Fault-Tolerant Compact Routing Schemes for
General Graphs

Shiri Chechik

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, Israel
shiri.chechik@weizmann.ac.il

Abstract. This paper considers compact fault-tolerant routing schemes
for weighted general graphs, namely, routing schemes that avoid a set of
failed (or forbidden) edges. We present a compact routing scheme capable
of handling multiple edge failures. Assume a source node s contains a
message M designated to a destination target ¢ and assume a set F
of edges crashes (unknown to s). Our scheme routes the message to ¢
(provided that s and ¢ are still connected in G \ F') over a path whose
length is proportional to the distance between s and ¢ in G'\ F, to |F|?
and to some poly-log factor. The routing table required at a node v is
of size proportional to the degree of v in G and some poly-log factor.
This improves on the previously known fault-tolerant compact routing
scheme for general graphs, which was capable of overcoming at most 2
edge failures.

1 Introduction

Routing is one of the most fundamental problems in distributed networks. A
routing scheme is a mechanism that allows delivering a message from a source
node s to a target node t. In the routing process, each node in the network
may receive packets of information and has to decide if the message already
reached its destination or not. If the message did not reach its destination then
the node has to forward the message to one of its neighbors, using only its local
information and the header of the message, containing the label of the destination
and possibly some other data. A key concern in designing a routing scheme is
to minimize the worst case multiplicative stretch, namely, the maximum ratio
between the length of a path obtained by the routing scheme and the length of the
shortest path between the source and the destination. Another important goal
is to minimize the size of the routing tables stored at the nodes. Subsequently,
the focus in designing a routing scheme is often on the tradeoff between the size
of the routing tables and the maximum stretch of the resulting routes.

The problem of designing compact and low stretch routing schemes has been
extensively studied (e.g. [I7UBIBITEIT2ITH]). The first tradeoff between the size of
the routing tables and the maximum multiplicative stretch of the routing scheme
was considered by Peleg and Upfal [17]. In this paper, the total size of the routing
tables was considered (as opposed to the maximum table size of the nodes) and

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 101-[[T3, 2011.
© Springer-Verlag Berlin Heidelberg 2011

102 S. Chechik

only unweighted graphs were considered. Later, weighted graphs were considered
by Awerbuch et al. [3] and a bound on the maximum table size was achieved.
The weights on the edges correspond to distances, namely, the distance of a path
is the sum of the weights of its edges. Awerbuch et al. show how to construct
a routing scheme with maximum table size of O(n'/¥) and with multiplicative
stretch dependent on k (O(k29%)) for any integer k > 1. Further improvements
were later introduced by Awerbuch and Peleg [5] for general integer & > 1, by
Cowen [9] for k¥ = 3 and by Eilam et al. [I2] for k¥ = 5. These tradeoffs were later
improved by Thorup and Zwick [I§], obtaining the best one known so far. They
present a routing scheme with table size of O(nl/ k) and a multiplicative stretch
of 2k — 1 using handshaking by which the source and target agree on an o(log2 n)
bit header that is attached to all packets, or a stretch of 4k — 5 without using
handshaking. Corresponding lower bounds were presented in [T7UT3IT4T9].

In this paper, we consider a natural and significant extension of routing
schemes for general weighted graphs, that may better suit many network settings.
Suppose that some of the links crash from time to time and it is still required to
deliver messages between the nodes, if possible, without recomputing the routing
tables and the labels. Given a set F' of edge failures, the multiplicative stretch is
with respect to the distance between the source node and the destination node
in the surviving graph G \ F. The objective is once again to minimize both the
routing table sizes and the stretch. This extension was suggested in [8120], which
consider this problem for graphs of bounded treewidth or cliquewidth. It is shown
how to assign each node a label of size O(log2 n) (with some dependency on the
tree/clique width) such that given the labels of the source and target and the
labels of a set F' of “forbidden” vertices, the scheme can route from the source
to the target on the shortest path in G\ F.

Later, in [I], the same extension was considered for unweighted graphs of
bounded doubling dimension. It is shown how to construct a labeling scheme
for a given unweighted graph of doubling dimension « such that for any desired
precision parameter € > 0, the labeling scheme stores an O(1 + ¢~ 1)2® log2 n-bit
label at each vertex. Given the labels of two end-vertices s and ¢, and the labels
of a set F' of “forbidden” vertices, the scheme can route on a path of length at
most 1 + € times the distance from s to ¢ in G\ F'.

Note that in both [§] and [I] the assumption is that the labels of the faulty
nodes are known to the source.

For weighted general graphs, the design of fault-tolerant compact routing
schemes was considered in [6]. However, the scheme of [6] only dealt with up to
2 edge failures and bounded only the total size of the routing tables at all the
nodes. It is shown how to construct a routing scheme for a given parameter k,
that in the presence of a forbidden edge set F' of size at most 2 (unknown to the
source), routes the message from the source s to the destination ¢ over a path
of length O(k - dist(s,t,G \ F)), where dist(s,t,G \ F) is the distance from s
to t in G\ F. The total amount of information stored in the vertices of G is
O(kn'*+1/¥log (nW)logn), where W is the weight of the heaviest edge in the
graph (assuming the minimal weight is 1).

Fault-Tolerant Compact Routing Schemes for General Graphs 103

Our contributions In this paper we present a compact fault-tolerant routing
scheme for weighted undirected general graphs. We manage to design a compact
routing scheme that handles multiple edge failures. More specifically, we prove
the following theorem/[]

Theorem 1. Given a graph G = (V, E) with edge weights w such that w(e) €
[1, W] for every edge e and a parameter k, one can efficiently construct a routing
scheme that given a source node s and a target node t, in the presence of a set
of failures F (unknown to s), can route a message from s to t in a distributed
manner over a path of length at most O(|F|? - (|F|+log®n) - k-dist(s, t, G\ F)).
The scheme requires assigning to each node a label of length O([log (nW)]-logn)
bits and the routing table of a node v is of size at most O([log (nW)] - k - nt/F .
deg(v) - log2 n) bits. The message passed during the routing process is of size
O(|F| - logn) bits.

2 General Framework

In this section we outline the general structure of our routing scheme. Let
G(V, E) be an n-node undirected weighted graph with edge weights w such that
w(e) € [1, W] for every edge e (hence nW is an upper bound on the diameter).
For a given graph H and a tree T such that V(T) C V(H), let H|r be the
subgraph of H induced on the vertices of T'.

Our results are based on the well known construction of tree cover, defined as
follows.

Tree covers: Let G(V, E) be an undirected graph with edge weights w, and let
p,k be two integers. Let B,(v) = {u € V | dist(u,v,G) < p} be the ball of
vertices of (weighted) distance at most p from v. A tree cover TC(G,w, p, k) is
a collection T = {Ti,...,T¢} of rooted trees in G, with V(T') C V and a root
r(T) for every T € T, with the following properties:

(i) For every v € V there exists a tree T' € 7 such that B,(v) C T.

(ii) For every T € 7 and every v € T, dist(v,r(T),T) < (2k —1) - p.

(iii) For every v € V, the number of trees in 7 that contain v is O(k - n!'/*).

Proposition 1 ([4J7/16]). For any p and k, there exists a tree cover TC(G, w,
p, k) constructible in time O(mn'/*).

A basic building block of our routing scheme is a procedure for routing on sub-
trees of the graph. For that purpose we use the routing scheme on trees of Thorup
and Zwick [I8]. That scheme uses (14+0(1)) log, n-bit label size and no additional
information is stored in the nodes.

Let us start with a high level overview of the way our routing scheme operates.
Consider vertices s,t € V and suppose that a message is to be routed from s to ¢.
Our routing process involves at most [log (nW)] iterations, where iteration 4 is

! Notice that by setting k = logn, the term n'/* in the theorem becomes a constant.

104 S. Chechik

expected to succeed in passing the message in the case where 20=! < dist(s, ¢, G\
F) < 2. As iteration i handles the possibility that dist(s,t,G \ F) is at most
2¢ it may ignore edges of weight greater than 2¢. Formally, let H; be the set of
G edges of weight greater than 2¢ and let G; be G\ H;. Clearly, any two vertices
that are connected in G by a path of length at most 2¢ are still connected
in GG; by the same path. Hence the routing process may be restricted to Gj.
To facilitate each iteration 4, in the preprocessing phase construct a tree cover
TC,; = TC(G;,w,2% k). Now for each tree T € TC; invoke our scheme for
routing on trees with failures presented in Section B on the tree T' and the graph
G, to assign each node v € T a label L(v,T) and a routing table A, (T).

Each node v stores a routing table A, containing all the routing tables A, (T")
together with some unique identifier ¢d(T") for each tree T such that v € T and
T € TC, for some 1 <4 < [log (nW)].

In addition, for each node t € V', let T;(t) € TC; be the tree containing By (t).
The label L(¢) of each node ¢t € V' has to store enough information about each
T;(t) in order to allow routing on the tree T;(t) to the target ¢. Specifically, the
label L£(t) stores L(t,T) together with the unique identifier id(T") for the tree
T = T;(¢), for every 1 < ¢ < [log (nW)].

The routing process is schematically done as follows. Let F' denote the set
of failed edges at a given moment. In each iteration ¢ from 1 to [log (nW)],
an attempt is made to route the message from the source s to the target ¢
in the graph Gi|7,+) \ F' using the tree T;(t) augmented with some additional
information to be specified later on. If the routing is unsuccessful, i.e., it is not
possible to route to ¢ in Gi|7,) \ F, then s is informed by the routing scheme
that it must proceed to the next iteration. Note that in order to route from s to
t in the tree T;(t), the node s has to be familiar with the label L(¢,T) given to
t by our scheme for the tree T' = T;(t); this information can be extracted from
t’s label L(t).

In order to complete the description of our routing scheme, it remains to
present our routing process from s to ¢ in the graph Gi\Ti(t) \ F'. In what follows,
we focus on describing our routing scheme in H|y \ F for a given graph H and
a tree T, and describe the information stored in both the preprocessing phase
and the routing phase.

3 Routing on a Tree with Faults

In this section we consider a given graph H and a tree T in H, and design a
routing scheme such that when a set of edges F fails, if s and t are still connected
in H|r \ F, then our routing procedure manages to deliver a message from s to ¢
on a path of length proportional to the depth of T, to F3 and to some poly-log
factor. More specifically, we prove the following lemma.

Lemma 1. Consider a graph H with mazimum edge weight Wy and a tree T
of H (E(T) C E(H)). There is an efficiently constructible routing scheme such
that given a source node s and a target node t, in the presence of a set of failures
F (unknown to s), if s and t are connected in H|p \ F , will deliver a message

Fault-Tolerant Compact Routing Schemes for General Graphs 105

from s tot on a path of length O(f2(f - diam(T) + f - Wi + log®n - diam(T))),
where f = |F| and diam(T) is the diameter of T. The size of the routing labels
used by the scheme is O(logn) bits and the routing table stored at a node v is of
size O(log® n - degy (v)) bits, where degy (v) is the degree of v in the graph H.

The routing scheme described in this section is strongly based on the result of
Duan and Pettie [I1] on connectivity oracles with edge failures. We first review
that result, and later show how to implement it in a distributed setting to achieve
our fault-tolerant routing scheme. Their algorithm operates on a given spanning
tree T of G. The algorithm traverses the tree T according to some Euler tour
and constructs the list L(T) of the vertices of V(G) in the order in which they
were encountered during this Euler tour, keeping only the first occurrence of
each vertex. For every v, let /(v) denote v’s index in L(T'). The algorithm then
considers the adjacency matrix M of G, according to the ordering L(T), and
constructs a range reporting data structure on M (concretely, using the range
reporting data structure of Alstrup et al. [2]). Duan and Pettie [II] observe
that removing f edges from T partitions it into f + 1 connected subtrees and
splits L(T) into at most 2f + 1 intervals, where the vertices of each connected
subtree are the union of some subset of these intervals. Hence in order to decide
connectivity in G\ F, it is enough to determine, for all pairs of the 2 f+1 intervals,
if there is an edge in E'\ F connecting them. This can be done efficiently by the
range reporting data-structure constructed on M.

For the purpose of implementing the range reporting data structure in a dis-
tributed manner, we use a less efficient range reporting data structure. We first
describe the well-known centralized range reporting data structure that is used
in our construction, and later, in Subsections 3.1 and 3.2] we show how to imple-
ment this data structure in a distributed setting (which may be of independent
interest).

Consider a boolean matrix M, in which queries of the following form need
to be answered: “Given a range of rows (r1,r2) and a range of columns (cy, ¢2),
return all cells that contain 1 in the matrix M and are in the range of rows
(r1,72) and the range of columns (c1,¢z).” The problem can be transformed to
the following planar range reporting problem. Given a set P of N points in the
plane, construct a data structure that can answer queries of the form: “return all
points in the rectangle [z1, z2] X [y1,y=2]”. This can be done by creating a set of
points P(M) containing a point p(c) for each cell ¢ in the matrix M that contains
1 and setting its z-coordinate to be the row of the cell ¢ and its y-coordinate
to be the column of ¢. Now a query of the form (ry,r2) X (¢1,¢2) on M can
be answered by finding all points P(M) inside the rectangle [r1,75] X [c1, ¢2]. A
data structure that can answer efficiently planar range reporting queries can be
constructed as follows (cf. [I0]). Given a set P of N nodes in the plane, first
construct a main balanced binary tree M built on the x-coordinate of the points
in P. For any internal or leaf node v in M, let P(v) be the subset of points of P
corresponding to the subtree of v in M. For any internal or leaf node v in M,
store a balanced binary tree T'(v) built on the y-coordinate of the points in P(v).
In addition, form a connected list chaining the leaves of T'(v), namely, provide

106 S. Chechik

each leaf u with a pointer to the next leaf with the lowest y-coordinate that is
greater equal to the y-coordinate of u. Now given a query [z1, Z2] X [y1,y2], the
query algorithm first selects O(logn) canonical subsets that together contain all
the points whose z-coordinate lie in [z1, z2]. Each such subset corresponds to
a node in M. In each such internal node v € M, the query algorithm searches
for all nodes whose y-coordinate lie in [y1, y2] using the search tree T'(v). The
search on T'(v) takes O(logn + k) time, where &k’ is the number of nodes that
lie in [y1,2] in T'(v). All in all, the query time is O(log® n + k), where k is the
number of nodes reported. Note that if we want to report only k” < k points,
then the query can be answered in O(log® n + k") time.

Next, we turn to describe how to implement this range reporting data struc-
ture on M in a distributed setting. In Subsection 3.I] we describe the prepro-
cessing phase, namely, the data that needs to be stored at the nodes in the
preprocessing phase, Subsection describes the routing phase and finally in
Subsection B3] we prove the correctness of Lemma [I1

3.1 Preprocessing

In the preprocessing phase, construct the main balanced binary tree M built
on the nodes V according to their order in L(T), i.e., their indices ¢(v). For an
internal node ¢ € M, let P(v) be the set of nodes in V' corresponding to the
subtree of ¥ in M. For a set of nodes S, denote by FE,,:(S) the set of edges in
E \ E(T) with exactly one endpoint in S. For an edge e = (u,v) € Epu(S),
where w.l.o.g w € S and v ¢ S, denote the incident node to e that is not in
S by Out(e, S) = v. Let L(S) be the set of edges E,,+(S) sorted by Out(e, S)
according to the order L(T'). For each internal node & € M, construct a balanced
binary tree T'(0) on E,.:(P(0)) according to the order L(P(?)), namely, T'(0) is
a balanced binary tree whose nodes set is the set of edges E,,:(P(7)).

Our algorithm looks for ways of progressing from its currently familiar “piece”
of the network represented as an interval I = (v;, ..., v;) of the ordered list L(T")
as explained earlier, to the “piece” containing the destination, which is another
such interval I’, disconnected from I by the faults of F. Note that in order to
find all edges connecting some interval I = (v;,...,v;) with some other interval
I’ we need to check a set X (I,I") of O(logn) internal nodes in M. Consider
some node u € V', and let p be the path from the leaf representing v in M to the
root of M, each non-leaf node x on the path p has two children, one that is part
of the path p and another node y, if y is a left child, add it to Sp(u), otherwise
to Sr(u). The node w itself is added to both S (u) and Sg(u). Note that the
set X(I,1I') is a subset of Sgr(v;) U Sr(v;). Every node u stores an identifier of
the internal nodes in Sg(u) U S (u). As explained above, for each node ¢ in
Sr(u) U SL(u), a balanced search tree T'(?) is constructed, and the identifier
of ¥ will contain an indication of the edge represented by the root of T'(7). In
addition, each internal node w in T'(?) represents an edge e = (z,y), where one
node, say z, is inside P(v) and the other, y, is outside it. The routing table of x
stores the edges of the left and right children of w in T'(9) as well as the ranges
they represent.

Fault-Tolerant Compact Routing Schemes for General Graphs 107

To summarize, the routing table A,(7T") contains the identifiers of the internal
nodes Sg(v)USL (v), where the identifier of each internal node @ € Sr(v)USL(v)
contains the edge represented by the root of T'(@). In addition, for every internal
node 4 € M such that v € P(@) and every edge (v,y) € Eout(P (1)), let w be
the internal node in T'(@) that represents (v,y), the routing table A, (T) stores
the edges of the left and right children of w in T'(@) as well as the ranges they
represent (together with some identifier of the tree T'()).

For a node v € V, the label L(v,T) is the concatenation of the label given to
v by the routing scheme of [I8] on the tree T" and the index ¢(v).

The routing table A, (T") of v also stores the label L(v,T).

3.2 The Routing Process

In this section we show how to route a message from a source s to a target t on a
single tree T' with faults, allowing it to bypass the failures. After the failures of at
most f edges, the tree is divided into at most 2 f + 1 intervals, and the goal is to
reconnect these intervals, if possible. In the beginning of the routing process, the
failed edges are not known to the nodes (except for their endpoints), so clearly,
the different intervals are not known, and of course the way to reconnect the
intervals is not known. During the routing process, some of this data is revealed
and is attached to the header of the message. More specifically, the message
accumulates information on the set of known intervals and the discovered edges
that reconnect these intervals. Let Z be the graph obtained by representing each
discovered interval as a node and connecting two nodes if the process has already
found an edge connecting the intervals they represent. The message carries along
with it a copy of the graph Z. The goal is to reach as many intervals as possible
in order to eventually reach t. As the nodes do not necessarily know all the
failures, some of the intervals are “fake”, in the sense that inside an interval
there may be a failure (which the message still does not know about) that splits
this interval, possibly into 3 intervals, where two of them are already connected.
The intuition is that as long as the message does not encounter this failure, we
do not care that the data it stores is imprecise, namely, if the message never
encounters this failure, it means that this failure does not disturb our routing
process and therefore we do not care about it. The other possibility is that
eventually the message will encounter this failure, which will force it to update
the set of intervals it carries along. Notice that the latter can happen at most f
times, where f is the number of failed edges.

We now describe the routing process more formally. For simplicity, we first
describe a solution where the message forwarded during the routing process is of
size O(|F|?-log n) bits, we later describe the small modifications needed to reduce
the message size to O(|F| - logn) bits. The header of the message contains the
following additional data: it stores the set of currently known intervals, and for
each pair of intervals I, I’ it stores one of the following three items: a discovered
edge e(I,I") connecting them, an indication discon (I, I’) that these two intervals
can not be connected, or an indication Unknown(I,I’) that it is still unknown
if these two intervals can be connected. (Notice that some of the intervals are

108 S. Chechik

already connected by the original tree T.) The goal is to explore the pairs of
intervals that are not decided yet, in order to eventually reach ¢ if possible, or
to conclude that ¢ is not reachable from s in H|p \ F.

At the beginning of this process, the source s is unaware of the failures, hence
the set of intervals contains only one interval (which represents the entire tree
T), and it just tries to route on T as if no failures occurred. The simplest scenario
is that the path connecting s and t in T is free from failures and the message
arrives at its destination. The more interesting case is when the routing process
encounters some failure along the way and thus can not complete the normal
routing process successfully.

In case a new failure is detected, the set of intervals is updated accordingly,
and the set of recovery edges is updated as well, where by a recovery edge we
mean an edge that reconnects two intervals that are not connected in T\ F.
Namely, assume the interval I is now split into at most three intervals I, Io, I3,
and consider an edge e(I,I’) that was previously believed to connect I to some
other interval I’. This edge now connects one of the three intervals Iy, I, I3 to I’,
and as we know the incident nodes of the edge, there is no problem to identify the
right one, say, I, and update the information in the message header to include
e(I1,I'). In addition, if it is already known that there is no way to reconnect I
to some other interval I’ (i.e., the message header contains discon(I,I")), then
it is also impossible to reconnect I’ to any of Iy, Is, I3 and we update the data in
the message header by storing in it the indicators discon(Iy,I'), discon(Iz,1")
and discon(Is,I').

At any stage during the routing process, the routing process may be in one
of three states. The first state is that the nodes can check if using the recovery
edges collected so far it is possible to reach ¢ (for example, by running a DF'S on
the graph 7). In the second state, the nodes can verify if it is impossible to reach
t in H|r \ F. This case happens when it is already known that all the intervals
that are reachable from s can not be connected to any other interval and ¢ is still
not reachable from s, where we say that an interval I is reachable from some
node v € T if the interval containing v and the interval I are connected in 7.
The third state is where it is still unclear if it is possible to reach ¢ in H|r \ F.

In the first state, the message is sent to ¢t (assuming no new failures are
detected during the remaining part of the journey). In the second state, an
indication that ¢ is not reachable in H|p \ F is sent to s. In the third state,
pick a pair of intervals (I,I’) that have not been decided yet (i.e., such that
the message header contains Unknown(I,I')) and such that I is reachable from
the current node (and therefore also from s). If no such pair exists, it can be
determined that the routing is not possible. Next, search for a recovery edge
connecting I and I’ as follows. First, forward the message to some node in I.
Once reaching I, check the potential search balanced trees, namely, the search
trees for the interval I (this data can be extracted from the routing tables of the
first and last nodes v; and v; in the interval I, recall that the set the potential
search trees is a subset of Sg(v;)USL(v;)). Now for each potential search tree T3
on an interval I; C I, search for a recovery edge reconnecting to I’. The search

Fault-Tolerant Compact Routing Schemes for General Graphs 109

on T3 can be done as follows. First reach the node z containing the root of T;
(recall that the root of Tj represents an edge (z,y) where x is in I; and y is
outside, so z = x and that the edge (z,y) is part of the identifier of 7). The
node z stores in its routing table the left and right children of the root of T3 as
well as the ranges they represent, so the node z knows if it supposed to continue
the search on the left or right child. This process continues until reaching the
leaves. If the leaf is not in the range I’, then it’s not hard to see that I; and I’
can not be connected. Otherwise, there are two subcases. If the edge in the leaf
is not faulty, then we found a recovery edge reconnecting I and I’. The second
subcase is that this edge is faulty. Recall that each leaf stores an identifier to
the next leaf, so we can just check the next leaf, and so on. This is repeated for
all O(logn) potential subintervals of I, until either finding the desired recovery
edge connecting I and I’ or deciding that it is impossible to connect I to I’.

3.3 Analysis

This section is devoted to proving Lemma [Tl

Correctness. We need to prove that if s and ¢ are connected in H|p \ F, then ¢
will get the message. This follows almost trivially from [11] and is proved in the
following lemma.

Lemma 2. If s and t are connected in H|r \ F, then the message will reach its
destination using our routing scheme.

Proof: Assume s and ¢ are connected in H|p \ F'. Consider only final intervals,
namely, intervals that were not split any more during the routing process. Let
Z¢in be the final graph Z. It’s not hard to verify that there must be a path of
final intervals in Z¢;, connecting the final interval of s with the final interval of ¢.
As our algorithm checks all possible pairs of intervals, it will eventually find that
path (or some other path p reaching t). Therefore, either the algorithm manages
to reach t on p, or it detects another failure on p, but this is in contradiction
with the fact that we consider final intervals.

Stretch Analysis.

Lemma 3. If s and ¢ are connected in H|p \ F, then the length of the path
obtained by our routing scheme on H|r \ F is at most O(f2(f - diam(T) + f -
Wi +log® n - diam(T))).

Proof: As mentioned above, there are at most O(f) real intervals. Therefore,
at most O(f?) pairs of real intervals need to be examined. In the beginning, the
routing process is unaware of these intervals, so it might check “fake” intervals.
At first glance, this appears to be a waste and it seems that we might need to
check more than O(f?) pairs of intervals. But a more careful inspection reveals
that it is enough to check only O(f?) pairs of intervals. To see why this is true,
assume we have already checked the pair of intervals I and I’ and at some point

110 S. Chechik

discover that I splits into two or three intervals, Iy, I>, Is. There are two cases.
The first is that we discovered that I and I’ can not be connected. In that case
we can determine that all I1, I, I3 can not be connected to I’, and actually this
works to our advantage, as in one check we saved two or three checks. The second
case is where I and I’ were connected by an edge e = (u,v) such that u € I
and v € I'. Notice that v must belongs to one of I, I, I3. Assume w.l.o.g. that
it belongs to I;. Then we can determine that I; and I’ are connected by the
edge e. In addition, each time we try to discover if two intervals are connected
or not, we either determine if this pair can be connected or not, or we discover
another failure. As mentioned earlier the latter can happen at most f times. To
conclude, there are at most O(f?) such checks.

Next we bound the maximum length of the path obtained by a single check
of two intervals. Assume we want to check the pair of intervals I and I’. It must
be the case that one of the intervals is reachable by the edges of T together
with the recovery edges discovered so far. Therefore, the path leading to the
relevant interval is of length at most (f +1) - diam(T) + f - Wi, where diam(T)
is the diameter of T'. To see this, note that the diameter of each of the connected
subtrees of T'\ F' is at most diam(T), and in addition, the path uses at most
f recovery edges of weight at most Wy each. Next, we bound the length of
the subpath used for checking the pair of intervals I and I’ = [a,b] once we
are already in I. It’s enough to bound the maximum length assuming no new
faulty edge was encountered during the way. We know the interval I, and in
particular we know its first and last nodes and thus can easily find the id’s of
the O(logn) search trees that need to be examined. We now bound the length
of one of these search trees T7. The id of the tree T} contains the root node of
the tree T7 and each intermediate node contains the id’s of its left and right
children and the ranges they represent. Moreover, we assume that the interval
is connected, so every two nodes in the interval are reachable using only the
edges of T'. We start with the root of 77 and search for the edge e of minimum
£(Out(e, S)) that is equal to or greater than a, where the set S is the set of
nodes P(r(T1)) where r(T1) is the root of Tj. Checking the ranges of children
of the root, we know if we need to move left or right, and we continue in this
way until reaching the relevant leaf. Note that a child and a parent in the tree
T) are not necessarily adjacent in 7', but their distance is at most diam(T"). The
depth of T7 is at most logn, and for each step we might need to travel a distance
at most diam(T). Therefore the total length for reaching the relevant leaf for
a single search tree is at most logn - diam(T'). Summing over all search trees,
the total length is O(log®n - diam(T')). Note that once reaching a leaf in one
of the search trees, this leaf might represent a faulty edge, therefore we might
need to check the next leaf and so on, until either reaching a leaf that is not
in I’ or finding a non-faulty edge in I’. Notice that this can happen at most f
times for all search trees (since the sets of edges of the search trees are disjoint),
and in addition, moving from one leaf to the next can be done along a path of
length at most diam(T'). All in all, the total length of the path traversed on T
is O(f2(f - diam(T) + f - Wy + log® n - diam(T))).

Fault-Tolerant Compact Routing Schemes for General Graphs 111

To see why the label sizes are O(logn), note that the label L(v,T') of a node v
is just the concatenation of the label given to v by the routing scheme of [I8] on
T and the index of v in L(T). In addition, v participated in O(logn) search trees,
and for each such search tree, O(logn - degy (v)) bits are stored in the routing
table A, (T') of v. We get that the routing table A, (T') is of size O(log? n-deg g (v))
bits.

Together with Lemmas 2l and [8] Lemma [follows.

4 Analysis for the Entire Routing Scheme

In this section we analyze our routing scheme. Let p be a shortest path connecting
sand tin G\ F, and let i be the index such that 2~ < dist(P) = dist(s,t,G\
F) <28

The following lemmas prove Theorem [Il Due to space limitations, some of the
proofs are deferred to the full paper.

Lemma 4. The nodes s and t are connected in Gi|p,q) \ F.

Proof: First note that all edges in p are of weight at most 2* and thus exist in
G, and moreover as p is a path in G\ F, all these edges are non-faulty and thus
occur also in G; \ F. Moreover, T;(t) contains all nodes at distance at most 2
from t. We get that all nodes in p are in T;(¢). The lemma follows.

Lemma 5. The path obtained by our routing scheme is of length at most O(f? -
k- dist(s,t, G\ F)(f + log®n)).

Lemma 6. The size of the routing table of a node v is at most [log (nW)] - k -
n'/*k . deg(v) - log n bits.

Lemma 7. The labels are of size [log (nW)] - logn bits.

Lemma 8. The message forwarded during the routing process is of size O(|F|?-
logn) bits.

In fact, the message size can be reduced to O(| F|-log n) bits. To see this, note that
in order to decide connectivity in G|z, (1), there is no need to store information
on all pairs of intervals, rather it’s enough to store at most |F| recovery edges
and an indication which pairs of intervals have already been examined. This can
be done using O(|F| -logn) bits (For further discussion of this point see the full
paper.).

We note that if we care only for the total size of the routing tables at all
the nodes, then it’s possible to reduce the stretch bound by a logarithmic factor.
This can be achieved as follows. Recall that the algorithm stores for each internal
node v in M a balanced search tree T'(v) in a distributed manner. Let I be the
interval of nodes corresponds to the internal node v. Instead of storing the tree
T'(v) distributively on all nodes in I, the algorithm can just pick an arbitrary
node z in I and store the entire tree T'(v) in x. It’s not hard to see that this will
reduce the stretch by a logarithmic factor.

112 S. Chechik

Acknowledgement. I would like to thank my advisor, David Peleg, for very
helpful ideas, comments and observations. I also thank Michael Langberg and
Liam Roditty for useful discussions.

References

1. Abraham, I., Chechik, S., Gavoille, C., Peleg, D.: Forbidden-set distance labels for
graphs of bounded doubling dimension. In: PODC, pp. 192-200 (2010)

2. Alstrup, S., Brodal, G.S., Rauhe, T.: New Data Structures for Orthogonal Range
Searching. In: Proc. 41st IEEE Symp. on Foundations of Computer Science
(FOCS), pp. 198-207 (2001)

3. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with
succinct tables. J. Algorithms, 307-341 (1990)

4. Awerbuch, B., Kutten, S., Peleg, D.: On buffer-economical store-and-forward dead-
lock prevention. In: Proc. INFOCOM, pp. 410414 (1991)

5. Awerbuch, B., Peleg, D.: Sparse partitions. In: 31st FOCS, pp. 503-513 (1990)

6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles and
routing schemes. In: 18th ESA, pp. 84-96 (2010)

7. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t.
In: Proc. IEEE Symp. on Foundations of Computer Science, pp. 648—658 (1993)

8. Courcelle, B., Twigg, A.: Compact forbidden-set routing. In: Thomas, W., Weil,
P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 37-48. Springer, Heidelberg (2007)

9. Cowen, L.J.: Compact routing with minimum stretch. J. Alg. 38, 170-183 (2001)

10. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications. Springer, Heidelberg (2008)

11. Duan, R., Pettie, S.: Connectivity oracles for failure prone graphs. In: Proc. ACM
STOC (2010)

12. Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor.
J. Algorithms 46, 97-114 (2003)

13. Fraigniaud, P., Gavoille, C.: Memory requirement for universal routing schemes.
In: 14th PODC, pp. 223-230 (1995)

14. Gavoille, C., Gengler, M.: Space-efficiency for routing schemes of stretch factor
three. J. Parallel Distrib. Comput. 61, 679-687 (2001)

15. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Dis-
tributed Computing 16, 111-120 (2003)

16. Peleg, D.: Distributed computing: a locality-sensitive approach. STAM, Philadel-
phia (2000)

17. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.
ACM 36(3), 510-530 (1989)

18. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on
Parallel Algorithms and Architectures (SPAA), pp. 1-10 (2001)

19. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52, 1-24 (2005)

20. Twigg, D.A.: Forbidden-set Routing. PhD thesis, University of Cambridge, King’s
College (2006)

	Fault-Tolerant Compact Routing Schemes for General Graphs
	Introduction
	General Framework
	Routing on a Tree with Faults
	Preprocessing
	The Routing Process
	Analysis

	Analysis for the Entire Routing Scheme
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

