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a b s t r a c t

We envision a scenario with robots moving on a terrain represented by a plane. A mobile
robot, called explorer is connected by a communication chain to a stationary base camp.
The chain is expected to pass communication messages between the explorer and the base
camp. It is composed of simple, mobile robots, called relays.

We are investigating strategies for organizing and maintaining the chain, so that
the number of relays employed is minimized and nevertheless the distance between
neighbored relays in the chain remains bounded. We are looking for local and distributed
strategies employed by restricted relays that have to base their decision (“Where should I
go?”) solely on the relative positions of its neighbors in the chain.

We present the Manhattan–Hopper and the Hopper strategy which improve the
performance of all known solutions to this problem significantly. They are the first such
strategies that are optimal in this setting, i.e., that allow the explorer to move with constant
speed, independent of the length of the chain, and keep this length minimum up to a
constant factor.

© 2008 Elsevier B.V. All rights reserved.

In this paper we will deal with the question on how to organize a chain of relays connecting two points on a plane.
One of the points, the base camp, is stationary while the other is mobile and is called explorer. We have no influence on the
movement of the explorer; the strategies we design control movement of the relays. We design strategies for the relays that
keep the chain short and maintain connectivity despite movement of the explorer. The main challenge lies in the restriction
that the relays have to decide locally, basing their decisions only on very limited information.

Up to now we have informally spoken of a chain of relays. Hereby we mean an ordered sequence of relays, denoted
by v1, . . . , vn. For technical reasons we include the explorer and the base camp into the chain, as respectively its first
and last element; v0 describes the explorer and vn+1 the base camp. Elements of the chain will be referred to as stations,
meaning either a relay, the explorer or the base camp. The main restriction on the chain is that we require the distance
between stations neighbored in the chain not to exceed the transmission distance of 1. Thanks to this, the chain can forward
communication messages between the base camp and the explorer.

We want to design strategies for the relays which guide their movement on the plane. Each of the relays is assumed to
execute its own copy of this strategy and is able to sense the environment. We will go deeper into detail on the computational
and sensing abilities of relays when describing the relay model later.

The greatest challenge for this problem is that we are looking for strategies which operate locally and with very simple
logic. Therefore, we have to design a solution in which each relay computes its position on its own, where communication is
not used at all, and relays possess no memory. We are interested to see whether one can design efficient strategies solving
this problem within this simple model.
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Fig. 1. A long winding chain.

Time model

We divide time into discrete time steps. The time steps are synchronized among all stations, i.e. their duration and
starting/ending times are the same for all stations.

We require the execution of a strategy in a time step to fit into the LCM-model (as in [7]). In this model, the execution of
each step is divided into three operations. These operations are: Look, Compute, Move. In the first operation of the step the
relay gathers new information about its environment by scanning it with its sensors. In the second operation, the sensoric
input is analyzed and a decision is made about the behavior of the robot within the current step. During the Move operation,
the robot moves to a position precomputed in the Compute operation.

Examining strategies in the LCM-model implicitly assumes that one regards a LCM-step as an atomic time unit and
determines the performance of strategies based on the number of such steps necessary to reach a certain condition.
This implies that a Look-operation accounts for a comparable amount of time as a Move-operation. In order to keep this
assumption realistic, we will be restricting the maximum distance a relay can move during one time step. On the other
hand, in contrast to our intuition, the Move operation is not necessarily the one which takes the longest time. Very often,
gathering the sensoric input is even more time-consuming, if for example laser scans of the surrounding must be taken. An
example of such a scenario can be found in [12].

Relay model

The relays are required to be able to execute sequential runs of our strategies. A run encompasses the execution of the
strategy by all relays in the chain, such that vi executes the strategy only after vi−1 has finished its execution of the given
run. Therefore, relays have to be able to determine that their predecessor has finished executing the strategy to start their
own action.

We assume that the robots are oblivious and base their decisions in a time step only on the current sensory input. The
sensor input is very restricted: vi only sees vi−1, vi+1, i.e. vi knows the distances to vi−1 and vi+1 and the angle at vi formed by
the line segments 〈vi−1, vi〉 and 〈vi, vi+1〉. We assume that measurements are precise.

Performance measures

Analysis of the strategies shown in this paper will be performed in two settings: either static or dynamic. In the static
case we will be given a chain of relays at the beginning. This chain can be very winding (as shown in Fig. 1) and therefore
significantly longer than the distance between the explorer and the base camp. We even assume that the chain may be
self-intersecting and spiral around the base camp, as far as a relay is still able to distinguish its chain neighbors from relays
comprising other parts of the chain.

While the explorer won’t be moving, we will investigate the time needed for relays to become arranged close to the line
segment between the base camp and the explorer, approximately minimizing the length of the chain. The performance of
a strategy in this scenario is given by the number of time steps it requires for all relays to get appropriately close to their
optimal positions on the line segment, starting with a worst-case chain arrangement.

In the dynamic scenario, we will start with some well-defined chain configurations and let the explorer move. We will
then examine the performance of the strategy in dealing with the explorer’s movements. Although the dynamic scenario
is of more importance for practical reasons, results from the static scenario can be used for comparing the performance
between different strategies and in order to understand weaknesses of the strategies.

Within the dynamic scenario we are looking at the guaranteed speed the explorer is able to move, so that the strategy is
still able to catch up with its movement without disconnecting the chain, no matter how the actual movement pattern of
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the explorer is. Then, the performance of a strategy is measured as a ratio of this guaranteed speed to the speed the relays
are allowed to move.

Related work

The problem of maintaining a chain of relays between a base camp and an explorer has been already discussed in
literature. In [16,17] it has been investigated from the engineering point of view, providing results on a an experimental
scenario with real robots. In [10] we show the most intuitive strategy for controlling the movement of relays and investigate
its performance on a plane. This strategy, called Go-To-The-Middle, moves each each relay directly into the middle of the line
segment between its chain neighbors in each time step. While the strategy is very simple, local and requires no special
abilities from the relays, it sacrifices performance. In the static case mentioned earlier, the strategy requires Ω(n2) time
steps in order to bring the chain length near to the distance between of the explorer and base camp, assuming that n is the
number of relays in the chain at the beginning. In the dynamic case, relays are only able to maintain the chain connected if
the explorer is moving with a speed inversely proportional to its distance to the base camp. In other words, the explorer has
to decrease its speed if moving further away from the base camp. Another disadvantage of the Go-To-The-Middle strategy is
that it requires the explorer to know the distance to the base camp in order to control the number of relays in the chain.

In [11] we show a strategy which takes advantage of a more powerful relay model. Here we equip the relays with the
ability to align their local coordinate systems with respect to a global coordinate systems using a GPS-like positioning system.
Allowing the relays to store coordinates of the base camp in their coordinate system, the Chase-Explorer strategy is able to
maintain a chain of nearly optimal length in the dynamic case without restricting the speed of the explorer. The requirement
on the relays to posses a GPS positioning scheme can be relaxed by giving the relays the ability to align their local coordinate
systems to the global one using a compass and communication among the relays. We furthermore show how the Chase-
Explorer strategy can be applied on a terrain with obstacles.

A wide variety of problems similar to the maintenance of a communication chain have been investigated in the area of
swarm robotics. We will shortly survey results which deal with ordering robots to form some geometric figures on the plane.

One of the basic problems investigated in this setting is the gathering problem [15]. A dispersed group of robots,
represented by points on a plane, is required to gather at a point in the plane. This point can be chosen freely by the robots, it
is only important that all robots finally gather at one point. It turns out that in an asynchronous model, in which the duration
and the starting/ending of time steps may vary between robots, it is impossible for deterministic robots to gather at one point
in a finite time [5]. Allowing more than 5 robots to detect whether multiple robots occupy one point allows gathering at one
point in finite time [3]. The problem may be also considered in a setting with robot failures [2]. The problem turns out to be
slightly easier in the semi-synchronous model, in which time steps are synchronized among robots but robots may be put
to sleep during any time step. Gathering is then possible with 3 robots in finite time [19]. Recently the problem has been
evaluated in an asynchronous setting with robots equipped with imprecise compasses [14].

The convergence problem is an easier variant of the gathering problem, in that we only require all robots to converge in
infinite time to one point. The gravitational algorithm which allows robots to move towards their center of gravity converges
in synchronous and semi-synchronous models [7] and also in an asynchronous model [8]. The problem can also be solved
in a semi-synchronous model when the sensoric input and the odometry of robots is imprecise [6]. A different model with
robots having only limited visibility of the plane has been shown to be solvable in [1].

The problem of pattern formation is slightly more involved, as robots are required to form a pattern on a plane, rather
than only moving to one point. Asynchronous robots can form in advance any known pattern if they know the orientation
of two axes, while it can be only solved for an odd number of robots when only the orientation of one axis is known [13].
Certain patterns can be formed even without knowing a common orientation, depending on the starting positions of the
robots [18]. In [9] and [4] algorithms for forming a circle by robots in the semi-synchronous model are evaluated.

Outline

For a better understanding of the concepts underlying the Hopper strategy, we will first discuss the Manhattan–Hopper
strategy, which is very similar to Hopper but works with a slightly simplified model. In that model we assume all stations to
move on a grid and not on a continuous plane.

We start our analysis of the Manhattan–Hopper strategy in Section 2 by analyzing its performance in a static scenario. We
will show, that the Manhattan–Hopper strategy reduces the chain to its optimal length in 4n steps, assuming that we start
with a chain with n relays.

Afterwards, in Section 3, we establish the performance of the Manhattan–Hopper strategy in a dynamic scenario, with
the explorer moving. We will show that the Manhattan–Hopper strategy allows the explorer to move with a speed of 1/2
per round, in comparison to relays which have to move with a speed of 1

2 (1+
√

2) per time step, where a round consists of
6 time steps. With this restriction on movement speed of the explorer, and assuming that the explorer moves on a discrete
grid only, we maintain a chain with at most 3dt + 2 relays in time step t. Here dt denotes the distance between the explorer
and the base camp in time step t.

We eventually present the Hopper strategy in Section 4 and perform an analysis of its performance in the static scenario
in Section 5. Although the Hopper strategy works in a continuous plane, it requires only 8n+1 time steps to reduce the chain
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length to use at most 2
√

2d + 1 relays, where d is the distance between the explorer and the base camp. This implies that
the Hopper strategy, while using the same restrictions of the relays, is by Ω(n) better than the Go-To-The-Middle strategy
described in [10].

The analysis of the Hopper strategy is extended in Section 6 to a dynamic case. We show that the explorer is still able
to move with a speed only by a constant factor slower than the speed of the relays. In addition, the length of the chain is
guaranteed to be linear in the distance between the explorer and the base camp during the whole strategy.

The following table summarizes the performance of the strategies described in this paper and the strategies Go-To-The-
Middle and Chase-Explorer. Recall that in the static scenario, we define performance as the time necessary to bring the chain
near to an optimal length, starting with a chain of n relays. In the dynamic scenario we are comparing the guaranteed speed
of the explorer, compared to the the maximum allowed speed for the relays. In this case n is a value which corresponds to
the number of relays in the chain at a given point of time, which is always proportional to the distance of the explorer to the
base camp with the strategies investigated.

Strategy Static scenario Dynamic scenario
Go-To-The-Middle O(n2 log n) O(1/n)
Chase-Explorer Rn O(1)

Manhattan–Hopper 4n 1+
√

2
Hopper 25n+ 1 O(1)

Note that in the static scenario, a relay has potentially to move for a distance Ω(n) in order to get to its destination on
the line segment between the explorer and the base camp. Therefore both the Manhattan–Hopper and Hopper strategies
introduced in this paper have a performance which is optimal up to constant factors in the static scenario. The same applies
to the dynamic scenario, where it is obvious that there exists no strategy with the ratio of explorer’s speed to the relays’
speed greater than 1.

Notation

Recall that we denote stations in the chain by v0, . . . , vk+1, where v0 denotes the explorer and vk+1 the base camp. The
distance between the explorer v0 and the base camp vk+1 in a time step t is denoted by dt . In static analysis, where this
distance is constant, we denote it by d.

We will denote a line segment defined by two points p, q on the plane by 〈p, q〉. The notation |x| denotes the absolute
value of x, whereas |p− q|2 is the Euclidean distance between points p and q.

Spatial vectors as used in this paper have a magnitude and a direction and are represented by a pair of coordinates [x, y].
A vector has no fixed initial and terminating point, although it can be used to define the relation between two points on the
plane. Two vectors Eu = [xu, yu], Ea = [xa, ya] can be added so that Eu+ Ea = [xu + xa, yu + ya].

1. The Manhattan–Hopper strategy

For the Manhattan–Hopper strategy to operate properly, all stations have to assume positions on grid points. The mesh
size of the grid is fixed to 1

2 . We assume that in the first time step, the positions of all stations are on grid points and that the
explorer may only move between grid points. Our strategy will only move relays between grid points, so that all stations
are on grid points in all time steps.

Strategy description

The Manhattan–Hopper strategy is executed in runs. In each run, a relay vi executes its action only after relay vi−1 has
finished its own. We will see later that such runs can be pipelined, so that a new run can be started every three steps. For
the sake of analysis, it is sufficient and more comfortable to assume that a new run is executed only after the previous one
has finished. We will adhere to that assumption for the rest of the chapter.

We say that the chain is in proper condition if each two neighboring stations in the chain are positioned in neighboring
points of the grid. For this discrete scenario it is natural to measure the length of the chain in terms of its manhattan length.
We say that the chain has optimal length if its length is equal to the manhattan distance between the explorer and base
camp.

Let us first describe the Manhattan–Hopper strategy for setting the immobile explorer. We will extend it to accommodate
the explorer’s movement in Section 3. As already mentioned, the Manhattan–Hopper strategy is executed in runs. For the
sake of our description, let us fix a specific run r. Let pi denote the position of vi at the beginning of this run, while p′i is its
position after it has executed the Manhattan–Hopper strategy.

In a run, the relay vi moves only after vi−1 has finished its movement and prior to the movement of vi+1. Therefore, the
positions of vi’s neighbors are p′i−1 and pi+1 when vi decides on its action. Typically, the relay vi executes the hop-operation,
defined as follows. Let Ea be a vector such that p′i−1 + Ea = pi as shown in Fig. 2. Then the hop-operation executed by relay vi
moves it to position p′i , such that p′i = pi+1−Ea. This implies that, if vi−1, vi, vi+1 lie in-line, then station vi does not move. This
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Fig. 2. Hop-operation in Manhattan–Hopper strategy.

Fig. 3. Chain before executing the Manhattan–Hopper strategy.

Fig. 4. Chain after the execution of a run of the Manhattan–Hopper strategy. Relays v6 and v7 are removed.

situation is depicted in Fig. 2(b). The provided definition of the hop-operation is equivalent to mirroring vi’s position w.r.t.
the line through p′i−1 and pi+1.

A special case occurs when relay vi moves to a point on the grid occupied by vi+2. Then a remove-operation is executed,
i.e., vi+1 and vi+2 are removed from the chain and the run stops. After this removal, we index the chain once again, so that
the relays are described by v1, . . . , vnk′ . This is shown on Figs. 3 and 4 where relays v6 and v7 are removed as p′5 = p7.

Thus, a run of the Manhattan–Hopper strategy either removes two relays from the chain, or is executed by all relays.
Removing relays in this way is the only way how the Manhattan–Hopper strategy shortens the length of the chain. In
particular, if vi moves to a point already occupied by a relay vj such that j 6= i+ 2, no relays are removed and the execution
of the run proceeds as earlier. This may sound counterproductive as the chain part forming a loop between vi and vj might
be removed. In our analysis, we assume that such loops are not removed, because this would require information exchange
among the relays, those in the loop have to get to know that they are obsolete. It is easy to see that the same results as we
show also hold in the stronger model, where long loops may be removed.

A reasonable performance of the Manhattan–Hopper strategy can only be attained if the runs are not executed one
after another but pipelined in a fast manner. This is possible without problems due to the sequential nature of runs of
the Manhattan–Hopper strategy. Run r starting execution in time step t may be followed by run r + 1 starting execution in
time step t + 3. Thus, the execution of m runs starting with a chain with n relays takes at most n+ 3m time steps.
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2. Performance of Manhattan–Hopper in the static scenario

We first investigate the performance of the Manhattan–Hopper strategy in the static case and eventually show the
following theorem.

Theorem 1. Starting with a chain in a proper condition with n relays, the Manhattan–Hopper strategy ensures that

(a) the chain remains in proper condition,
(b) the relays move at most distance 1

2

√
2 per round, i.e., every third step, and

(c) after n runs, i.e., 4n steps, the chain has optimal length.

Property (b) follows directly from the definition of the strategy. Also property (a) is easy to see: If a run does not execute
a removal, then the manhattan distances between neighbors do not change. Whenever stations vi+1 and vi+2 are removed
from the chain, relay vi is on the position of vi+2 and therefore has manhattan distance 1

2 to vi+3.
The remaining part of this section will be devoted to showing property (c), by showing that n runs suffice to reduce the

chain to its optimal length. As we can start a new run every 3 steps, this implies (c).
Let d denote the (manhattan) distance between the explorer and the base camp. Fix some run and let pi and p′i denote the

positions of the station vi before and after this run, respectively.
We can describe the positions of the relays with respect to the explorer by using the spatial unit vectors Ee0 =

[
1
2 , 0

]
, Ee1 =[

−
1
2 , 0

]
, Ee2 =

[
0, 1

2

]
, Ee3 =

[
0,− 1

2

]
. Ee0 and Ee1 are both horizontal vectors, with opposite directions. Analogously, Ee2 and Ee3

are vertical. We will call such pairs of vectors oppositional. For our run, we can define a sequence of spatial unit vectors
C = (Eu0, Eu1, . . . , Euk) such that pi = p0 + Eu0 + · · · + Eui−1. This sequence will be called configuration and it describes the
positions of all relays in the chain in relation to the explorer by using unit vectors.

We want to describe the behavior of Manhattan–Hopper in terms of operations on configurations. The following two
lemmas describe how one run of the Manhattan–Hopper strategy can modify the configuration.

Lemma 2. Let C = (Eu0, Eu1, . . . , Euk) be the configuration at the beginning of the run. Assume the run finishes without removing
any relays from the chain. Then the configuration at the beginning of the next run is C′ = (Eu1, . . . , Euk, Eu0). Furthermore, for each
j = 0, . . . , k, the vectors Eu0 and Euj are not oppositional.

Proof. We will show that the invariant p′i = pi+1 − Eu0 holds for all i = 0, . . . , k by induction. The induction basis is clearly
given, as we have by definition of vector Eu0 that p′0 + Eu0 = p0 + Eu0 = p1.

Assume now that the invariant holds for all i ≤ j. Then we have p′j = pj+1 − Eu0. Consider the hop-operation performed by
relay vj+1. As the position p′j+1 depends on the vector between p′j and pj+1 and the position of vj+2 we have from the definition
of the hop-operation p′j+1 = pj+2 − Eu0. This proves the invariant.

The positions of all relays vi for i = 1, . . . , k at the beginning of the run are, by the definition of the configurations, given
by

pi = p0 + Eu0 + · · · + Eui−1.

After the run we have by our invariant for all relays

p′i = pi+1 − Eu0 = Eu1 + · · · + Eui.

Obviously the base camp does not move and therefore we have p′k+1 = pk+1. Thus,

p′k+1 = pk + Eu0 = Eu1 + · · · + Euk + Eu0.

The final configuration is thus given by Cr+1 = (Eu1, . . . , Euk, Eu0).
We will proceed with proving the second statement of the lemma. Assume for the sake of contradiction that there exists

a vector Euj which is oppositional to Eu0, i.e. Euj = −Eu0. By our earlier observation we have p′j−1 = pj − Eu0 after the run strategy
has been executed by vj. Therefore p′j−1 = pj − Eu0 = pj + Euj = pj+1, as by its definition vector Euj connects vj to vj+1. In that
case, the run would remove relays vj and vj+1 from the chain, contradicting the assumptions of our lemma. �

Lemma 3. Let C = (Eu0, Eu1, . . . , Euk) be the configuration at the beginning of the run. The run finishes with removing vi+1 and vi+2
from the chain if and only if the vector Eui+1 is the first vector in C oppositional to Eu0. The configuration at the beginning of the next
run is then given by C′ = (Eu1, . . . , Eui, Eui+2, . . . , Euk).

Proof. We will first show that, if vi+1 and vi+2 are removed from the chain, then Eui+1 is oppositional to Eu0. Since all relays
prior to vi execute the hop-operation without removing any relays from the chain, the execution of the run for these relays
is the same as the execution described in Lemma 2. Therefore, for all j ≤ i it holds that

p′j = Eu1 + · · · + Euj.

As vi+1 and vi+2 have been removed, it must hold p′i = pi+2. Therefore

p′i = Eu1 + · · · + Eui = Eu0 + Eu1 + · · · + Eui+1 = pi+2,

so that Eu0 = −Eui+1.
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For the proof in the other direction assume that Eui+1 is the first vector in C oppositional to Eu0. By the previous argument,
no relay pair vj+1, vj+2 with j < i can be removed, as then Euj+1 would be oppositional to Eu0. Therefore all relays vj for j ≤ i
have executed the hop-operation, so that

p′i = Eu1 + · · · + Eui.

As Eu0 = −Eui+1 it holds

p′i = Eu1 + · · · + Eui = Eu0 + Eu1 + · · · + Eui+1 = pi+2,

and vi+1 and vi+2 are removed by the Manhattan–Hopper strategy.
Assume now that vi+1 and vi+2 are removed from the chain in the current run. From our previous reasoning we have for

any j ≤ i

p′j = Eu1 + · · · + Euj

and for all j ≥ i+ 3

p′j = Eu1 + · · · + Eui + Eui+2 + · · · + Euj−1.

The configuration after the completed run is therefore given by

Cr+1 = (Eu1, . . . , Eui, Eui+2, . . . , Euk). �

Let C1 = (Ea0, . . . , Eak) be the configuration describing the chain at the beginning of the first run. Each of the vectors
Ea0, . . . , Eak is of the type of one of the unit vectors, nevertheless we can keep track of each of them by assigning them
unique identification numbers. The two former lemmas show that each run of Manhattan–Hopper either removes vectors
from this configuration or the configuration is shifted cyclically. Particularly, no vector is added to the configuration by the
Manhattan–Hopper strategy. Therefore, we can describe each configuration occurring in the future as some arrangement of
a subset of the vectors Ea0, . . . , Eak.

Thus, we can follow the trace of each Eaj, whose initial position in the start configuration is j. Assume that, in run r, it has
position l. Then it is either removed (by Lemma 3), or its position is reduced by 1 (in case of the shift in Lemma 2 or in case
of Lemma 3, if the removed relay is vi with i > l) or its position is reduced by 2 (in case of Lemma 2, if the removed relay is
vi with i < l).

Now assume that, after n runs, there still exists an oppositional pair of vectors Eup, Euq, with p < q. Then, by the above, at
most p runs earlier, Eup was at position 0. As also Euq is in this configuration, Eup will be removed in the next run by Lemma 3,
contradicting the assumption that Eup is part of the configuration after n runs.

Thus, there are no oppositional vectors in the configuration after n runs. This implies that the length of the path after
n runs is minimal, namely the manhattan distance between the explorer and the base camp. This proves part (c) of the
theorem.

3. Performance of Manhattan–Hopper in the dynamic scenario

In order to adapt Manhattan–Hopper to work in a dynamic scenario, we have to deal with the movement of the
explorer. For that purpose, we allow the explorer to move only to a grid point adjacent to its current position at once. The
Dynamic-Manhattan–Hopper strategy groups the movement of the explorer and the execution of two runs into one round.
The first run is a follow-run in which relays execute the follow-operation. This allows them to catch up with the movement
of the explorer. After a run of the Manhattan–Hopper strategy, a so called hopper-run is executed. At this point of time we
assume that the two runs are executed one after another and the round only finishes when the runs are ready. We will
elaborate more on the pipelining of the runs later.

The follow-operation is applied by relay vi whenever vi−1 increases its distance to vi to 1. Then relay vi moves to the old
position of the station vi−1, i.e. p′i = pi−1. Thereby, the chain shifts itself in the direction of the explorer by one grid point, so
that finally the last relay is in manhattan distance 1 to the base camp. At this point of time, the base camp inserts a new relay
at the old position pk of the relay vk. During execution of the follow-operation, the maximum distance between neighbored
stations is 1 and therefore the chain remains connected. If the chain was in a proper condition before the follow-run, it is so
afterwards, too.

While the follow-run ensures that the manhattan distance between two relays is exactly 1
2 , the hopper-run is meant to

decrease the length of the chain if necessary. We first show that these two runs between every movement of the explorer
are sufficient to maintain an optimal chain length.

Lemma 4. Let the chain have optimal length prior to the explorer’s movement. Then after the explorer’s movement the follow-run
and the hopper-run bring the chain to an optimal length.
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Fig. 5. One round of the execution of Dynamic-Manhattan–Hopper.

Proof. Let C = (Eu0, . . . , Euk) be the configuration of the chain prior to the explorer’s movement. Let the explorer move
by Eu, i.e. p′0 = p0 + Eu. Then, after the explorer’s movement and the first run of the Manhattan–Hopper strategy we have
C′ = (Eu, Eu0, . . . , Euk). The manhattan length of the chain defined by C′ increases with respect to C by 1

2 .
Recall that we are assuming that the length of the chain defined by C is optimal before the explorer’s movement. When

moving the explorer by Eu increases its manhattan distance to the base camp, then the length of the chain after applying the
follow-run is already optimal and the hopper-run is actually unnecessary.

In case the explorer’s movement decreases its manhattan distance to the base camp, this decrease is equal to 1
2 . Then,

the follow-run increases the chain’s length additionally by 1
2 . We have to show that the hopper-run reduces the length of

the chain by the same amount. Observe that, since the length of the chain described by C′ is not optimal, there must exist
a pair of oppositional vectors in C′. On the other hand, there was no such pair in C. This implies, that there exists a vector
Euj ∈ C which is oppositional to Eu. By Lemma 3 the existence of a vector oppositional to the first vector of the configuration
leads to a hopper-run which reduces the manhattan length of the chain by 1. �

Pipelined execution

The runs of the Dynamic-Manhattan–Hopper strategy are executed in the discrete, synchronized time model. In order
to pipeline them, we have to make sure that consecutive runs do not interfere. This is guaranteed if the follow-run starts
directly after movement of the explorer, but two idle steps are inserted before the hopper-run and between the hopper run
and the next movement, see Fig. 5. Thus the explorer may move every 6 time steps. Such a sequence of 6 time steps starting
with a movement of the explorer is called a round.

Let dr denote the distance between the explorer and the base camp at the beginning of round r. We are now ready to
show the following theorem.

Theorem 5. Assume we start with an optimal chain. Then, the chain maintained by the Dynamic-Manhattan–Hopper strategy
has the following properties before each round r.

(a) The chain remains connected,
(b) the explorer may move a distance of 1

2 every round, i.e. every 6th time step,
(c) relays move at most distance 1

2 (1+
√

2) per round, and
(d) the number of relays used in the chain is at most 3dr + 2.

Proof. Property (a) follows easily from the fact that the follow-run decreases the distances between neighbored relays to
1
2 . During a round, a relay executes the follow-run, moving for at most 1

2 and a hopper-run, moving for at most 1
√

2
. Property

(c) follows. The rest of the proof is devoted to showing property (d).
In case the runs are pipelined, the decrease of chain length corresponding to movement of the explorer is delayed until

the run started after the movement is finished. In the worst case this can take as many time steps as relays have been in the
chain at the moment the explorer moved. This can mean that the distance of the explorer to the base camp decreases during
some timespan, while the chain is still executing various runs which will eventually decrease its length. Therefore, we have
to investigate how large the difference between chain length and the explorer’s distance may become.

Assume the chain has optimal length at the beginning of time step 1. Runs of the Manhattan–Hopper strategy are pipelined
with an appropriate time separation and thus there is no difference for run r+ 1 whether it is started 3 time steps after the
start of run r or after a full completion of run r. Therefore and by Lemma 4 a hopper-run started in round r works on a chain
of length at most dr , having 2dr relays. Thus, the hopper-run lasts for at most 2dr+2 timesteps. Let us fix round r. The number
of relays in the chain at the beginning of round r is bounded from above by 2dr plus the number of unfinished hopper-runs
times 2. Therefore, we will look at how many hopper-runs are still unfinished at the beginning of round r. Take a round
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Fig. 6. Angle between vectors Eui and Euj .

Fig. 7. Vector Eu is non-conflicting, while Ea and Ee have a conflict.

Fig. 8. Relay vi executing the hop-operation in time step t.

z < r− dr+1
2 . The hopper-run started in round z will last for at most 2dz + 2 time steps and thereby will finish not later than

at round z+ 2dz+2
6 . As during the rounds between z and r the explorer might have moved for a distance of at most (r− z)/2,

we have dz ≤ dr + (r − z)/2. Then,

z+
dz + 1

3
≤ z−

z

6
+

r

6
+

dr + 1
3

< r −
5

12
(dr + 1)+

1
3

(dr + 1) ≤ r.

Therefore a hopper-run started in round z is finished before round r. There are at most dr+1
2 runs still unfinished in round

r and thereby the number of relays in the chain is at most 2dr + (dr + 1). This proves last property (d). �

4. Hopper strategy

The Hopper strategy is an extension of the Manhattan–Hopper strategy, designed in such a way that it does not require
stations to be positioned on a discrete grid. We still require relays to have precise local coordinate systems, nevertheless
we do not use any fixed grid structure in order to organize the relays. Furthermore, we allow the explorer to move freely,
without being restricted to grid points.

As for the Manhattan–Hopper strategy, we will describe the chain at the beginning of a run by the configuration C =
(Eu0, . . . , Euk). Note that, since stations are not necessarily aligned to grid points, the vectors Eui are no longer restricted to unit
vectors as in the Manhattan–Hopper strategy. For two vectors Eui and Euj we define the angle 6 (Eui, Euj) as the smaller of the
two angles created by anchoring Euj at the terminal point of Eui, as shown on Fig. 6. Note that the 6 function is symmetric, i.e.
6 (Eui, Euj) = 6 (Euj, Eui) and thereby 6 (Eui, Euj) ≤ π.

We will say that a vector Eu has a conflict with a vector Ea if 6 (Eu, Ea) ≤ π/2. A vector which has an angle larger than π/2 to
all vectors from a configuration is called non-conflicting. The concept is depicted in Fig. 7, where vector Eu is non-conflicting
and vectors Ea and Ee are clearly conflicting as the angle 6 (Ea, Ee) ≤ π/2.

The Hopper strategy is executed, exactly as Manhattan–Hopper, in sequential runs. Once again, let us fix a run. Then pi

and p′i will denote the positions of the station vi before and after this run, respectively.
The behavior of relay vi in the run depends on whether the distance between p′i−1 and pi+1 is larger than 1 or not. If the

distance is smaller or equal to 1 then obviously vi is no longer necessary in the chain. In this case the relay removes itself,
hereby executing the remove-operation. Executing the remove-operation finishes the run of the Hopper strategy.

In case the distance between p′i−1 and pi+1 is larger than 1, the action of vi depends on the angle between the line segments
〈p′i−1, pi〉 and 〈pi, pi+1〉. The hop-operation is invoked if the angle is larger than π/2, otherwise the shorten-operation is used.
Hop-operation. The hop-operation is exactly the same as used previously in Manhattan–Hopper. Let Ea be a spatial vector
such that pi−1 + Ea = pi. Then the hop-operation executed by relay vi moves it to position p′i = pi+ − Ea. This is depicted in
Fig. 8. After the hop-operation has been executed, the sequential run proceeds at the next relay.
Shorten-operation. In the shorten-operation the relay vi moves to the middle of the line segment between p′i−1 and pi+1,
just as it did in the Go-To-The-Middle strategy. Executing the shorten-operation finishes the run of the Hopper strategy.

Again, we can pipeline runs, so that a new run starts in every third step.
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5. Performance of Hopper in the static scenario

We again denote by n the number of relays at the beginning of the first run and by d the distance between the explorer
and the base camp.

Analysis of the performance of the Hopper strategy will proceed in a way similar to analysis of the Manhattan–Hopper
strategy. Unfortunately, the Hopper strategy not only removes or moves vectors in the configuration but also adds new
vectors. In the course of the analysis we will show how these new vectors are formed. Eventually we will show that, after
a linear number of steps, all pairs of vectors in the configuration form an angle larger than π/2. Our last lemma will show
that a chain described by such a configuration is short. This yields the following theorem.

Theorem 6. Starting with a chain with n relays, the Hopper strategy ensures that

(a) the chain remains connected,
(b) relays move at most distance

√
2 per run,

(c) after 8n+ 1 runs, i.e., 25n+ 1 steps, the chain uses at most 2
√

2d+ 1 relays.

The parts (a) and (b) follow immediately from the strategy definition. The rest of this chapter is devoted to proving the
bound on the number of runs stated in part (c).
Changes in configurations. We start with showing how a run can influence configurations.

Lemma 7. Let C = (Eu0, Eu1, . . . , Euk) be the configuration at the beginning of a run. Assume the run finishes without executing
a remove-operation or a shorten-operation. Then the configuration after the run has completed is C′ = (Eu1, . . . , Euk, Eu0).
Furthermore, for each i = 0, . . . , k, 6 (Eu0, Eui) > π/2 holds.

Proof. In the case of a run finishing without removing any relays from the chain and without executing a shorten-operation,
all relays in the chain have been executing the hop-operation only. The hop-operation is executed by relay vi only if the angle
between 〈p′i−1, pi〉 and 〈pi, pi+1〉 is larger thanπ/2. As p′i−1 = pi−Eu0 when all relays prior to i have executed the hop-operation,
the angle considered is equal to 6 (Eu0, Eui). This implies 6 (Eu0, Eui) > π/2 for all i = 0, . . . , k. �

Lemma 8. Let C = (Eu0, Eu1, . . . , Euk) be the configuration at the beginning of the run. Assume the run finishes with vi executing
a remove-operation or a shorten-operation. Let C′ = (Ea0, Ea1, . . . , Eam) be the configuration of the chain at the beginning of the
next run. Then each vector Eai is a positive linear combination of the vectors Eu0, . . . , Euk. More precisely, C′ = (Eu1, . . . , Eui−1,

1
2 (Eu0+

Eui),
1
2 (Eu0 + Eui), Eui+1, . . . , Euk) in case of a shorten-operation, and C′ = (Eu1, . . . , Eui−1, Eu0 + Eui, Eui+1, . . . , Euk) in case of a remove

operation.

Proof. Assume that relay vi executes a remove- or a shorten-operation. Then all relays with indices smaller than i execute
the usual hop-operation in the run. We can adapt the invariant introduced for the analysis of the Manhattan–Hopper strategy
and state that p′j = pj+1 − Eu0 holds for all j < i.

Let us first assume that the run has ended with a shorten-operation. The configuration of the chain prior to executing
a shorten-operation by vi is (Eu1, . . . , Eui−1, Eu0, Eui, . . . , Euk). The shorten-operation moves relay vi into the middle of the line
segment between vi−1 and vi+1. As vi−1 and vi+1 are connected through vi, it holds p′i−1 + Eu0 + Eui = pi+1. Therefore the
shorten-operation replaces the vectors Eu0, Eui in the configuration by two vectors 1

2 (Eu0 + Eui) and 1
2 (Eu0 + Eui). Thus

C′ =
(
Eu1, . . . , Eui−1,

1
2
(Eu0 + Eui),

1
2
(Eu0 + Eui), Eui+1, . . . , Euk

)
.

In the case the run ends with a relay being removed, the same argument yields

C′ = (Eu1, . . . , Eui−1, Eu0 + Eui, Eui+1, . . . , Euk). �

Shorten-operations. If the run ends with removing a relay we are certainly improving the chain by reducing its length.
We want to show that executing a shorten-operation also reduces the chain length by a significant amount, if the involved
spatial vectors have a minimum length.

Let the length of a chain C be defined by

|C| =
∑

i=0,...,k

|Eui|.

Lemma 9. Let C = (Eu0, Eu1, . . . , Euk) be the configuration at the beginning of the run. Assume the run finishes with vi executing a
shorten-operation, yielding configuration C′. If |Eu0| ≥

1
2 and |Eui| ≥

1
2 then |C′| ≤ |C| − 1

3 .

Proof. The configuration of the chain prior to executing a shorten-operation by vi is given by (Eu1, . . . , Eui−1, Eu0, Eui, . . . , Euk).
For the sake of concise notation denote

a :=
∣∣〈pi, p

′

i−1〉
∣∣ = |Eu0|, b := |〈pi, pi+1〉| = |Eui|, c :=

∣∣〈p′i−1, pi+1〉
∣∣ = |Eu0 + Eui|.

As vi moves to the middle of the line segment 〈p′i−1, pi+1〉 the length of the chain decreases with the movement of vi by
a+ b− c. Denote by γ the angle between 〈pi, p

′

i−1〉 and 〈pi, pi+1〉.
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Note that by the Law of Cosines c =
√
a2 + b2 − 2ab cos γ. Therefore, for fixed a, b, the value of c is maximized for γ = π/2.

So, a+ b− c ≥ a+ b−
√
a2 + b2. Using border conditions 1

2 ≤ a, b ≤ 1 and 1 ≤ c ≤
√
a2 + b2 the function a+ b−

√
a2 + b2

is minimized for a = 1
2 , b = 1

2

√
3, with a+ b−

√
a2 + b2 ≥ 1

2

(√
3− 1

)
≥

1
3 . �

Unfortunately we cannot be sure that all vectors in the configuration have a length of at least 1
2 . Therefore there are some

executions of the shorten-operation which shorten the path by an amount less than 1
3 .

Lemma 10. There are at most 2n+1 executions of shorten-operations such that one of the participating vectors has length smaller
than 1

2 .

Proof. There are at most n + 1 vectors with length smaller than 1
2 at the beginning. The only possibility that a vector of

length smaller than 1
2 is created during the hopper-strategy is by a remove-operation. As such an operation can be executed

at most n times, the lemma follows. �

Non-conflicting suffix. We now introduce a technical lemma, which is helpful in establishing the fact that a vector which
becomes non-conflicting remains so for the whole future.

Lemma 11. Let Eu be a spatial vector and V = Eu1, . . . , Euk a set of spatial vectors. If 6 (Eu, Eui) > π/2 for all i = 1, . . . , k, then, for
any positive linear combination Es of vectors from V , 6 (Eu,Es) > π/2 holds.

Proof. Without loss of generality let Eu = (1, 0). Then for any vector Eui, the condition 6 (Eu, Eui) > π/2 implies Eui = (ai, bi) with
ai > 0. Thus, each positive linear combination Eu′ of the vectors from V is of the form Eu′ = (a′, b′) with a′ > 0. This implies
that 6 (Eu, Eu′) > π/2. �

A non-conflicting suffix of a configuration C is a suffix of C consisting of non-conflicting vectors. Let S be the longest non-
conflicting suffix of C. Then by Lemma 7, a run without remove- and shorten-operation makes S longer, because Eu0 is added
to it.

Lemma 12. The remove-operation and the shorten-operation do not decrease the size of the longest non-conflicting suffix.

Proof. A shorten- or remove-operation can only shorten the non-conflicting suffix S, if it replaces Eu0 and some Eui contained
in S by Eu0+Eui, or two copies of 1

2 (Eu0+Eui). We will show that, in this situation, Eu0+Eui is non-conflicting in the new configuration
C′.

As Eui is included in S, it is non-conflicting in C. Furthermore, earlier in this run, a shorten-operation would have been
executed if Eu0 had a conflict with a vector Euj with j < i. Therefore, also Eu0 is non-conflicting in C. This implies that Eu0 + Eui is
by Lemma 11 non-conflicting and thus a proper replacement for Eui in S. Thus the size of the longest non-conflicting suffix
does not decrease. �

Taking together the results established so far we can describe the following possible effects of a run

(1) it removes a relay,
(2) it reduces the path length by at least 1

3 ,
(3) it reduces the path length by less than 1

3 ,
(4) it makes the non-conflicting suffix longer.

Case 1 can only happen at most n times, Case 2 at most 3n times. By Lemma 10, Case 3 can occur only 2n+ 1 times. Case
4 occurs at most n times, because the length of the non-conflicting suffix can not exceed n, and it will never be shortened by
Lemma 12.

Thus, after at most 6n+ 1 runs in total, the configuration is non-conflicting.
Chain length. What is still to be shown is that a non-conflicting configuration has a small length. The following lemma
proves this fact.

Lemma 13. Let C = (Eu0, . . . , Euk) be a non-conflicting configuration. Then

|Eu0| + · · · + |Euk| ≤
√

2d.

Proof. Sort all the vectors from C ascending w.r.t. their angle to the line through the explorer and base camp, construct a
configuration C′ = (Ea0, . . . , Eak) out of this order, and rearrange the relays so that their positions reflect the configuration C′.
Obviously |C| = |C′| although the shapes of the corresponding chains may differ significantly.

Due to sorting of vectors, the polygon defined by the configuration C′ and the line segment between the explorer and the
base camp is convex.

Take now Ea0 and Eak and enlarge both of them so that they form a triangle together with the line segment between the
explorer and the base camp, as shown on Fig. 9. The length of C′ is not larger than a+ b as C′ is convex.

As 6 (Ea0, Eak) > π/2, the angle γ is at least π/2. Note that for a fixed d, the sum a + b, expressed as a function of α is
decreasing. Therefore, the sum a+b is maximized for γ = π/2. Maximizing a+b with the condition

√
a2 + b2 = d we obtain

a+ b ≤
√

2d. �
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Fig. 9. The convex chain C′ is shorter than a+ b.

Number of relays. The former lemma shows only that the length of the chain after 8n + 1 runs is bounded by
√

2d. We
nevertheless have no bound on the number of relays used in this chain.

Lemma 14. Let all k vectors be non-conflicting at the beginning of run r. Then after 2k runs at most one vector has length smaller
than 1

2 .

Proof. Since all vectors are non-conflicting, the shorten-operation is never executed after run r. Therefore, each run either
ends with a remove-operation or it shifts a vector to the end of the configuration.

Assume now a run r′ ≥ r with Cr′ = (Eu0, . . . , Euk). If |Eu0| <
1
2 and |Eui| <

1
2 and no remove-operation has been executed by

the run prior to the movement of vi+1, then the strategy we have by our invariant is p′i = pi+1 − Eu0.
By the triangle inequality, the distance between p′i and pi+2 is smaller than 1, as |Eu0| <

1
2 and |Eui| <

1
2 . Then, the relay vi+1

executes the remove-operation.
On the contrary, if |Eu0| ≥

1
2 and |Eui| ≥

1
2 , then the relay vi+1 cannot execute the remove-operation, as by 6 (Eu0, Eui) > π/2

the distance |p′i − pi+2|2 > 1.
Denote by Sr the longest suffix of the configuration containing only vectors with length larger than 1

2 . Assume now that
before run r the vector Euj is the first vector in Sr and that there is more than one vector with a size smaller than 1

2 in the
configuration. If |Eu0| <

1
2 then the remove-operation will be executed either by relay vi, such that |Eui−1| <

1
2 or by an earlier

relay, so that Sr is left untouched. If |Eu0| ≥
1
2 then by our earlier observation the remove-operation cannot influence Sr as all

vectors in Sr have length at least 1
2 .

Therefore, after at most k shifts, there is at most one vector with size 1
2 . As there may be at most k remove-operations,

there are k shifts in 2k runs. �

Let C be the configuration after 8n + 1 runs. Using the former lemma, we can conclude that there are at most 2|C| + 1
relays in the chain after this time. With the bound on |C| from Lemma 13, part (c) of Theorem 6 follows, concluding the proof
of this theorem.

6. Performance of Hopper in the dynamic scenario

The basic idea used for transforming the Hopper strategy into Dynamic-Hopper is very similar to that used for the
Dynamic-Manhattan–Hopper strategy. The Dynamic-Hopper strategy is executed in rounds, such that at the beginning of
the round the explorer moves, then a follow-run and a series of α hopper-runs are executed. The constant αwill be defined
later. We assume that all runs are pipelined, as shown on Fig. 10. Whenever we will be talking of runs, we mean hopper-runs.

We assume that each movement of the explorer has a distance of at least 1
2 and at most 1. We assume that at the beginning

of the first round, the length of the chain and the number of vectors are appropriately bounded by the distance between the
base camp and the explorer. The exact restrictions on the chain are given later.

Theorem 15. There exists a constant α such that for the chain maintained by the Dynamic-Hopper strategy the following holds.

(a) The chain remains connected,
(b) the explorer may move a distance of 1

2 every round, i.e. every 3(α+ 1) time steps,
(c) relays move at most distance α

√
2 per round,

(d) the number of relays used in the chain is O(dr) at the beginning of round r.

Parts (a)–(c) are obvious from the definition of the strategy. In the rest of the chapter we will prove part (d), thereby
specifying the constant α. For this purpose we have to introduce notions of virtual length and infected vectors, as well as
divide the execution time into phases. After this introduction we will discuss the outline of the remaining analysis in more
detail.
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Fig. 10. Round of Dynamic-Hopper strategy.

Virtual length. We can define the virtual length of a spatial vector to be

‖Eu‖ =

{
|Eu| if |Eu| ≥ 1

2
|Eu| + 1

2 otherwise.

This notion has the advantage that a vector has always virtual length of at least 1
2 . The virtual length of a configuration is

obviously the sum of the virtual lengths of all vectors belonging to this configuration. In contrast, the length |Eu|will be called
the real length.

We want to investigate how the operations performed by hopper-runs influence the virtual length. For the remove-
operation, note that the sum of the participating vectors’ virtual length is at least 1. On the other hand, the vector created by
the remove-operation has a virtual length of at most 1. Therefore, the remove-operation does not increase the virtual length
of the chain.

For the shorten-operation, either both of the participating vectors have a real length of at least 1
2 and then by Lemma 9

the operation reduces the virtual chain length by at least 1
3 . Now assume that one of the vectors Eu0 and Eu1 participating in

the shorten-operation has a real length smaller than 1
2 . W.l.o.g. let it be Eu0. For the real length of the resulting vector, it holds

|Eu0 + Eu1| ≤ |Eu0| + |Eu1|. By definition of the virtual length we have |Eu0| + |Eu1| ≤ ‖Eu0‖ −
1
2 + |Eu1|. This implies that the shorten

operation reduces the virtual length of the chain by at least 1
2 >

1
3 .

Fact 16. Every shorten-operation reduces the virtual length of the chain by at least 1
3 .

As each relay has a virtual length of at least 1
2 , virtual length can be used to bound the number of relays in the chain.

Fact 17. Let l be the virtual length of the chain. Then the number of relays is bounded from above by 2l.

Phases. We will divide the runtime of the Dynamic-Hopper strategy in phases. The first phase starts in the first round. Let n
denote the number of relays in the chain, l be its virtual length and d the distance between the base camp and the explorer
in the beginning of the phase. Similarly, n′, l′ and d′ denote the same at the end of the phase.

Throughout the analysis we use three constants. By αwe denote the number of hopper-runs in a round, γn is the number
of rounds in a phase. Furthermore, we assume that at the beginning of the phase l ≤ βd holds. This is also the restriction we
lay upon the chain at the beginning of the first round. The rationale for this initial assumption is that the Dynamic-Hopper
strategy is designed to maintain a steady quality of the chain all the time and therefore should start its work on a proper
chain, too.

We require β ≥ 2
√

2+ 1 and the constants γ and α to fulfill

γ ≤
1

2
√

2(10β+ 14)
,

and α ≥ 8
γ
+ 8.

Infected vectors. At the beginning of a phase all vectors are marked as non-infected. Every new vector introduced by
movement of the explorer to the configuration is called infected. Every time a remove-operation or a shorten-operation
removes at least one infected vector, the vectors created by the operation are marked as infected. Intuitively, the marking
of infected vectors allows us to distinguish vectors which have been influenced by the movement of the explorer from the
current phase.
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A non-infected vector is said to be non-conflicting if it has no conflict to any non-infected vectors.
Outline of the analysis. We will first show that at the end of the phase, non-infected vectors have a real length of at least 1

2
and that they all have angles larger than π/2 with respect to each other. Afterwards, we will distinguish two cases: either
at the end of the phase there are more than (3β+ 4)γn infected vectors or not. In the first case we will show that so many
infected vectors could have been only created by many shorten-operations which also decreased the length of the chain
significantly. In the second case we will be able to show that thanks to the majority of vectors being non-infected, the chain
length is linear in the distance dr . In both cases we will show that l′ ≤ β d′.

Lemma 18. At the end of a phase all non-infected vectors are non-conflicting and all but at most one have real length at least 1
2 .

Proof. Let us follow the changes in position of a non-infected vector in configurations. For that purpose, whenever a vector
is replaced by a shorten-operation, we assign its identification to the new vector created. In case of a remove-operation, we
assign the new vector the identification of one of the removed vectors.

Whenever a vector is not at the first position in the configuration, its position can change in the following manner

(1) decrease by 1 if the run shifts a vector to the end of the configuration,
(2) decrease by 1 or without changes in case of a remove-operation or shorten-operation,
(3) increase by 1 if the explorer has moved and a new vectors has been added.

As there are at most 3(n+γn)+(n+γn) runs ending in Case 2 and at most n+γn occurrences of Case 3, after 7(n+γn) runs
each non-infected vector has been at the first position of the configuration and has been either shifted as non-conflicting
to the end, or removed. Therefore, after 7(n+ γn) runs all non-infected vectors are non-conflicting. After at most 8(n+ γn)
runs each vector has been on the first position for at least two times, and then following the argumentation from Lemma 14
all but one vectors have a real length of at least 1

2 .
By definition of α, we have αγn ≥ 8(n+ γn) and the lemma follows. �

Lemma 19. Let there be at least (3β+ 4)γn infected vectors at the end of the phase. Then l′ ≤ βd′.

Proof. The number of infected vectors in a phase generated by movement of the explorer is at most γn. Note that only the
shorten-operation is able to generate two new infected vectors out of one, thereby increasing the number of infected vectors
in the configuration. Therefore, in order to have (3β+ 4)γn infected vectors at the end of the phase, at least

(3β+ 4)γn− γn ≥ 3(β+ 1)γn

shorten-operations must have been performed during this phase.
Note that each of the shorten-operations decreases the virtual length of the chain by at least 1

3 and the only operations
enlarging the chain are movements of the explorer. So, we have l′ ≤ l − (β + 1)γn + γn = l − βγn. Since the explorer
decreased its distance to the base camp by at most γn it follows that d′ ≥ d− γn. From the definition of γ it follows γ < 1

2β
which, thanks to n ≤ 2l ≤ 2βd, implies d− γ > 0. We obtain

l′

d′
≤

l− βγn

d− γn
≤

l

d
≤ β.

The last inequality holds because l ≤ βd. This implies the desired bound on l′. �

Lemma 20. Let there be at most (3β+ 4)γn infected vectors at the end of the phase. Then l′ ≤ βd′.

Proof. Sum up the non-infected vectors to a vector Eu and the infected vectors to a vector Ea. Obviously, p′0 + Eu + Ea = p′k+1
where p′k+1 is the position of the base camp vk+1 . Define the point ρ = p′0 + Eu. Since all non-infected vectors have an angle
larger than π/2 with respect to each other, by Lemma 13 the actual length of non-infected vectors is at most

√
2 |ρ− p0|2.

Furthermore, by Lemma 18 all but one non-infected vectors have a real length equal to its virtual length. Thus the virtual
length of non-infected vectors L′ is bounded by L′ ≤

√
2 |ρ− p0|2+

1
2 . The virtual length of the chain is bounded by l′ ≤ L′+|Ea|

and since |Ea| ≤ (3β+ 4)γn we have L′ ≥ l′ − (3β+ 4)γn.
Therefore,

d′ =
∣∣p′0 − p′k+1

∣∣
2 ≥ |Eu| − |Ea| ≥

1
√

2
L′ −

1
2
√

2
− (3β+ 4)γn

≥
1
√

2
l′ − (5β+ 7)γn−

1
2
√

2
. (1)

As used earlier we have n ≤ 2l ≤ 2βd. On the other hand d′ ≥ d− γn. Combining both bounds we obtain n ≤ d′ 2β
1−2βγ .

Plugging in the bound on n into Eq. (1) and assuming d′ ≥ 1 we obtain

l′

d′
≤
√

2
(

1+
1

2
√

2
+

2βγ(5β+ 7)

1− 2βγ

)
≤ β,

as γ ≤ 1
2
√

2(10β+14)
is sufficiently small. �
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Applying both Lemmas 19 and 20, we have l ≤ βd at the beginning of each phase. During the phase the number of vectors
may increase by at most γn and the distance between the explorer and the base camp may decrease by at most γn. Denote
by nt the number of relays in the chain in time step nt and the distance between explorer and base camp by dt . Then we have

nt

dt
≤

n+ nγ

d− nγ
≤

2β(1+ γ)
1− 2βγ

,

as d ≥ n
2β . For the defined value of γ we have 2β(1+γ)

1−2βγ ≤ β
2 and therefore the number of relays in the chain at any point of

time is at most β2dt . This concludes the proof of part (d) of Theorem 15.

7. Conclusions

The presented Hopper strategy presents a major improvement in performance over earlier known strategies maintaining
chains or relays stations. In comparison to the Go-To-The-Middle strategy, its behavior differs in the following points

• the execution is organized in sequential runs and not in parallel steps performed by all relays,
• relays are removed from the chain as soon as they are not necessary any more,
• the Hopper strategy lets relays oscillate rather than slowly converge as Go-To-The-Middle.

It is worth noting that the concept of sequential runs does not help on its own to improve the performance of
Go-To-The-Middle, which is basically the same if changed from parallel to sequential. The authors believe rather that the
combination of sequential runs together with oscillation helps the Hopper strategy to find situations s.t. relays can be safely
removed. This is best seen in the example of Manhattan–Hopper strategy, where during a sequential run the strategy can get
two relays to the same place and decide to remove one. The whole set of operations and technical tricks used by the Hopper
strategy is only intended to mimic this behavior of Manhattan–Hopper and allow for the same effects without using a fixed
grid.

Interesting problems subject to future research lie in maintaining the chain of relays on a plane with obstacles, and in
generalizing the strategies to multiple explorers. Here we would have to deal with Steiner trees instead of chains.
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