 and t2 that were eventually redeemed
by t3 were sent to a user whose public-key was pk1 and a
user whose public-key was pk2 respectively. Figure 6 shows
an example sub-network of the user network overlaid onto the
example sub-network of the imperfect network from Fig. 5.
pk1 and pk2 are contracted into a single vertex u1 since they
correspond to a pair inputs of a single transaction. In other
words, they are in the same maximal connected component
of the ancillary network (see the vertices representing pk1
and pk2 in the dashed grey box in Fig. 6). A single user
owns both public-keys. We note that the maximal connected



(a) A log-log plot of the cumulative degree distributions. (b) A log-log plot of the cumulative component size distribution.

20
09

−
01

20
09

−
02

20
09

−
03

20
09

−
04

20
09

−
05

20
09

−
06

20
09

−
07

20
09

−
08

20
09

−
09

20
09

−
10

20
09

−
11

20
09

−
12

20
10

−
01

20
10

−
02

20
10

−
03

20
10

−
04

20
10

−
05

20
10

−
06

20
10

−
07

20
10

−
08

20
10

−
09

20
10

−
10

20
10

−
11

20
10

−
12

20
11

−
01

20
11

−
02

20
11

−
03

20
11

−
04

20
11

−
05

20
11

−
06

Edge Number of User Network

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

(c) A temporal histogram showing the number of
edges per month.
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(d) A temporal histogram showing the density per
month.
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Fig. 4. The degree distributions, component size distribution and monthly edge number, density and average path length of the user network.
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pk2

pk1

Fig. 5. An example sub-network from the imperfect network. Each diamond
vertex represents a public-key and each directed edge between diamond
vertices represents a flow of Bitcoins from one public-key to another.

component in this case is not simply a clique; it has a diameter
of four indicating that there are at least two public-keys
belonging to that same user that are connected indirectly via
three transactions. The sixteen inputs to transaction t4 result
in the contraction of a further sixteen public-keys into a single
vertex u2. The value and timestamp of the flow of Bitcoins
from u1 to u2 is derived from the transaction network.

After the preprocessing step, U has 881 678 vertices (86 641
non-trivial maximal connected components and 795 037 iso-
lated vertices in the ancillary network) and 1 961 636 directed
edges. The network is still imperfect. We have not contracted
all possible vertices but it will suffice for our present analysis.
Unlike T , U has multi-edges, loops and directed cycles.

Figure 4(a) shows a log-log plot of the network’s cumulative
degree distributions. We fitted power-law distributions to the
three distributions and calculated their goodness-of-fit and
statistical significance as in the previous section. Table II
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Fig. 6. An example sub-network from the user network. Each circular vertex
represents a user and each directed edge between circular vertices represents a
flow of Bitcoins from one user to another. The maximal connected component
from the ancillary network that corresponds to the vertex u1 is shown within
the dashed grey box.

shows the results. We observe that none of the distributions
have a power-law as a plausible hypothesis.

There are 604 (maximal) weakly connected components
and 579 355 (maximal) strongly connected components in the
network; Fig. 4(b) shows a log-log plot of the cumulative
component size distribution for both variations. There are
879 859 vertices (99.79%) in the giant weakly connected
component. This component also contains a giant weakly
biconnected component with 652 892 vertices (74.20% of the
vertices in the giant component).

Variable x̃ x̄ s α xmin GoF p-val.
Degree 3 4.45 218.10 2.38 66 0.02 0.00
In-Degree 1 2.22 86.40 2.45 57 0.05 0.00
Out-Degree 2 2.22 183.91 2.03 10 0.22 0.00

TABLE II
THE DEGREE, IN-DEGREE AND OUT-DEGREE DISTRIBUTIONS OF U .

Our dynamic analysis of the user network mirrors that of the
transaction network in the previous subsection. Figures 4(c),
4(d) and 4(e) show the edge number, density and average
path length of the user network on a monthly basis. These
measurements are not cumulative. The network’s growth and
sparsification are evident. We note that even though our
dynamic analysis of the user network is on a monthly basis, the
preprocessing step is performed using the ancillary network of
the entire imperfect network. This enables us to resolve public-
keys to a single user irrespective of the month is which the
linking tranactions occur.

V. ANONYMITY ANALYSIS

Prior to performing the analyses above, we expected the user
network to be largely composed of disjoint trees representing
Bitcoin flows between one-time public-keys that were not
linked with other public-keys. However, our analyses reveal

that the user network has considerable cyclic structure. We
now consider the implications of this structure, coupled with
other aspects of the Bitcoin system, for anonymity.

There are several ways in which the user network can
be used to deduce information about Bitcoin users. We can
use global network properties, such as degree distribution, to
identify outliers, e.g. users with unusually high activity in a
time-window following an event of interest. We can use local
network properties to examine the context in which a user
operates by observing the egocentric network of a particular
user and the users with which he or she interacts with either
directly or indirectly. The dynamic nature of the user network
also enables us to perform flow and temporal analyses. We can
examine the significant Bitcoin flows between groups of users
over time. We will now discuss each of these threats in more
detail, and provide a case study to demonstrate their potential.

A. Integrating Off-Network Information

There is no user directory for the Bitcoin system. However,
we can attempt to build a partial user directory associating
Bitcoin users (and their known public-keys) with off-network
information. If we can make sufficient associations and com-
bine them with the network structures above, a potentially
serious threat to anonymity emerges.

Many organizations and services such as on-line stores that
accept Bitcoinis, exchanges, laundry services and mixers have
access to identifying information regarding their users, e.g.
e-mail addresses, shipping addresses, credit card and bank
account details, IP addresses, etc. If any of this information
was publicly available, or accessible by, say, law enforcement
agencies, then the identities of users involved in related trans-
actions may also be at risk. To illustrate this point, we consider
a number of publicly available data sources and integrate their
information with the user network.

1) The Bitcoin Faucet: The Bitcoin Faucet11 is a website
where users can donate Bitcoins to be redistribtued in small
amounts to other users. In order to prevent abuse of this
service, a history of recent give-aways are published along
with the IP addresses of the recipients. When the Bitcoin
Faucet does not batch the re-distribution, it is possible to
associate the IP addresses with the recipient’s public-keys.
This page can be scraped over time to produce a time-stamped
mapping of IP addresses to users.

We found that the public-keys associated with many of
the IP addresses that received Bitcoins were contracted with
other public-keys in the ancillary network, thus revealing IP
addresses that are somehow related to previous transactions.
Fig. 7(a) shows a map of geolocated IP addresses belonging
to users who received Bitcoins over a period of one week.
Fig. 7(b) overlays the user network onto a sample of those
users. An edge between two geolocated IP addresses indicates
that the corresponding users are linked by an undirected path
of length at most three in the user network; the path must not
contain the vertex representing the Bitcoin Faucet itself.

11http://freebitcoins.appspot.com



These figures serve as a proof-of-concept from a small
publicly available data source. We note that large centralized
Bitcoin service providers are capable of producing much more
detailed maps.

2) Voluntary Disclosures: Another source of identifying
information is the voluntary disclosure of public-keys by users,
for example, when posting to the Bitcoin forums12. Bitcoin
public-keys are typically represented as strings approximately
thirty-three characters in length and starting with the digit one.
They are indexed very well by popular search engines. We
identified many high-degree vertices with external information
using a search engine alone. We proceeded to scrape the
Bitcoin Forums where users frequently attach a public-key to
their signatures. We also gathered public-keys from Twitter
streams and user-generated public directories. It is important
to note that in many cases we are able to resolve the ‘public’
public-keys with other public-keys belonging to the same user
using the ancillary network. We also note that large centralized
Bitcoin service providers can do the same with their user
information.

B. Egocentric Analysis and Visualization of the User Network

There are severals pieces of information we can directly
derive from the user network regarding a particular user. We
can compute the balance held by a single public-key. We
can also aggregate the balances belonging to public-keys that
are controlled by a particular user. For example, Fig. 8(a)
and Fig. 8(b) show the receipts and payments to and from
WikiLeaks’ public-key in terms of Bitcoin and transaction
volume respectively. The donations are generally small do-
nations and are forwarded to other public-keys periodically.
There was also a noticeable spike in donations when the
facility was first announced. Figure 8(c) shows the receipts
and payments to and from the creator of a popular Bitcoin
trading website aggregated over a number of public-keys that
are linked through the ancillary network.

An important advantage of deriving network structures from
the Bitcoin transaction history is our ability to use network
visualization and analysis tools to investigate the flow of
Bitcoins. For example, Fig. 9 shows the network structure
surrounding the WikiLeaks’ public-key in the imperfect user
network. Our tools resolve several of the vertices with iden-
tifying information gathered in Sect. V-A. These users can
be linked either directly or indirectly to their donations. The
presence of a Bitcoin mining pool (a large red vertex) and a
number of public-keys between it and WikiLeaks’ public-key
is interesting.

C. Context Discovery

Given a number of public-keys or users of interest, we can
use network structure and context to better understand the
flow of Bitcoins between them. For example, we can examine
all shortest paths between a set of vertices or consider the
maximum number of Bitcoins that can flow from a source

12http://forum.bitcoin.org
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Fig. 9. An egocentric visualization of the vertex representing WikiLeaks’
public-key in the imperfect user network. The size of a vertex corresponds to
its degree in the entire imperfect user network. The color denotes the volume
of Bitcoins – warmer colors have larger volumes flowing through them. The
large red vertices represent a Bitcoin mining pool, a centralized Bitcoin wallet
service and an unknown entity.

to a destination given the transactions and their ‘capacities’
in an interesting time-window. For example, Fig. 10 shows
all shortest paths between the vertices representing the users
we identified using off-network information in Sect. V-A and
the vertex that represents the MyBitcoin service13 in the user
network. We can identify more than 60% of the users in this
visualization and deduce many direct and indirect relationships
between them.

Case Study – Part I: We analyse an alleged theft of 25 000
BTC reported in the Bitcoin Forums14 by a user known as
allinvain. The victim reported that a large portion of
his Bitcoins were sent to pkred

15 on 13/06/2011 at 16:52:23
UTC. The theft occurred shortly after somebody broke into the
victim’s Slush pool account16 and changed the payout address
to pkblue.17. The Bitcoins rightfully belonged to pkgreen.18. At
the time of the theft, the stolen Bitcoins had a market value
of approximately half a million U.S. dollars. We chose this
case study to illustrate the potential risks to the anonymity of
a user (the thief) who has good reason to remain anonymous.

We consider the imperfect user network before any con-
tractions. We restrict ourselves to the egocentric network
surrounding the thief: we include every vertex that is reachable
by a path of length at most two ignoring directionality and all

13http://www.mybitcoin.com
14http://forum.bitcoin.org/index.php?topic=16457.0
151KPTdMb6p7H3YCwsyFqrEmKGmsHqe1Q3jg
16http://http://mining.bitcoin.cz
1715iUDqk6nLmav3B1xUHPQivDpfMruVsu9f
181J18yk7D353z3gRVcdbS7PV5Q8h5w6oWWG



(a) A map of geolocated IP addresses associated with users receiving Bitcoins
from the Bitcoin Faucet during a one week period.

(b) A map of a sample of the geolocated IP addresses in Fig. 7(a) connected
by edges where the corresponding users are connected by a path of length at
most three in the user network that does not include the vertex representing
the Bitcoin Faucet.

Fig. 7. We can use the Bitcoin Faucet to map users to geolocated IP addresses.
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(a) The receipts and payments to and from WikiLeaks’
public-key over time.
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(b) The number of transactions involving WikiLeaks’
public-key over time.
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(c) The receipts and payments to and from the creator
of a popular Bitcoin trading website aggregated over a
number of public-keys.

Fig. 8. Plots of the cumulative receipts and payments to and from Bitcoin public-keys and users.

edges induced by these vertices. We also remove all loops,
multiple edges and edges that are not contained in some
biconnected component to avoid clutter. In Fig. 11, the red
vertex represents the thief who owns the public-key pkred and
the green vertex represents the victim who owns the public-
key pkgreen. The theft is the green edge joining the victim to
the thief. There are in fact two green edges located nearby in
Fig. 11 but only one directly connects the victim to the thief.

Interestingly, the victim and the thief are joined by paths
(ignoring directionality) other than the green edge representing
the theft. For example, consider the sub-network shown in
Fig. 12 induced by the red, green, purple, yellow and orange
vertices. This sub-network is a cycle. We contract all vertices
whose corresponding public-keys belong to the same user. This
allows us to attach values in Bitcoins and timestamps to the
directed edges. We can make a number of observations. Firstly,
we note that the theft of 25 000 BTC was preceded by a smaller
theft of 1 BTC. This was later reported by the victim in the
Bitcoin forums. Secondly, using off-network data, we have
identified some of the other colored vertices: the purple vertex
represents the main Slush pool account and the orange vertex

represents the computer hacker group known as LulzSec.19

We note that there has been at least one attempt to associate
the thief with LulzSec20. This was a fake; it was created after
the theft. However, the identification of the orange vertex with
LulzSec is genuine and was established before the theft. We
observe that the thief sent 0.31337 BTC to LulzSec shortly
after the theft but we cannot otherwise associate him with the
group. The main Slush pool account sent a total of 441.83
BTC to the victim over a 70-day period. It also sent a total of
0.2 BTC to the yellow vertex over a two day period. One day
before the theft, the yellow vertex also sent 0.120607 BTC to
LulzSec.

The yellow vertex represents a user who is the owner of at
least five public-keys.21 Like the victim, he is a member of
the Slush pool, and like the thief, he is a one-time donator

19http://twitter.com/LulzSec/status/76388576832651265
20http://pastebin.com/88nGp508
211MUpbAY7rjWxvLtUwLkARViqSdzypMgVW4

13tst9ukW294Q7f6zRJr3VmLq6zp1C68EK
1DcQvXMD87MaYcFZqHzDZyH3sAv8R5hMZe
1AEW9ToWWwKoLFYSsLkPqDyHeS2feDVsVZ
1EWASKF9DLUCgEFqfgrNaHzp3q4oEgjTsF
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Fig. 10. A visualisation of all users identified in Sect. V-A and all shortest
paths between the vertices representing those users and the vertex representing
the MyBitcoin service in the user network.

Fig. 11. An egocentric visualization of the thief in the imperfect user network.
For this visualization, vertices are identified through their colors in the text,
edges are colored according to the color of their sources and the size of each
vertex is proportional to its edge-betweeness within the egocentric network.

to LulzSec. This donation, the day before the theft, is his last
known activity using these public-keys.

D. Flow and Temporal Analyses

In addition to visualizing egocentric networks with a fixed
radius, we can follow significant flows of value through the
network over time. If a vertex representing a user receives a
large volume of Bitcoins relative to their estimated balance,
and, shortly after, transfers a significant proportion of those
Bitcoins to another user, we deem this interesting. We built a

1 BTC
17:34:04 13/06/2011

25000 BTC
17:52:23 13/06/2011

0.31337 BTC
17:45:31 13/06/2011

0.120607 BTC
16:55:19 12/06/2011

0.11 BTC
04:04:14 22/05/2011

0.09 BTC
09:07:59 23/05/2011

60 transactions involving 441.83 
BTC over a 70-day period 

Thief

Victim

Time

B
itc

oi
ns

Fig. 12. An interesting sub-network induced by the thief, the victim and
three other vertices. The notation is the same as in Fig. 11.

special purpose tool that, starting with a chosen vertex or set
of vertices, traces significant flows of Bitcoins over time. In
practice we have found this tool to be quite revealing when
analyzing the user network.

Case Study – Part II: To demonstrate this tool we re-
consider the Bitcoin theft described earlier. We note that the
victim has developed their own tool to generate an exhaustive
list of public-keys that have received some portion of the stolen
Bitcoins since the theft22. However, this list grows very quickly
and, at the time of writing, contained more than 34 100 public-
keys. Figure 13 shows an annotated visualization produced
using our tool. We observe several interesting flows in the
aftermath of the theft. The initial theft of a small volume of
1 BTC is immediately followed by the theft of 25 000 BTC.
This is represented as a dotted black line between the relevant
vertices, magnified in the left inset.

In the left inset, we can see that the Bitcoins are shuffled
between a small number of accounts and then transferred
back to the initial account. After this shuffling step, we have
identified four significant outflows of Bitcoins that began at
19:49, 20:01, 20:13 and 20:55. Of particular interest are the
outflows that began at 20:55 (labeled as ‘1’ in both insets)
and 20:13 (labeled as ‘2’ in both insets). These outflows pass
through several subsequent accounts over a period of several
hours. Flow 1 splits at the vertex labeled A in the right inset

22http://folk.uio.no/vegardno/allinvain-addresses.txt
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Fig. 13. Visualisation of Bitcoin flow from the alleged theft. The left inset shows the initial shuffling of Bitcoins among accounts close to that of the alleged
thief, during which all transfers happen within a few hours of the incident. The right inset shows detail on the events of several subsequent days, where
Bitcoin flows split, and then later merge back into each other, validating that the flows found by the tool are probably still controlled by a single party.

at 04:05 the day after the theft. Some of its Bitcoins rejoin
Flow 2 at the vertex labeled B. This new combined flow is
labeled as ‘3’ in the right inset. The remaining Bitcoins from
Flow 1 pass through several additional vertices in the next two
days. This flow is labeled as ‘4’ in the right inset.

A surprising event occurs on 16/06/2011 at approximately
13:37. A small number of Bitcoins are transferred from Flow 3
to a heretofore unseen public-key pk1.23 Approximately seven
minutes later, a small number of Bitcoins are transferred from
Flow 3 to another heretofore unseen public-key pk2.24 Finally,
there are two simultaneous transfers from Flow 4 to two
more heretofore unseen public-keys: pk325 and pk4.26 We have
determined that these four public-keys, pk1, pk2, pk3 and pk4
– which receive Bitcoins from two separate flows that split
from each other two days previously – are all contracted to
the same user in our ancillary network. This user is represented
as C in Fig. 13.

There are several other examples of interesting flow. The
flow labeled as Y involves the movement of Bitcoins through
thirty unique public-keys in a very short period of time. At
each step, a small number of Bitcoins (typically 30 BTC
which had a market value of approximately US$500 at the
time of the transactions) are siphoned off. The public-keys that
receive the small number of Bitcoins are typically represented
by small blue vertices due to their low volume and degree.
On 20/06/2011 at 12:35, each of these public-keys makes
a transfer to a public-key operated by the the MyBitcoin

231FKFiCYJSFqxT3zkZntHjfU47SvAzauZXN
241FhYawPhWDvkZCJVBrDfQoo2qC3EuKtb94
251MJZZmmSrQZ9NzeQt3hYP76oFC5dWAf2nD
2612dJo17jcR78Uk1Ak5wfgyXtciU62MzcEc

service.27 Curiously, this public-key was previously involved
in another separate Bitcoin theft.28.
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Fig. 14. The Bitcoins are transferred between public-keys along the
highlighted paths very quickly.

We also observe that the Bitcoins in many of the above
flows are transferred between public-keys very quickly. Fig. 14
shows two flows in particular where the intermediate parties

271MAazCWMydsQB5ynYXqSGQDjNQMN3HFmEu
28http://forum.bitcoin.org/index.php?topic=20427.0



waited for very few confirmations before re-sending the Bit-
coins to other public-keys.

Naturally, much of this analysis is circumstantial. We cannot
say for certain whether or not these flows imply a shared
agency in both incidents. There is always the possibility of
drawing false inferences. However, it does illustrate the power
of our tool when tracing the flow of Bitcoins and generating
hypotheses. It also suggests that a centralized service may
have further details on the user(s) in control of the implicated
public-keys.

The same tool that we use here to examine outflows of
Bitcoins from users of interest can also be used to examine
inflows of Bitcoins to users and organizations accepting Bit-
coins as payment or as donations.

E. Other Forms of Analysis

There are many other forms analysis that can be applied in
order to de-anonymize the workings of the Bitcoin system:

• Order books for Bitcoin exchanges are typically made
available to support trading tools. As orders are often
placed in Bitcoin values converted from other currencies,
they often have a precise decimal value with eight sig-
nificant digits. It may be possible to find transactions
with corresponding amounts and thus map public-keys
and transactions to the exchanges.

• It is conceivable that over an extended time period,
several public-keys, if used at particular times, may
belong to the same user. We could construct and cluster a
co-occurrence network to help deduce further mappings
between public-keys and users.

• Finally, there are far more sophisticated forms of attack
where the attacker actively participates in the network,
for example, using marked Bitcoins or by operating a
laundry service.

VI. CONCLUSIONS

For the past half-century futurists have heralded the advent
of a cash-less society [24]. Many of their predictions have been
realized, e.g. Anderson et al.’s [24]’s ‘on-line real-time’ pay-
ment system and bank-maintained ‘central information files’.
However, cash is still a competitive and relatively anonymous
means of payment. Bitcoin is an electronic analog of cash
in the online world. It is decentralized: there is no central
authority responsible for the issuance of Bitcoins and there is
no need to involve a trusted third-party when making online
transfers. However, this flexibility comes at a price: the entire
history of Bitcoin transactions is publicly available. In this
paper we investigated the structure of two networks derived
from this dataset and their implications for user anonymity.

Using an appropriate network representation, it is possible
to map many users to public-keys. This is performed using
a passive analysis only. Active analyses, where an interested
party can potentially deploy marked Bitcoins and collaborating
users can discover even more information. We also believe that
large centralized services such as the exchanges and wallet

services are capable of identifying considerable portions of
user activity.

Technical members of the Bitcoin community have cau-
tioned that strong anonymity is not a prominent design goal
of the Bitcoin system. However, casual users need to be
aware of this, especially when sending Bitcoins to users and
organizations they would prefer not to be publicly associated
with.
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