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ABSTRACT

This work studies decision problems from the perspective of
nondeterministic distributed algorithms. For a yes-instance
there must exist a proof that can be verified with a distrib-
uted algorithm: all nodes must accept a valid proof, and at
least one node must reject an invalid proof. We focus on
locally checkable proofs that can be verified with a constant-
time distributed algorithm.

For example, it is easy to prove that a graph is bipartite:
the locally checkable proof gives a 2-colouring of the graph,
which only takes 1 bit per node. However, it is more difficult
to prove that a graph is not bipartite—it turns out that any
locally checkable proof requires Q(logn) bits per node.

In this work we classify graph problems according to their
local proof complexity, i.e., how many bits per node are
needed in a locally checkable proof. We establish tight or
near-tight results for classical graph properties such as the
chromatic number. We show that the proof complexities
form a natural hierarchy of complexity classes: for many
classical graph problems, the proof complexity is either 0,
O(1), ©(logn), or poly(n) bits per node. Among the most
difficult graph properties are symmetric graphs, which require
Q(n?) bits per node, and non-3-colourable graphs, which
require Q(n?/logn) bits per node—any pure graph property
admits a trivial proof of size O(n?).

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks|: Distrib-
uted Systems; F.1.3 [Computation by Abstract Devices]:
Complexity Measures and Classes

General Terms
Algorithms, Theory

1. INTRODUCTION

This work studies decision problems from the perspective
of distributed algorithms. As argued by Fraigniaud in his
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PODC 2010 keynote talk [8], the appropriate model for yes—
no tasks is the following:

e For a yes-instance, all nodes must output 1.
e For a no-instance, at least one node must output 0.

Intuitively, if we have an acceptable input, all nodes will be
happy, and if we have an invalid input, at least one node has
to raise an alarm.

1.1 Locally Checkable Properties

Our focus is on decision tasks that can be solved locally, by
using a constant-time distributed algorithm [18,23]. That is,
each node must make its decision based on its constant-radius
neighbourhood in the communication graph; equivalently, we
run the distributed algorithm for O(1) rounds and after that
all nodes must stop and announce their outputs.

A trivial example of a decision problem that can be solved
locally is determining if a given connected graph is Eulerian:
it is sufficient that each node outputs 1 if its degree is even,
and 0 otherwise. Such graph properties are called locally
checkable properties—there exists a local algorithm, called
verifier, that accepts all Eulerian graphs and rejects all non-
Eulerian graphs.

Another example of locally checkable properties is deciding
if a given graph is a line graph. If the nodes have unique
identifiers, a constant-time verifier can check that the graph
does not contain any of the nine forbidden subgraphs in
Beineke’s [3] characterisation of line graphs.

1.2 Locally Checkable Proofs

Local checkability as such does not seem to lead to an
interesting complexity theory—there are very few locally
checkable properties. The key insight of Korman et al. [14-17]
is to study locally checkable proofs.

To illustrate the idea, consider the problem of deciding if
a given graph is bipartite. This is not a locally checkable
property—indeed, if we consider odd vs. even cycles, we
can see that any verifier that solves the problem must have
the running time Q(n). However, if we want to convince
a distributed algorithm that the graph is indeed bipartite,
we can augment the graph with a locally checkable proof.
In this case, it is sufficient to give 1 bit of proof per node:
if the graph is bipartite, we can give a 2-colouring of the
graph as the proof, and a local verifier can check that the
proof is correct. Conversely, if the graph is not bipartite,
no matter what proof bits we choose, at least one node will
detect that the proof is invalid. Hence we say the property of
bipartiteness is in the class LCP(1): for any bipartite graph,



there is a locally checkable proof of size 1 bit per node (refer
to Section 2 for a precise definition).

The concepts of locally checkable proofs and locally check-
able properties are analogous to, e.g., the familiar pair of
complexity classes NP and P. If a problem is in NP, then
yes-instances have a concise proof that can be verified in P.
Similarly, if the problem is in LCP(f), then yes-instances
have a concise proof with at most f(n) bits per node and the
proof itself is checkable with a local algorithm. Equivalently,
we can interpret locally checkable proofs as nondeterministic
local algorithms: in the algorithm, each node can nondeter-
ministically guess f(n) bits.

1.3 Contributions

In this work, we define the class LCP(f) that consists of
graph problems that admit locally checkable proofs of size
f(n) bits per node. The model is similar to that studied by
Korman et al. [14-17], but strictly stronger.

We catalogue problems according to their local proof com-
plexities, and we show that the LCP(f) classes form a natu-
ral hierarchy of decision problems. In particular, there are
natural graph problems that separate the following levels
of the hierarchy: LCP(0), LCP(O(1)), LCP(O(logn)), and
LCP(poly(n)); see Table 1.

We argue that LogLCP = LCP(O(logn)) is a particularly
good candidate for a complexity class of independent interest.
The class is robust to variations in the exact definition of the
LCP hierarchy (see Section 7.1). Many central graph prob-
lems are contained in LogLCP, and they are not contained
in LCP(o(logn)).

We present proof techniques that can be used to derive
tight and near-tight lower bounds for the local proof complex-
ity. We show how to apply tools from other fields of computer
science and mathematics: results in extremal graph theory,
fooling set arguments from the field of communication com-
plexity, and gadgets that are typical in NP-hardness proofs.
The same techniques can be applied to derive lower bounds
for many other problems in addition to those mentioned in
this work.

2. DEFINITIONS AND EXAMPLES

In what follows, F is a family of simple, undirected graphs.
For a graph G € F, we write V(G) for the set of nodes, E(G)
for the set of edges, and n(G) = |V (G)| for the number of
nodes in G. If graph G is clear from the context, we simply
use the symbols V', E, and n. We assume that the nodes
of any G € F are identified with small natural numbers
with O(logn) bits, that is, V(G) C {1,2,...,poly(n(G))}.
Depending on the problem that we study, nodes and edges
may also be associated with weights, colours, labels, etc.

2.1 Proofs and Verifiers

A proof P for G is a function P: V(G) — {0,1}* that
associates a binary string to each node of G. The size |P| of
proof P is the maximum number of bits in any string P(v).
We write € for an empty proof of size 0.

A wverifier A is a computable function that maps each
triple (G, P,v) to a binary output 0 or 1. Here G € F is a
graph, P: V(G) — {0,1}* is a proof, and v € V(G) is a node
of G. Intuitively, A(G, P,v) is the output of node v if we
run the distributed algorithm A in graph G and each node
u € V(G) is provided with input P(u).
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Table 1: Local Proof Complexities

(a) The local proof complexity of verifying graph property P,
assuming that the input graph is in graph family 7. Constant
k is a natural number. In reachability problems, nodes s and
t are labelled; otherwise the graphs are unlabelled (i.e., the
focus is on pure graph properties).

Proof size s Graph property P Family 7 Ref.

LCP(0):
0 Eulerian graph conn. §1.1
0 line graph general §1.1
LCP(O(1)):
o(1) s—t reachability undir. §4.1
o(1) s—t unreachability undir. §4.1
O(1) s—t unreachability directed  §4.1
o(1) s—t connectivity = k planar §4.2
O(1) bipartite graph general §1.2
o(1) even n(G) cycles
LCP(O(logk)):
O(log k) s—t connectivity = k general 84.2
O(logk) chromatic number < k  general §2.2
LogLCP:
O(logn) coLCP(0) properties conn. §7.3
O(logn) monadic X1 properties  conn. 87.5
O(logn) odd n(G) cycles 85
O(logn) chromatic number > 2  conn. 85
LCP(poly(n)):
O(n) fixpoint-free symmetry trees 6.2
o(n?) symmetric graphs conn. §6.1
(n?/logn) chromatic number >3  conn. 6.3
(n?) computable properties  conn. 86
— connected graph general

(b) The local proof complexity of verifying a solution of graph
problem P, assuming that the input graph is in graph family
F. Here W is the maximum weight of an edge.

Proof size s Graph problem P Family 7 Ref.
LCP(0):

0 maximal matching general §2.3

0 LCL problems general 83, [18]

0 LD problems conn. §3, [10]
LCP(O(1)):

O(1) maximum matching bipartite  §2.3
LCP(O(log W)):

O(logW)  max-weight matching  bipartite  §2.3
LogLCP:

O(logn) coLCP(0) problems conn. §7.3

O(logn) leader election conn. 85, [16]

O(logn) spanning tree conn. 85, [16]

O(logn) maximum matching cycles 85

O(logn) Hamiltonian cycle conn. 85
LCP(o0):

unlimited ~ NLD problems conn. 83, [10]

unlimited ~ NLD#"™ problems conn. 83, [10]




For a natural number r € N and a node v € V(G), let
Vv,r] C V(G) be the set of nodes that are within distance r
from v (the shortest path from v to any node in V[v, ] has
at most r edges). Let G[v, 7] be the subgraph of G induced by
Vv, ], and let Plv,r]: V[v,r] — {0,1}* be the restriction of
a proof P: V(G) — {0,1}* to Vv, 7].

A verifier A is a local verifier if there exists a constant
r € N such that

A(G, P,v)

That is, the output of a node v only depends on the input in
its radius-r neighbourhood. Constant r is the local horizon
of A.

Local verifiers are local algorithms [18,23]. If we consider
Peleg’s [19] local model, a local verifier is a constant-time
distributed algorithm: a local verifier with horizon r can be
implemented as a distributed algorithm that completes in r
synchronous communication rounds.

2.2 Locally Checkable Proofs

A graph property P C F is a subset of graphs that is closed
under re-assigning the identifiers of the nodes. Put otherwise,
if G and G’ are isomorphic (they have the same structure but
possibly different node identifiers), then G’ € P if and only
if G € P. Examples of graph properties include Hamiltonian
graphs, Eulerian graphs, bipartite graphs, connected graphs,
line graphs, trees, and cycles.

A graph property P C F admits locally checkable proofs
of size s: N — N on family F if there is a local verifier A
such that for every G € F:

(i) If G € P then there exists a proof P: V(G) — {0,1}*
with |P| < s(n(G)) such that A(G, P,v) = 1 for each
node v € V(G).

(ii) If G ¢ P then for any proof P: V(G) — {0,1}* there
is at least one node v € V(G) such that A(G, P,v) = 0.

A(Glv,r], Plv,r],v) for all G, P,v.

That is, yes-instances have a valid proof that is accepted by
all nodes, no-instances do not have valid proofs, and at least
one node detects an invalid proof. If f is a function that
associates a valid proof P = f(G) with each G € P, we say
that the pair (f,.A) is a proof labelling scheme.

If a property P admits locally checkable proofs of size s,
we write P € LCP(s). We use coLCP(s) to denote the class of
graph properties whose complement is in LCP(s); that is, if
F\P € LCP(s), we write P € coLCP(s). The class LogLCP
consists of properties that are in LCP(s) for s = O(log n); see
Section 7.1 for an equivalent, alternative characterisation.

As we observed in Section 1, Eulerian graphs and line
graphs can be verified without a proof, and hence they are
in LCP(0). Bipartite graphs are not in LCP(0) but they are
contained in LCP(1), as they can be verified with one bit of
input per node. More generally, if a graph has chromatic
number at most k, we can prove it with O(logk) bits per
node: simply give a proper k-colouring as the proof.

2.3 Extension: Solutions of Graph Problems

If we consider graphs with labelled nodes, we can also
define graph properties such as independent sets (“nodes with
label 1 form an independent set”) or spanning trees (“edges
with label 1 induce a spanning tree”). That is, we can extend
the definitions of locally checkable proofs to the verification
of the solutions of graph problems (see Section 7.2 for two
variants of the theme).
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For example, maximal matchings can be verified without
any proofs, and hence we say that this problem is in LCP(0).
On the other hand, verifying a maximum matching (“edges
with label 1 form a mazimum-cardinality matching”) requires
some auxiliary information. The general case is non-trivial,
but in the case of bipartite graphs we can use Konig’s the-
orem [5, p. 35] to construct a constant-size proof P: take
any minimum vertex cover C' C V(G), and set P(v) = 1 iff
v € C. Now a local verifier can check that the node labelling
encodes a valid matching M, the set C' encoded in the proof
forms a vertex cover, and each edge of M has exactly one
endpoint in C; hence |C| = |M|, C is a minimum vertex
cover, and M must be a maximum matching. Therefore
maximum matchings in bipartite graphs are in LCP(1), as
the size of P is 1.

More generally, we can use linear-programming duality to
prove that in an edge-weighted bipartite graph G, a subset
of edges M C E(G) is a maximum-weight matching. Asso-
ciate a variable x. > 0 with each edge e € E, and a dual
variable y, > 0 with each node v € V. Let w. € N be
the weight of edge e, and let A be the incidence matrix of
graph G. Recall that matrix A and its transpose A’ are
totally unimodular, and hence there are integral vectors =
and y that maximise ) wex. subject to Az < 1 (primal
LP) and minimise 3 y, subject to A’y > w (dual LP).
Each maximum-weight matching M corresponds to an op-
timal integral solution z of the primal LP, and we can use
an optimal dual solution y as a proof; for each node v € V,
the proof consists of a binary encoding of the value y,. To
verify the proof, it is sufficient to check that = and y satisfy
the complementary slackness conditions. If the weights are
integers from 0,1, ..., W, then we can find an optimal dual
solution such that y, € {0,1,..., W} for each node v. Hence
the size of the proof is O(log W) bits.

3. RELATED WORK

Our definition of the LCP hierarchy is an extension of the
concept of locally checkable labellings introduced by Naor and
Stockmeyer [18] in their seminal work. Naor and Stockmeyer
focus on bounded-degree graphs and constant-size labels, but
if we generalise the class LCL defined by Naor and Stockmeyer
in a straightforward manner, we arrive at the class LCP(0).

Our classes LCP(f) with f > 0 thus extend the classical
concept of locally checkable labellings by providing f(n) bits
of additional information per node. Similar extensions have
been studied in prior work, from two complementary perspec-
tives: local computation with advice and locally checkable
proofs.

3.1 Local Computation with Advice

Gavoille and Peleg [11] survey informative localised la-
belling schemes that can be used in the context of distrib-
uted algorithms. The idea is to provide each node with a
piece of advice—a short bit string that helps with local algo-
rithms that solve graph problems. For example, Fraigniaud
et al. [9] have recently investigated the following question:
how long strings of advice are needed in order to solve classi-
cal graph problems such as graph colouring by using local or
almost-local algorithms.

The main difference between advice strings and locally
checkable proofs is that the advice strings are assumed to be
correct, while the correctness of a proof can be verified. Put
otherwise, localised labelling schemes are only applicable in



a friendly and fault-free environment, while a local verifier
cannot be fooled even by an adversarial entity.

3.2 Locally Checkable Proofs

The definition of LCP is inspired by the notion of proof la-
belling schemes of Korman et al. [14-17]. While the concepts
are closely related to each other, there are subtle differences:
In the model of Korman et al., the output of a single node
must be determined on the basis of its own identifier, own
input label, own proof label and the proof labels of the
neighbouring nodes. In this model, some trivial problems
that are in LCL become unsolvable without proof labels of
nonzero size; one example is the agreement problem of check-
ing whether all nodes in a connected graph are assigned the
same input label [16, Lemma 2.1]. Hence the notion of proof
labelling schemes is not a straightforward generalisation of
the LCL model—something our LCP model strives to be. The
positive results by Korman et al. translate directly to the
LCP model, but their lower-bound results do not directly
apply, as their model is strictly weaker.

Very recently, Fraigniaud et al. [10] have also studied dis-
tributed decision problems. Their focus is on connected
graphs; to clarify the relation to our work, let us define
that LCP’(f) is equal to LCP(f) restricted to computable
properties of connected graphs. With this notation, the
class LD of local decision problems defined by Fraigniaud et
al. is equal to LCP’(0). Fraigniaud et al. have also studied
two nondeterministic versions of this class, called NLD and
NLD#™; in the latter class each node knows the total num-
ber of nodes in the graph. While NLD resembles the class
LCP’(c0) in our work, there is a major difference: proofs
in the NLD model cannot refer to the node identifiers. It
turns out that our class LCP’(c0) is equal to NLD#™: both
classes contain all computable properties of connected graphs.
Hence using the separation results of Fraigniaud et al. we
have LCP’(0) = LD € NLD € NLD#™ = LCP’(cc). While
Fraigniaud et al. place one class between the extreme ends
of LCP’(0) and LCP’(c0), our work introduces an entire hier-
archy of LCP(f) classes.

4. PROBLEMS IN LCP(O(1))

As a warm-up, this section gives examples of graph proper-
ties and graph problems that admit locally checkable proofs
of size O(1) but for which there is no locally checkable proof
of size 0. We will see that many fundamental problems
related to graph connectivity are in this class.

To ask meaningful questions about connectivity in the
LCP model, we require that two nodes s and ¢ are always
distinguished in the input graph G; that is, we have the
promise that there is exactly one node with label s and
exactly one node with label ¢. It is easy to see that in
LCP(0) we cannot decide whether there is a path from s to ¢
in G. However, many questions related to reachability and
connectivity are in LCP(O(1)).

4.1 Reachability

Let us first consider the s—¢ reachability problem in an
undirected graph G, i.e., proving that there is a path from s
to t. This problem admits a locally checkable proof of size 1:
we find a shortest path from s to ¢t in G, define that U C V
consists of all nodes on the shortest path, and set P(v) =1
iff v € U. A verifier can locally check that: (i) s,t € U;
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(ii) s and ¢ have unique neighbours in U; and (iii) every
uw € U\ {s,t} has exactly two neighbours in U [13, p. 130].

Interestingly, the above method breaks down in directed
graphs because of back-edges. In graphs of maximum degree
A, one can still give an easy upper bound of O(log A) by
using edge pointers in the proof labelling to describe a path
from s to ¢, but it is an open problem whether directed s—t
reachability is in LCP(O(1)) for general graphs (see also Ajtai
and Fagin [1]).

However, it is easy to show that the complement of the
above problem, s—t unreachability, is in LCP(O(1)) both for
undirected and directed graphs. We find a partition SUT
of V such that s € S, t € T, and there is no (directed) edge
from S to T'. Such a partition can be encoded with 1 bit per
node, and it can be verified locally.

4.2 Connectivity

As a natural generalisation of reachability, we can study
the s—t connectivity of undirected graphs; throughout this
text, we focus on the vertexr connectivity. By extending the
techniques of Korman et al. [16] we can show that graphs with
s—t connectivity equal to k admit locally checkable proofs of
size O(log k). Here we assume that k is given as input to all
nodes (or, equivalently, that & is a global constant).

If and only if the vertex connectivity is exactly k, then by
Menger’s theorem we can find (i) a partition SUCUT of V
such that s € S, t € T, and |C| = k, and (ii) k vertex-disjoint
s—t paths p1,p2,...,pr such that |C Np;| =1. W.lo.g., we
can assume that each p; is locally minimal in the sense that
it can not be made shorter without colliding with the other
paths p;, j # i.

The proof label P(v) encodes whether v € S, v € C,
or v € T. Moreover, in the proof label P(v) of a vertex
v € p; \ {s,t}, we include the path index 4 (in binary) and
also the distance of v from s modulo 3: this allows us to
store the orientation on the path p;. The local verifier can
verify that:

(i) Nodes s and t have exactly k neighbours labelled with
path indices 1,2,..., k.

(ii) Each v € p; \ {s,t} has exactly one predecessor and
one successor along p;.

(iii) We have s € S, t € T, and there is no edge between S
and 7.

(iv) Each v € C is on a path p;, its predecessor along p; is
in S and its successor is in T

If the above checks go through, the structure encoded by
the proof P contains exactly k disjoint s—t paths. It may
contain some oriented cycles inside S or inside T as well, but
this is sufficient to convince the verifier that the connectivity
of s and t is at least k. Moreover, if a path crosses C, its
colour changes from S to T'; its colour cannot change back
to S, and it cannot disappear without reaching ¢t. Hence the
above checks are also sufficient to convince the verifier that
the size of the s—t separator C is at most k. In summary,
s—t-connectivity has to be equal to k.

Finally, we note that the sole source for the O(log k) label
size was the need to store the path indices. However, on
planar graphs, only 3 path indices suffice to tell adjacent
paths from one another; an adaptation of the above method
gives a constant size proof in the case of planar graphs.



S. PROBLEMS IN LogL.CP

In this section we give examples of graph properties and
graph problems that admit locally checkable proofs of size
O(log n) but for which there is no locally checkable proof of
size o(logn). That is, these problems are in LogLCP but not
in any lower level of the LCP hierarchy.

We begin with positive results that directly build on prior
work—a key ingredient is the observation that spanning trees
in connected graphs are in LogLCP. After that, we give our
new lower-bound results.

5.1 Positive Results

A spanning tree is not locally checkable, but Korman et
al. [16] show that any spanning tree T' can be equipped with
a proof of size O(logn) that, for each vertex v, consists of
(i) the identity of a particular vertex a, the root, and (ii) the
distance from v to a in T'. Such a proof can be locally verified
by checking that the root-distance at a is 0, and that for
each vertex v (i) all neighbours of v agree on the identity of
the root, and (ii) the root-distance decreases at exactly one
neighbour of v in T and increases at other neighbours.

A locally checkable, rooted spanning tree is a versatile
tool. For example, it solves the leader election problem in a
connected graph: the root of the tree is the leader. Spanning
trees can be used to prove that the graph is acyclic: we
simply show that each component is a tree. Hamiltonian
cycles and Hamiltonian paths can be verified by using the
same technique: a Hamiltonian path can be interpreted as a
spanning tree.

With spanning trees, we can also gather global information
about the input graph. For instance, every node can be
convinced of the value of n(G) on a connected graph G with
the aid of a spanning tree with node counters along the paths
towards the root. Hence graph properties such as having an
odd number of nodes are also in LogLCP.

In LogLCP, we can also show that the chromatic number
of a connected graph is larger than 2 (i.e., the graph is not
bipartite). To construct a proof, first find an odd cycle in
the graph—such a cycle exists if and only if the graph is
non-bipartite. Then select one of the nodes of the cycle as
the leader a. Construct a spanning tree rooted at a; this way
the verifier can check that there exists exactly one leader.
Then propagate a node counter along the cycle, starting and
ending at a; this way the leader node can be convinced that
it is indeed part of an odd cycle.

5.2 Negative Results: Overview

In what follows, we will show that the following graph
properties and graph problems do not admit locally checkable
proofs of size o(logn): graphs with an odd number of nodes,
non-bipartite graphs, spanning trees, and leader election.
Hence these are examples of problems whose containment
in LogLCP is tight: their local proof complexity is exactly
O(logn).

The negative results build on the same basic idea. We will
focus on cycles. We will assume that there is a proof labelling
scheme (f,.A) with o(logn)-bit proofs. We will take several
yes-instances—each of them is a short cycle—and inspect
the encoding produced by f. Then we will use extremal
results to show that some of the yes-instances are necessarily
compatible with each other in the following sense: we can
take several short cycles and glue them together to form a
longer cycle; the unique identifiers and the proof labels are
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inherited from the short cycles, and each node of the long
cycle will be locally indistinguishable from a node of a short
cycle. Hence the verifier will accept the long cycle, as it has
to accept all short cycles.

However, even though the short cycles are yes-instances,
we will show that the long cycle is a no-instance. For example,
in the case of non-bipartiteness, each short cycle has an odd
number of nodes, but the long cycles is composed of an even
number of short cycles, and is therefore a no-instance. In
the case of leader election, each short cycle has one leader
node, while the long cycle will contain multiple leaders, and
is therefore an invalid solution. Similar ideas can be applied
to many other lower bounds.

5.3 Gluing Cycles Together

Let F be a family of graphs that contains (at least) all
cycles. In each graph G € F, we may have a constant number
of bits of auxiliary information per node (colours, labels, etc.).
Let P C F be a graph property.

Assume that (f,.A) is a proof labelling scheme for property
P that uses o(log n)-bit proofs. Fix an integer constant k > 2.
Let n be a sufficiently large positive integer. We will assume
that n-cycles (with appropriate auxiliary information) are
in P.

Our plan is to show that we can always find k yes-instances,
each of which is an n-cycle, and we can glue them together to
form a kn-cycle that inherits the proof labels (and auxiliary
information, if any) from the yes-instances. Verifier A will
accept each n-cycle, and therefore it will also accept the
kn-cycle. For an example, see Figure 1.

Let us first construct the yes-instances. Let ny = [n/2]
and ny = [n/2]; that is, n1 + n2 =n. Let A ={1,2,...,n}
and B={n+1,n+2,...,2n}. For each a € A and b € B,
let C(a,b) be the n-cycle that contains the following nodes
in this order:

a, a+4n, a+6n, a+ 8n, ...
b+2nn2, ..., b+ 8n, b+ 6n, b+ 4n, b.

, a+2nng,

Note that V(C(a,b)) and V(C(a’,b")) are disjoint if a # a’
and b #b'.

For each a and b, augment C(a,b) with auxiliary informa-
tion such that C(a, b) is in P, if necessary; let Lqp(v) € {0,1}*
be the bit string associated with node v € V(C(a,b)). For
example, if we focus on the leader election problem, label
exactly one node in each C(a,b) as the leader: select a node
u € V(C(a,b)) and set Lap(u) = 1 and Lap(v) = 0 for all
v # u. We can consider either best-case or worst-case choice
of the leader, thus covering both weak and strong proof
labelling schemes (see Section 7.2).

Then we apply f to C(a,b) to construct a locally checkable
proof Pgp of size o(logn). For each node v € V(C(a, b)), let

(V) = (Lap(v), Pap(v)). Finally, define

c(a,b) = (Py(a+2n-(2r+1)), Pyla+2n-2r), ...,
P(ib(a +2n- 2)7 Péb(a)7 Pz;b(b)7 P(ib(b+ 2n - 2)7
Py(b+2n-4), ..., Py(b+2n-(2r+1))).

That is, c¢(a,b) consists of all auxiliary information and all
proof bits that are available within distance 2r + 1 from the
node a or b in C(a,b). By assumption, we have o(rlogn) bits
of information in c¢(a, b).

Now let K, = (AU B, E) be the complete bipartite
graph with £ = {{a,b} : a € A,b € B}. We define an edge



Monochromatic 2k-cycle in K, :
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Constructing the kn-cycle C by gluing together
two compatible n-cycles:

CEID: 7

C(3,12):

C(8,17):

C:
3 12 8 17
43 52 48 57
63 72 68 77
83 92 88 97
103 112 108 117
Figure 1: Gluing cycles together.
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colouring of Ky, , as follows: the colour of the edge {a,b} € E
is c(a, b).

For a sufficiently large n, the number of bits of information
in ¢(a, b) is smaller than log(n)/3, and the number of distinct
colours in K, , is therefore smaller than \3/5 Hence there
is a subset of edges H C E such that |H| > |E|/&/n = n®/?
and all edges of H have the same colour.

Now we can apply a result due to Bondy and Simonovits [4]:
for any k > 2 and for a sufficiently large n, the subgraph
(AU B, H) necessarily contains a 2k-cycle. Let the nodes of
the cycle be ai1,b1,a2,b2,...,ak, by in this order, such that
a; € A and b; € B for each i. As all edges of the cycle
have the same colour, we have c(a1,b1) = c(az,b2) = -+ =
c(ak,br) = c(ar,br) = claz,b1) = -+ = ¢(ak,br—1). For
convenience, define by = by, and ax+1 = a1.

Now we construct a kn-cycle C by gluing together n-cycles
C(a1,b1),C(az,b2),...,C(ak,bx). That is, we take the node-
disjoint graphs C(as, b;), remove the edges {as, b; } for each ¢,
and add {b;—1,a;} for each ¢ > 1. For each node v € V(C),
we inherit the auxiliary information L(v) and the proof bits
P(v) from the cycles C(a;, b;).

It remains to argue that the computation of A on C with
the labels L and proof P is accepting. To see this, pick a
vertex v € V(C). Then there is an ¢ such that v € V(C(as, b;)).
If v is far from a; and b;, then the local neighbourhood of
v looks identical in C and C(as,b;); as C(as, bi) is a yes-
instance, v accepts the input. If v is near b;, then the local
neighbourhood of v looks identical in C and C(a;+1, b;), which
is another yes-instance. Similarly, if v is near a;, then its local
neighbourhood looks identical in C and C(a;, b;—1), which is
also a yes-instance. In all cases, v accepts the input.

Thus the kn-cycle C is accepted by all nodes. If C ¢ P, we
have a contradiction, and we can conclude that the graph
property P does not admit locally checkable proofs of size
o(logn).

5.4 Implications

Now we can give concrete examples of graph properties
and graph problems P for which C ¢ P, provided that we
choose the parameters k and n properly:

e Non-bipartite graphs: We can select an odd n and
k=2.

e Leader election: It is sufficient to choose k = 2. Then
each C(a,b) contains exactly one node labelled as a
leader and C contains two nodes.

e Spanning trees: Again, we can choose k = 2. The span-
ning tree in each C(a, b) contains all edges of E(C(a,b))
except one, i.e., it is a spanning path. The solution
encoded in C consists of two disjoint paths, and is
therefore not a spanning tree.

We can also apply the same construction to counting prob-
lems: to give a simple example, if we choose an odd n and
an even k, then n(C(a,b)) is odd while n(C) is even.

We can also prove lower bounds for optimisation problems.
Consider, for example, the problem of finding a maximum
matching in a cycle. If n is odd, then each C(a,b) has
necessarily one unmatched node. The solution inherited
from C(a,b) to C has therefore k unmatched nodes, and
cannot be optimal.

Hence all of these problems require proofs of size Q(logn),
and the lower bound is tight.



6. PROBLEMS IN LCP(poly(n))

In the previous sections, we have seen problems that admit
locally checkable proofs of size O(log(n)). Now we turn our
attention to the problems that require much larger proofs.

If the nodes can have arbitrary labels (e.g., weights), it
is easy to come up with artificial problems that require
arbitrarily large proofs. However, in this section we will
focus on pure graph properties: we do not have any additional
information besides the structure of the graph G and the
unique node identifiers.

In connected graphs, any computable pure graph property
admits locally checkable proofs of size O(n?). We can encode
the structure of G and the unique node identifiers in O(n?)
bits; the nodes can verify that their neighbours agree on the
structure of G, and then they can solve the problem by brute
force.

In this section, we will show that there are pure graph
properties that require €(n?)-bit proofs. Such problems
are the most difficult problems from the LCP perspective—
we can only save a constant factor in comparison with the
brute-force solution.

6.1 Symmetric Graphs

We will focus on the family F of connected graphs. In
what follows, we say that a graph G is symmetric if it has a
non-trivial automorphism, that is, there is an automorphism
g: V — V that is not the identity function; otherwise it is
asymmetric.

Let P C F consist of symmetric graphs. We will show
that property P does not admit locally checkable proof of
size o(n?). That is, a proof with o(n?) bits per node is not
sufficient to convince a local verifier that a given connected
graph is symmetric. To reach a contradiction, assume that
there exists a proof labelling scheme (f,.A) with o(n?)-bit
proofs.

To facilitate the proof, we will use canonical forms of
graphs. We associate a canonical form C(G) with any graph G.
Graphs G and C(G) are isomorphic; moreover, whenever G
and H are isomorphic, their canonical forms C(G) and C(H)
are equal. We assume that the node identifiers of a canonical
form are V(C(G)) = {1,2,...,n(G)}. We also define a graph
with shifted identifiers as follows: for an integer i, graph

C(G,1) has
V(C(G,)={i+1,i+2,...,i+n(G)}

as the set of node identifiers. Moreover, we assume that
g: v +— i+ v is an isomorphism from C(G) to C(G,i). In
particular, C(G,0) = C(G).

Now we are ready to give the lower-bound construction.
Given connected graphs G; and G with n(G1) = n(Gz) = k,
we construct a graph G = G1 ® G2 with V(G) ={1,2,...,3k}
as follows: G consists of a copy of C(Gi,k), a copy of
C(Ga2,2k), and the path (k + 1,1,2,...,k,2k + 1). That
is, G consists of a path that joins graphs that are isomorphic
to G1 and Go.

Assume that G; and G2 are asymmetric. If G; and Gy are
isomorphic, then by construction G = G; ® G2 is symmetric:
there is a non-trivial automorphism that maps, e.g., 1 — k
and £+ 1 — 2k + 1. Conversely, if Gi and G2 are not
isomorphic, then G must be asymmetric.

Let Fi be a family containing a representative from each
isomorphism class of asymmetric connected graphs with k
nodes. For any G; € Fi, the local verifier A has to accept
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G1 © G1, as it is symmetric. Since almost all graphs are
connected [5, Cor. 11.3.3] and asymmetric [6], we have

1Fel = (1 — 0(1)23) /Kt and log |Fu| = O(K2).

Now assume that k£ > 2r + 1, and consider the proof labels
of the nodes in U = {1,2,...,2r 4 1}. There are only o(rn?)
proof bits in U. As r = O(1) and n = 3k, we have only o(k?)
proof bits in U; for sufficiently large k this is less than log | F|.
Hence we must have two different graphs G1,Gs € Fi such
that the labelling scheme assigns the same proof bits to the
nodes 1,2,...,2r + 1 in both G; ® G; and G2 ® Ga.

Now we can construct the asymmetric graph G = G © Go.
For the nodes k+ 1,k + 2,...,2k we inherit the proof la-
bels from f(G1 ® G1), and for the nodes 2r 4+ 2,2r + 3,.. .,
k,2k + 1,2k +2,...,3k we inherit the proof labels from
f(G2 ® G2). For the nodes 1,2, ...,2r+1 we use the common
labelling of f(G1 ® G1) and f(G2 ® G2). Now the radius-r
neighbourhood of any node in G looks identical to the neigh-
bourhood of a node in G; ® G1 or Go ® Go. Hence all nodes
will accept the input even though G is not symmetric, a
contradiction.

In conclusion, in order to verify that a given connected
graph is symmetric, we need proofs of size ©(n?).

6.2 Fixpoint-Free Symmetry on Trees

Let us now focus on the family F of connected trees. Then
any pure graph property P C F admits a locally checkable
proof of size O(n): for each node v of the tree G € P, we
encode the structure of G and an index that identifies which
node of G is v; the structure of a tree can be encoded in ©(n)
bits, and the index requires ©(logn) bits.

Now we will show that there are pure graph properties that
require ©(n)-bit proofs. We will use the following (artificial)
problem as an example. We say that a graph G has a fixpoint-
free symmetry if there is an automorphism that fixes no nodes,
i.e., there is an automorphism g: V(G) — V(G) such that
g(v) # v for all v € V(G).

Let P C F consists of those connected trees that have a
fixpoint-free symmetry. We will show that P does not admit
proofs of size o(n), and is therefore among the most difficult
properties of trees.

The proof is analogous to the case of symmetric graphs.
The only difference is that we let Fj consist of rooted trees
with k nodes; if G1,G2 € Fi and k is even, then G; ® G2 has
a fixpoint-free symmetry if and only if G; = G>. We have
log | Fi| = ©(k) [22, Seq. A000081]; hence a proof of size o(n)
bits leads to a contradiction. We conclude that trees with
a fixpoint-free symmetry require locally checkable proofs of
size ©(n).

6.3 Non-3-Colourability

Now we turn our attention to the classical problem of
graph colouring. In Section 5 we have already seen that in
the case of 2-colourability, the complement of the problem is
strictly more difficult: to show that a graph can be coloured
with 2 colours a ©(1)-bit proof is sufficient, but to show
that a graph cannot be coloured with 2 colours we need
O(log n)-bit proofs.

In the case of 3-colourings, the difference between the
problem and its complement is even more dramatic. Again,
constant-size proofs are enough to show that a graph can be
coloured with 3 colours, as we can give a 3-colouring as a
proof. However, to prove that a graph cannot be coloured



with 3 colours, we need very large proofs, with polynomially
many bits per node.

More specifically, let us again focus on the family F of
connected graphs, and let P C F consist of graphs that have
chromatic number larger than 3. We will show that property
P does not admit locally checkable proofs of size o(n?/logn).
Recall that any pure graph property admits proofs of size
O(n?); hence the result is almost tight, and shows that non-
3-colourability does not have a proof labelling scheme that
is substantially better than the brute-force approach.

Let k be a positive integer. Define I = {0,1,...,2F —1}.
Given a set A C I x I, we construct a graph Ga, with the
following properties:

(i) The total number of nodes in Ga is ©(2).

(ii) The set of nodes V(G4) contains the following nodes:
T, F, N, zo,21,...,%k-1, and Yo, Y1, ..., Yk—1-

Moreover, valid 3-colourings of G4 have the following prop-
erties:

(iii) The nodes T, F, and N have three different colours.
The nodes with the same colour as T are said to be
true, those with the same colour as F' are false, and
others are neutral.

Each of x; and y; has to be true or false. Hence we
can interpret the colouring of the nodes x; as a binary
encoding of an integer z € {0,1,..., 2k — 1}; similarly
the colouring of the nodes y; is a binary encoding of
an integer y.

In any 3-colouring, we must have (z,y) € A. Con-
versely, we can find a valid 3-colouring that encodes
any (z,y) € A.

Such graphs exist; for an explicit construction of G4 as well
as additional illustrations, see the extended version of this
work [12].

We denote by G4 an isomorphic copy of Ga; we use the
primed symbols 7", F’, N’, z}, and ¥} to refer to the nodes
of Gly.

In addition to graphs G4 and G, we will need wires that
propagate colours. A wire w consists of 97 nodes, labelled
w(i,j) for i = 1,2,...,3r and j = 1,2,3. For each i, the
nodes w(i, 1), w(i,2), and w(s, 3) form a triangle. For each
i < 3r and j # j', the nodes w(i,j) and w(i + 1,;') are
connected with an edge. It follows that in any 3-colouring
of a wire, the nodes w(i, 1), w(¢,2) and w(i,3) must have
different colours, and w(%, j) must have the same colour as
w(i +1,7).

Given two sets A, B C I x I, we construct a graph G = Ga B
that consists of G4 and G that are connected to each other by
2k + 1 wires. The wires are labelled with wr, w{, w3, ..., wg,
and wy,wy, ..., wy. The endpoints of the wires are identified
with the nodes of the subgraphs G4 and G5 as follows:

w(l,1) =N and w(3r,1)=N' V wire w,
wr(1,2) =T and wr(3r,2) =T,
wi(1,2) = 2; and wi (3r,2) = 5

w!(1,2) = y; and w?(3r,2) = y;

Vi=0,1,...,k—1,
Vi=0,1,...,k—1.
We make the following observations of G:

(i) The total number of nodes in G is n = ©(2F).

166

(ii) Let W C V/(G) consist of the nodes that are not in
Ga or Gf; these are internal nodes of the wires. The
number of nodes in W is O(rk) = O(rlogn).

(iii) The shortest path from a node of G4 to a node of G
has length at least 3r — 1. In particular, for sufficiently
large r, the local neighbourhood of any node is a subset
of WU V(Ga) or a subset of WU V(G5).

Moreover, 3-colourings of G have the following properties:

(iv) Nodes N and N’ have the same colour, nodes T and
T’ have the same colour, and nodes F' and F’ have the
same colour. Hence the concepts of true, false, and
neutral nodes are well-defined in G.

Nodes z; and z} have the same colour for each 7, and
nodes y; and gy, have the same colour for each i. In
particular, both G4 and G% agree on the encoding of
the same pair (z,y), and we must have (z,y) € AN B.

It follows that Ga g has a 3-colouring if and only if ANB # (.

Let A C I xI and let A be its complement. Now ANA =
and G4 z does not have a 3-colouring; hence it is in P. If
we had locally checkable proofs of size o(n?/logn), the total
number of proof bits in W would be o(rn?); on the other
hand, there are ©(n?) elements in I x I. Hence for sufficiently
large n there are two different sets A, B C I x I such that
we have the same proof bits in W for both G4 5 and G 5.

Now we are ready to apply a fooling set argument. As
A # B, we have ANB # () or AN B # ) (or both). W.lo.g.,
assume that AN B # (). Hence Ga,p admits a 3-colouring,
and it is therefore not in P. But we can construct a proof
as follows: the proof bits of G4 are inherited from the proof
of G4 4, the proof bits of G5 are inherited from the proof of
Gp, B, and the proof bits of wires are the same as in G4 z and
Gp, - Hence each node of G4 g has a local neighbourhood
that looks identical to a node of G4 1 or Gg 5. As G4
and Gp p are yes-instances, all nodes will accept G4 5, a
contradiction.

We conclude that non-3-colourability requires proofs of size
Q(n?/logn), and proofs of size O(n?) are trivially sufficient.

7. DISCUSSION

We conclude this work by discussing alternative definitions
and extensions of the LCP hierarchy, and by relating the LCP
classes to each other as well as other complexity classes.

7.1 Alternative Characterisations of LogL.CP

Throughout this work, we use the assumption that the local
verifier can access the unique identifiers of the nodes, and
our definition of the class LogLCP builds on this assumption
as well. However, we can use spanning trees to show that
the definition of LogLCP is robust in the sense that we can
change our underlying model of distributed computation and
yet arrive at exactly the same class of graph properties. For
the sake of simplicity, we will focus on connected graphs.

Let us consider two different models of distributed compu-
tation, My and M2. Model M; has unique identifiers, while
model M has a port numbering and a leader. In more detail,
model M; is the one defined in Section 2: each node has a
unique identifier of size O(logn) bits. Model My is defined as
follows: The nodes do not have unique identifiers. There is
only port numbering [2] available in the network, i.e., a node



of degree d can refer to its neighbours by integers 1,2,...,d.
In addition to the port numbering, we know that there is
exactly one node a € V(G) that is designated as a leader.

From the perspective of properties that can be verified
without auxiliary information, the two models are very dif-
ferent. To give an example, in M, it is easy to verify that
the graph is triangle-free, while this is not solvable in Ma.
However, it turns out that the class of properties that can
be verified with O(logn) bits in M is equal to the class of
properties that can be verified with O(logn) bits in M.

To see this, assume that (f2,.A2) is a proof labelling scheme
for a graph property P in model M. Then we can construct
a scheme (f1,.41) for model M; as follows: Consider a graph
G € P with an arbitrary choice of unique identifiers. We
assign the port numbers as follows: for each node the neigh-
bour number % is the neighbour with the ith smallest unique
identifiers. We choose an arbitrary leader node a € G and an
arbitrary spanning tree T rooted at a. Now f1 constructs a
proof that consists of f2(G) and an encoding of the spanning
tree (T,a). Then A; can first verify the encoding of (T, a),
and then simulate As.

Conversely, if (f1,.41) is a proof labelling scheme for P
in model M, we can construct a scheme (f2,.A2) for Ma
as follows: Consider a graph G € P with an arbitrary port
numbering and a leader a. Let T be an arbitrary spanning
tree rooted at a. Generate unique identifiers for V(G) by
doing a depth-first traversal on T starting at a and recording,
for every node v, its discovery time x(v) and finishing time
y(v); the unique identifier of a node v is an encoding of the
pair (z(v),y(v)). Now fa constructs a proof that consists of
f1(9), an encoding of (T, a), and the unique identifier of each
node. Then A3 can first verify the encoding of (7', a), and
it can check that the pairs (z(v), y(v)) are locally consistent
with a depth-first traversal on the rooted spanning tree—it
follows that the node identifiers must be globally unique.
Finally, A2 can simulate A; using the unique identifiers that
were encoded in the proof.

In essence, we can use a locally checkable spanning tree [16]
and a simple ancestor labelling scheme [11] to translate proof
labelling schemes between models M; and My with only
O(logn) overhead. Hence the class LogLCP can be defined
equally well using either of these models.

7.2 Weak and Strong Schemes

For graph problems, we can consider two variants of proof
labelling schemes:

e Strong proof labelling schemes: in any graph G, for any
feasible solution X, there is a proof that shows that X
is a correct solution.

e Weak proof labelling schemes: in any graph G, there is
at least one feasible solution X, such that we can prove
that X is a correct solution.

Put otherwise, in a strong proof labelling scheme, an adver-
sary can choose both the input and the solution, and we
must come up with a locally checkable proof. However, in a
weak proof labelling scheme, an adversary chooses the input
but we can choose a solution.

Intuitively, solving the weak version of the problem might
be easier, and a weak proof labelling scheme could admit
smaller proofs. For example, in the leader election problem,
we could focus on convenient solutions: perhaps we could
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select the node with the smallest identifier as the leader,
and come up with a small locally checkable proof for such a
selection.

However, for many natural problems studied in this work,
the proof complexities of strong and weak proof labelling
schemes are within a constant factor of each other. In Sec-
tion 5 we saw that problems such as leader election and
spanning trees admit locally checkable proofs of size O(logn).
All of these results are strong proof labelling schemes: for
example, we can take any spanning tree and augment it with
a proof of size O(logn). We also saw that these problems
do not admit locally checkable proofs of size o(logn). The
lower-bound result precludes not only the existence of strong
proof labelling schemes, but it also shows that there is no
weak proof labelling scheme.

7.3 Complement of LCP(0)

On connected graphs, one can employ spanning trees to
reverse the decision made by an LCP(0) verifier A as follows.
Let P be a graph property in LCP(0). If we have a no-
instance G ¢ P, then we can construct a proof P of size
O(logn) that convinces a local verifier A of G ¢ P.

To construct the proof P, select a root node a with
A(G,e,a) = 0, i.e., a is a node that rejects the input G.
Then choose an arbitrary spanning tree 7" rooted at a. Let P
consist of an encoding of (7, a) and a proof of its correctness.
Then a local verifier A can verify that T is valid spanning
tree rooted at a; in particular, there is a finite path from
any v € V(G) to a. Moreover, at the root node, A can
simulate A and verify that A(G,€,a) = 0. We conclude that
coLCP(0) C LogLCP on connected graphs.

7.4 Containment in NP and NP/poly

Comparing classes such as LogLCP and NP is not straight-
forward. To define the LCP hierarchy, we have used the local
model, which allows unlimited local computation. Hence if
we have unbounded node degrees in G (or unbounded amount
of additional information per node in the form of colours or
weights), we can easily come up with artificial problems that
are in LCP(0) but not in NP.

However, the situation becomes much more interesting
if we focus on bounded-degree graphs; moreover, we will
focus on pure graph properties, i.e., there is no additional
information besides the node identifiers and the topology of
the graph.

In this restricted case, we can still show that there are
problems in LogLCP that are not contained in NP. Once
again, we can resort to spanning tree methods: w.l.o.g.,
we can assume that a LogLCP verifier has access to n(G)
in any connected graph G. Hence the verifier can solve
arbitrarily hard computable problems concerning the integer
n(G), including those that are not in NP.

However, if P € LogLCP is a pure graph property related
to bounded-degree graphs, we can show that P is in NP/,
i.e., NP with a polynomial-size non-uniform advice. In a
bounded-degree graph, the number of nodes inside the local
horizon is bounded by a constant, and hence a LogL CP verifier
A uses only O(logn) bits of input in total. Thus verifier A
can be encoded as a lookup table of size 2°0°8™) which is
polynomial in n. We can provide the entire lookup table
as the advice string S to an NP/, machine M. Then M
merely guesses the O(nlogn)-bit proof P: V(G) — {0,1},
and uses the advice string S to verify the guess.



7.5 Connections to Descriptive Complexity

A central result in descriptive complexity theory and one
that began the field is Fagin’s [7], [13, Ch. 7] characterization
of the class NP as graph problems expressible by ezistential
second-order formulas (£1). Some NP-complete graph prop-
erties are even expressible by monadic ¥] formulas that only
quantify over unary relation symbols [1,20]. In this section,
we make observations of a connection between the LogLCP
class and the class of graph properties that are expressible
by monadic ¥} formulas.

In the study of first-order expressibility, locality is a the-
matic subject; this is illustrated by Hanf’s theorem and
the work of Gaifman [13, Ch. 6]. Building on this work,
Schwentick and Barthelmann [21] have shown that on con-
nected graphs, every monadic X1 formula is equivalent to a
formula of the form

9 =3X13X, ... IXkTaVy : o(Xa, ..., Xk, 2, Y),

where ¢ is first-order and local around y. Here, a formula
@ is local around y if there is a constant r so that for all
graphs G and all interpretations of X1, Xo,..., Xk, x,y it
can be determined whether G = ¢(X1, Xo,..., Xk, z,y) on
the basis of the r-radius neighbourhood of y in G. More
specifically, the quantifications in ¢ are always of the form
Fz: (dist(z,y) < r AY) or Vz : (dist(z,y) < r — ).

Let us focus on the family F of connected graphs. If and
only if a graph G € F has property ¥, there are monadic
relations A1, Aa, ..., Ay and a node a € V such that G | Vy :
p(A1, Az, ..., Ag,a,y). For each node v and each relation
A;, encoding A;(v) takes 1 bit. To prove the existence of
the node a, we can use a spanning tree rooted at a; a locally
checkable spanning tree requires O(logn) bits per node (recall
Section 5). To check the proof, the verifier A first checks the
spanning tree, and then evaluates p(A1, As, ..., Ak, a,y) for
each node y. As ¢ is local around y, the verifier A is a local
algorithm.

Hence in connected graphs, any monadic ¥} graph property
‘P admits locally checkable proofs of size O(logn), i.e., P €
LogLCP.
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