
Information Processing Letters 109 (2009) 642–645
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A simple local 3-approximation algorithm for vertex cover

Valentin Polishchuk, Jukka Suomela ∗

Helsinki Institute for Information Technology HIIT, Helsinki University of Technology and University of Helsinki, PO Box 68, FI-00014 University of Helsinki, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 October 2008
Received in revised form 4 February 2009
Available online 25 February 2009
Communicated by C. Scheideler

Keywords:
Approximation algorithms
Distributed computing
Graph algorithms
Local algorithms

We present a local algorithm (constant-time distributed algorithm) for finding a 3-approxi-
mate vertex cover in bounded-degree graphs. The algorithm is deterministic, and no
auxiliary information besides port numbering is required.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Given a graph G = (V , E), a subset of nodes C ⊆ V is
a vertex cover if each edge {u, v} ∈ E has u ∈ C or v ∈ C .
In this work, we present a constant-time distributed algo-
rithm for finding a factor 3 approximation for minimum
vertex cover in bounded-degree graphs.

A distributed algorithm that runs in constant time (con-
stant number of synchronous communication rounds) is
called a local algorithm [14]. In a local algorithm, the output
of a node is a function of the input that is available within
its constant-radius neighbourhood; this implies not only
high scalability but also high fault-tolerance, making local
algorithms desirable for real-world large-scale distributed
systems.

Unfortunately, to date most results on local algorithms
have been negative, even if we use Linial’s [12] model
of distributed computing where the message size is un-
bounded and local computation is free. Linial’s [12] semi-
nal work shows that there is no local algorithm for find-
ing a maximal independent set, maximal matching, or 3-
colouring of an n-cycle. This holds even if each node is
assigned a unique identifier from the set {1,2, . . . ,n}. Ran-

* Corresponding author.
E-mail addresses: valentin.polishchuk@cs.helsinki.fi (V. Polishchuk),

jukka.suomela@cs.helsinki.fi (J. Suomela).
0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.02.017
domness does not help either; more generally, Naor and
Stockmeyer [14] show that randomness does not help in
so-called locally checkable labellings; maximal matching in
a bounded-degree graph is an example of such a problem.

Kuhn et al. [8,9] show that there is no local, constant-
factor approximation algorithm for minimum vertex cover,
minimum dominating set, or maximum matching in gen-
eral graphs (without a degree bound). For more negative
results, see Czygrinow et al. [2] and Lenzen and Watten-
hofer [11].

Prior positive results on local algorithms for combina-
torial problems typically rely on randomness, and the ap-
proximation guarantees only hold in expectation or with
high probability. Examples include randomised local algo-
rithms for weighted matching in trees [7,16] and for find-
ing a maximum independent set in a planar graph [2].
A general framework for approximating covering and pack-
ing problems by local algorithms is based on solving the
LP relaxation and applying randomised rounding [9].

Another line of research has studied local algorithms
in a setting where auxiliary information is available. For
example, if each node in a unit-disk graph knows its co-
ordinates, then there is a local (1 + ε)-approximation for
vertex cover [17].

However, without randomness or auxiliary information,
positive results are scarce. Some deterministic local algo-
rithms exist for linear programs [3,4,9,15], but very few

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:valentin.polishchuk@cs.helsinki.fi
mailto:jukka.suomela@cs.helsinki.fi
http://dx.doi.org/10.1016/j.ipl.2009.02.017

V. Polishchuk, J. Suomela / Information Processing Letters 109 (2009) 642–645 643
Fig. 1. Algorithm overview.
are known for combinatorial problems – in the light of
strong negative results, this is not particularly surpris-
ing. Naor and Stockmeyer [14] give a deterministic lo-
cal algorithm for so-called weak colouring in graphs of
odd degree. Lenzen et al. [10] present a deterministic lo-
cal 74-approximation algorithm for minimum dominating
set in planar graphs. Vertex covering in bounded-degree
graphs is known to admit a local constant-factor approxi-
mation; however, prior algorithms rely on linear program-
ming techniques, either LP approximation schemes and
rounding [9] or primal-dual approaches [13].

In this work, we give a new example of a simple, deter-
ministic, constant-time, constant-factor approximation al-
gorithm for vertex covering. The algorithm is purely com-
binatorial; in particular, it does not resort to an LP approx-
imation scheme and rounding. Our result is summarised in
the following theorem.

Theorem 1. A 3-approximation for minimum vertex cover in
a bounded-degree graph can be found by a deterministic lo-
cal algorithm in 2� + 1 communication rounds, where � is
the maximum degree of the graph. The algorithm does not need
unique node identifiers; port numbering is sufficient.

By port numbering [1] we mean that each node of G
imposes an ordering on its adjacent edges. Port number-
ing without any unique identifiers is an extremely weak
assumption. For example, it does not help to break the
symmetry in an n-cycle or an n-clique: in the worst case,
every node is bound to make the same decision. In spite of
that, we show that even in this very restricted model, it is
possible to approximate the vertex cover to within a factor
of 3, which is not much worse than what can be obtained
in a centralised setting by the best known polynomial-time
approximation algorithms.

One explanation for this positive result is the follow-
ing. Indeed, we cannot break the symmetry in a symmetric
graph. However, in a symmetric graph – or, more gener-
ally, in a regular graph – the trivial choice of all nodes is
a factor 2 approximation for vertex cover. Hence the in-
stances that require a nontrivial choice are exactly those
which cannot be entirely symmetric; there must be varia-
tion in the node degrees.

The only assumption that we make is some constant
upper bound on the degree of the nodes. This is unavoid-
able, if we want a constant-time, constant-factor approxi-
mation algorithm for vertex cover [8].
2. Overview

To obtain a 2-approximation for vertex cover in a cen-
tralised setting, one could simply find a maximal match-
ing M ⊆ E and output all matched nodes. Unfortunately,
Linial’s [12] lower bound shows that the same technique
cannot be applied in a local setting: even if unique node
identifiers are available, we cannot find a maximal match-
ing. However, Hańćkowiak et al. [5] show, in passing, that
if the input graph is 2-coloured (not only bipartite but
also each node knows its part) then it is possible to over-
come Linial’s bound. Their distributed algorithm for max-
imal matching uses a subroutine called LowDegreeMatch;
this subroutine is a local algorithm for finding a maximal
matching in bounded-degree 2-coloured graphs.

How does this result help us though if we want to find
a vertex cover in general (not 2-coloured) graphs? The idea
is illustrated in Fig. 1. Given the graph G , we replace each
node with two copies, a black copy and a white copy. If
the nodes u and v are adjacent in the original graph, then
the black copy of u is adjacent to the white copy of v in
the new graph, and vice versa. We obtain a bipartite, 2-
coloured graph H. Now we can apply a local algorithm to
find a maximal matching M in the graph H. The vertex
cover C for G consists of those nodes whose black copy or
white copy (or both) were matched in H. This turns out
to be within factor 3 of the optimum, because the edges
of the matching in H form a set of cycles and paths in G .
We present the full algorithm in detail in Section 3, and
we prove the approximation guarantee in Section 4.

Formally, H is a covering graph of G . More specifically,
H is the bipartite double cover of G , also known as the
Kronecker double cover and canonical double cover; it is
the Kronecker product G × K2. Usually, covering graphs are
used in the field of distributed computing to prove im-
possibility results [1]; our work uses them for algorithm
design. The same approach – finding a maximal matching
in a bipartite double cover – has been used previously by
Hańćkowiak et al. [6] as a subroutine in a non-local dis-
tributed algorithm.

3. Algorithm

We describe the local algorithm that finds a vertex
cover C ⊆ V .

In the port numbering model, it is assumed that each
node v ∈ V knows its own degree d(v) � �. The node

644 V. Polishchuk, J. Suomela / Information Processing Letters 109 (2009) 642–645
has d(v) ports, each leading to one of its neighbours; the
ports are numbered in an arbitrary order by 1,2, . . . ,d(v).
A node can send a message to a given port, and the re-
spective neighbour can receive it on the next time step.

The node v ∈ V maintains the following variables: a(v)

and b(v) are two chosen neighbours (identified by port
numbers), and i(v) is a counter. The output of the node
is c(v) ∈ {true, false} which determines whether v ∈ C or
not.

Initially, a(v) = ⊥, b(v) = ⊥, i(v) = 0, and c(v) = false.
On an odd time step, each node v ∈ V performs the

following read–compute–write cycle.

1. If a(v) = ⊥ and 1 � i(v) � d(v), then receive a mes-
sage m from the port i(v). If m = ‘accept’ then a(v) ←
i(v) and c(v) ← true.

2. If a(v) = ⊥ and i(v) � d(v) then i(v) ← i(v) + 1.
3. If a(v) = ⊥ and i(v) � d(v) then send the message

‘propose’ to the port i(v).

On an even time step, each node v ∈ V performs the
following read–compute–write cycle.

1. Receive messages from all neighbours.
2. For each j such that a message ‘propose’ was received

from the port j, in increasing order:
(a) If b(v) = ⊥ then send the message ‘accept’ to the

port j. Set b(v) ← j and c(v) ← true.
(b) Otherwise, send the message ‘reject’ to the port j.

Clearly, after 2� + 1 time steps, the algorithm stops, as
no messages are sent any more.

4. Analysis

Let us first show that the set C = {v ∈ V : c(v) = true}
is a vertex cover when the algorithm stops. Consider an
arbitrary edge e = {u, v} ∈ E . If a(u) �= ⊥, then c(u) = true.
Otherwise u has sent a ‘propose’ message to v , and v has
sent a ‘reject’ message; hence b(v) �= ⊥ and c(v) = true.
We conclude that C covers the edge e.

Let us now establish the approximation ratio. Let C∗ be
a minimum vertex cover.

Let v ∈ V be such that a(v) �= ⊥. Then the port a(v) in
v leads to a node u ∈ V such that b(u) �= ⊥. Furthermore,
the port b(u) in u leads back to the node v . We say that u
and v form a pair.

Let P ⊆ E consist of all edges {u, v} such that u and v
form a pair and consider the subgraph G1 = (V , P) of G .
We make the following observations.

1. The degree of a node v ∈ V in G1 is at most 2. Indeed,
at most one of its neighbours is determined by a(v),
and at most one of its neighbours is determined by
b(v).

2. The set of non-isolated nodes (nodes with degree at
least 1) in G1 is equal to the set C .

Discard the isolated nodes to obtain the subgraph G2 =
(C, P) of G . Each connected component of G2 is a path or
a cycle, and there are no isolated nodes.
Consider an arbitrary connected component C of G2. Ei-
ther C is a path P , or we can remove one edge arbitrarily
to obtain a path. The paths form a partition of the cover C ;
each v ∈ C belongs to exactly one such path.

Let m � 1 be the number of edges on the path P . As P
is a subgraph of G , each edge of P must have at least one
endpoint in the optimal cover C∗ . Hence at least �m/2	
nodes of P are in C∗ , which is at least a fraction 1/3 of the
total number of nodes in P (the worst case being m = 2).

Summing over all paths, we conclude that |C | � 3|C∗|.
This completes the proof of Theorem 1.

5. Discussion

Textbooks and introductory courses on distributed algo-
rithms mention hardly any results related to constant-time
distributed algorithms. One of the obstacles has been the
lack of examples of algorithms that are sufficiently simple
to be explained to a non-expert audience, yet not com-
pletely trivial. The present work is a step in this direction;
further work is needed to find new interesting examples of
simple local algorithms.

Acknowledgements

We thank Patrik Floréen and Petteri Kaski for discus-
sions and comments. This research was supported in part
by the Academy of Finland, Grants 116547 and 118653
(ALGODAN), by Helsinki Graduate School in Computer Sci-
ence and Engineering (Hecse), and by the Foundation of
Nokia Corporation.

References

[1] D. Angluin, Local and global properties in networks of processors, in:
Proc. 12th Symposium on Theory of Computing (STOC 1980), ACM
Press, 1980, pp. 82–93.

[2] A. Czygrinow, M. Hańćkowiak, W. Wawrzyniak, Fast distributed ap-
proximations in planar graphs, in: Proc. 22nd Symposium on Dis-
tributed Computing (DISC 2008), in: LNCS, vol. 5218, Springer, 2008,
pp. 78–92.

[3] P. Floréen, M. Hassinen, P. Kaski, J. Suomela, Tight local approxima-
tion results for max-min linear programs, in: Proc. 4th Workshop on
Algorithmic Aspects of Wireless Sensor Networks (Algosensors 2008),
in: LNCS, vol. 5389, Springer, 2008, pp. 2–17.

[4] P. Floréen, P. Kaski, T. Musto, J. Suomela, Approximating max-min
linear programs with local algorithms, in: Proc. 22nd International
Parallel and Distributed Processing Symposium (IPDPS 2008), IEEE,
2008.

[5] M. Hańćkowiak, M. Karoński, A. Panconesi, On the distributed com-
plexity of computing maximal matchings, in: Proc. 9th Symposium
on Discrete Algorithms (SODA 1998), SIAM, 1998, pp. 219–225.

[6] M. Hańćkowiak, M. Karoński, A. Panconesi, On the distributed com-
plexity of computing maximal matchings, SIAM Journal on Discrete
Mathematics 15 (1) (2001) 41–57, doi:10.1137/S0895480100373121.

[7] J.-H. Hoepman, S. Kutten, Z. Lotker, Efficient distributed weighted
matchings on trees, in: Proc. 13th Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO 2006), in: LNCS,
vol. 4056, Springer, 2006, pp. 115–129.

[8] F. Kuhn, T. Moscibroda, R. Wattenhofer, What cannot be computed
locally! in: Proc. 23rd Symposium on Principles of Distributed Com-
puting (PODC 2004), ACM Press, 2004, pp. 300–309.

[9] F. Kuhn, T. Moscibroda, R. Wattenhofer, The price of being near-
sighted, in: Proc. 17th Symposium on Discrete Algorithms (SODA
2006), ACM Press, 2006, pp. 980–989.

[10] C. Lenzen, Y.A. Oswald, R. Wattenhofer, What can be approximated
locally? in: Proc. 20th Symposium on Parallel Algorithms and Archi-
tectures (SPAA 2008), ACM Press, 2008, pp. 46–54.

http://dx.doi.org/10.1137/S0895480100373121

V. Polishchuk, J. Suomela / Information Processing Letters 109 (2009) 642–645 645
[11] C. Lenzen, R. Wattenhofer, Leveraging Linial’s locality limit, in: Proc.
22nd Symposium on Distributed Computing (DISC 2008), in: LNCS,
vol. 5218, Springer, 2008, pp. 394–407.

[12] N. Linial, Locality in distributed graph algorithms, SIAM Journal on
Computing 21 (1) (1992) 193–201, doi:10.1137/0221015.

[13] T. Moscibroda, Locality, scheduling, and selfishness: Algorithmic
foundations of highly decentralized networks, PhD thesis, ETH
Zürich, 2006.

[14] M. Naor, L. Stockmeyer, What can be computed locally? SIAM
Journal on Computing 24 (6) (1995) 1259–1277, doi:10.1137/
S0097539793254571.
[15] C.H. Papadimitriou, M. Yannakakis, Linear programming without the
matrix, in: Proc. 25th Symposium on Theory of Computing (STOC
1993), ACM Press, 1993, pp. 121–129.

[16] M. Wattenhofer, R. Wattenhofer, Distributed weighted matching, in:
Proc. 18th Symposium on Distributed Computing (DISC 2004), in:
LNCS, vol. 3274, Springer, 2004, pp. 335–348.

[17] A. Wiese, E. Kranakis, Local PTAS for independent set and vertex
cover in location aware unit disk graphs, in: Proc. 4th Conference on
Distributed Computing in Sensor Systems (DCOSS 2008), in: LNCS,
vol. 5067, Springer, 2008, pp. 415–431.

http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571

	A simple local 3-approximation algorithm for vertex cover
	Introduction
	Overview
	Algorithm
	Analysis
	Discussion
	Acknowledgements
	References

