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Abstract

An extended visual cryptography scheme, (T'qual, I'forb, m)-EVCS for short, with

pixel “expansion” m, for an access structure (I'Qual, ['Forb) 0N a set of n participants,
is a technique to encode n innocent looking images in such a way that when we stack
together the transparencies associated to participants in any set X € Dqua we get
the secret message with no trace of the original images, but any X € I'rop has no
information on the shared image. Moreover, after the original innocent looking images
are encoded they are still meaningful, that is, any user will recognize the image on his
transparency.
In this paper we first present a general technique to implement extended visual cryptog-
raphy schemes, which uses hypergraph colourings. Then we discuss some applications
of this technique to various interesting classes of access structures by using relevant
results from the theory of hypergraph colourings.

KeywoRrDSs: Visual Cryptography, Secret Sharing Schemes.

*Research of C. Blundo and A. De Santis is partially supported by Italian Ministry of University and Re-
search (M.U.R.S.T.) and by National Council for Research (C.N.R.). Research of D. R. Stinson is supported
by NSF grant CCR-9402141.



1 Introduction

A visual cryptography scheme for a set P of n participants is a method to encode a secret
image ST into n shadow images called shares, where each participant in P receives one
share. Certain qualified subsets of participants can “visually” recover the secret image,
but other, forbidden, sets of participants have no information (in an information-theoretic
sense) on SI. A “visual” recovery for a set X C P consists of xeroxing the shares given to
the participants in X onto transparencies, and then stacking them. The participants in a
qualified set X will be able to see the secret image without any knowledge of cryptography
and without performing any cryptographic computation.

This new cryptographic paradigm has been recently introduced by Naor and Shamir [8].
They analyzed the case of a k out of n threshold visual cryptography scheme, in which the
secret image is visible if and only if any k transparencies are stacked together.

The model by Naor and Shamir has been extended in [1, 2] to general access structures
(an access structure is a specification of all qualified and forbidden subsets of participants)
and general techniques to construct visual cryptography schemes for any access structure
have been proposed. In [3] the authors propose k out of n visual cryptography schemes
achieving a greater relative difference than previously known schemes. In the case of 2 out
of n visual cryptography schemes the scheme given in [3] achieves the best possible value
for the relative difference. Finally, in [6] it is presented a new technique to construct k out
of n visual cryptography schemes.

In implementing visual cryptography schemes it would be useful to conceal the existence
of the secret message, namely, the shares given to participants in the scheme should not
look as a random bunch of pixels, but they should be innocent looking images (an house,
a dog, a tree, ...). As an example, let P = {1,2,3} and consider the access structure
lqual = {{1,2},{2,3},{1,2,3}} (we stipulate that all remaining subsets of P are forbidden).

We would like to share the picture in such a way that the share of participant 1 is the

picture the share of participant 2 is the picture , and the share of participant 3 is the

picture . This shares distribution should have the property that when participants 1 and
2, or participants 2 and 3, or participants 1, 2, and 3 stack together their transparencies

they get the secret image (the shares generated by an extended visual cryptography
scheme for ['qual are given in Appendix).

An extended visual cryptography scheme, (I'qual, I'Forb, m)-EVCS for short, with pixel
“expansion” m, for an access structure (I'ual, ['Forb) On a set of n participants, is a technique
to encode n innocent looking images in such a way that when we stack together the trans-
parencies associated to participants in any set X € ['qual We get the secret message with
no trace of the original images, but any X € I'rorp has no information on the shared image.
Moreover, after the original innocent looking images are encoded they are still meaningful,
that is, any user will recognize the image on his transparency.

Naor and Shamir [8] first considered the problem of concealing the existence of the
secret message for the case of 2 out of 2 threshold VCS. Recently, Droste [6] considered the
problem of sharing more than one secret image among a set of participants.

In this paper we first present a general techniques to implement extended visual cryp-
tography schemes. Then, we give two constructions for general access structures. For k out
of n extended visual cryptography schemes, we then provide an implementation achieving
smaller pixel expansion than the general constructions.



2 Visual Cryptography Schemes

Let P ={1,...,n} be a set of elements called participants, and let 27 denote the set of all
subsets of P. Let I'qual C 27 and Trop € QP, where T'Qual N TForb = 0. We refer to members
of I'qual as qualified sets and we call members of I'ror, forbidden sets. The pair (I'qual, ['Forb)
is called the access structure of the scheme.

Define I'y to consist of all the minimal qualified sets:

I'pg = {A € FQuaI s A Q FQuaI for all A’ C A, A’ 75 A}

A participant P € P is an essential participant if there exists a set X C P such that
X U{P} € I'qual but X & I'quar- If a participant P is not essential then we can construct
a visual cryptography scheme giving him nothing as his or her share. In fact, a non-
essential participant does not need to participate “actively” in the reconstruction of the
image, since the information he has is not needed by any set in P in order to recover the
shared image. In any VCS having non-essential participants, these participants do not
require any information in their shares. Therefore, we assume throughout this paper that
all participants are essential.

In the case where I'qua is monotone increasing, ['rorp is monotone decreasing, and I'qyaU
Lrorb = 2%, the access structure is said to be strong, and Iy is termed a basis. (This situation
is the usual setting for traditional secret sharing.) In a strong access structure,

Fquat = {C CP:BCC for some B € I'y},

and we say that ['qual is the closure of ['y (denoted by cl(I'g)).

For sets X and Y and for elements z and y, to avoid overburdening the notation, we
often will write z for {z}, 2y for {z,y}, 2Y for {z}UY, and XY for X UY.

We assume that the message consists of a collection of black and white pixels. Each pixel
appears in n versions called shares, one for each transparency. Each share is a collection of m
black and white sub-pixels. The resulting structure can be described by an n x m Boolean
matrix S = [s;;] where s;; = 1 iff the j-th sub-pixel in the i-th transparency is black.
Therefore the grey level of the combined share, obtained by stacking the transparencies
i1,-..,1s, is proportional to the Hamming weight w (V') of the m-vector V.= OR(r;,, ..., 1i,)
where r;,...,r; are the rows of S associated with the transparencies we stack. This grey
level is interpreted by the visual system of the users as black or as white in according with
some rule of contrast. We recall the formal definition of VCS proposed in [1], which is an
extension of [8].

Definition 2.1 Let (I'qual, I'forb) be an access structure on a set of n participants. Two
collections (multisets) of n x m boolean matrices Cy and Cy constitute a visual cryptography
scheme ((I'qual; I'Forb, m)-VCS) if there exist values a(m) and {tx } xerg,, satisfying:

1. Any (qualified) set X = {iy,i2,...,%,} € I'qual can recover the shared image by
stacking their transparencies.
Formally, for any M € Cy, the “or” V of rows iy,1ia,..., 1, satisfies w(V) < tx —
a(m) - m; whereas, for any M € Cy it results that w(V) > tx.

2. Any (forbidden) set X = {i1,43,...,%,} € ['Forpb has no information on the shared
image.
Formally, the two collections of p x m matrices Dy, with t € {0,1}, obtained by



restricting each n X m matrix in C; to rows iy, g, ..., 1, are indistinguishable in the
sense that they contain the same matrices with the same frequencies.

Each pixel of the original image will be encoded into n pixels, each of which consists of
m sub-pixels. To share a white (black, resp.) pixel, the dealer randomly chooses one of the
matrices in Cy (Cy, resp.), and distributes row 7 to participant ¢. The chosen matrix defines
the m sub-pixels in each of the n transparencies. Observe that the size of the collections Cq
and C; does not need to be the same.

The first property is related to the contrast of the image. It states that when a qualified
set of users stack their transparencies they can correctly recover the image shared by the
dealer. The value a(m) is called relative difference, the number a(m) - m is referred to
as the contrast of the image, and the set {tX}XGFQuaI is called the set of thresholds. We
want the contrast to be as large as possible and at least one, that is, a(m) > 1/m. The
second property is called security, since it implies that, even by inspecting all their shares,
a forbidden set of participants cannot gain any information in deciding whether the shared
pixel was white or black.

Notice that if a set of participants X is a superset of a qualified set X’, then they can
recover the shared image by considering only the shares of the set X’. This does not in
itself rule out the possibility that stacking all the transparencies of the participants in X
does not reveal any information about the shared image.

Let M be a matrix in the collection Co U Cy of a (I'qual, I'forb, m)-VCS on a set of
participants P. For X C P, let Mx denote the m-vector obtained by considering the or of
the vectors corresponding to participants in X; whereas M[X] denotes the | X| X m matrix
obtained from M by considering only the rows corresponding to participants in X.

We make a couple of observations about the structure of I'qual and I'rer in light of the
above definition. First, it is clear that any subset of a forbidden subset is forbidden, so
Prorb is necessarily monotone decreasing. Second, it is also easy to see that no superset of a
qualified subset is forbidden. Hence, a strong access structure is simply one in which ['qual
is monotone increasing and ['qual U I'rorb = 27.

Notice also that, given an (admissible) access structure (I'qual, ['Forb), We can “embed”
it in a strong access structure (I'g,.1 Ikop,) in which Pqual € gy @and Teory € Tiyyp,- One
way to so this is to take (F’Qua|7 ['t.p) to be the strong access structure having as basis I,
where 'y consists of the minimal sets in ['qual, as usual.

In view of the above observations, it suffices to construct VCS for strong access struc-
tures.

2.1 Basis Matrices

The constructions in this paper are realized using two n x m matrices, S and S! called
basis matrices satisfying the following definition.

Definition 2.2 Let (I'qual, I'forb) be an access structure on a set of n participants. A visual
cryptography scheme (I'qual, U'korb, m)-VCS with relative difference a(m) and set of thresh-
olds {tx }xerg,, is realized using the n X m basis matrices SO and St if the following two
conditions hold.

1 If X = {i1,i9,...,1} € qual (i.e., if X is a qualified set), then the “or” V of rows
i1, 82, ..., 0 of SO satisfies w(V) < tx — a(m) - m; whereas, for S' it results that
w(V) >tx.



2. If X = {i1,49,...,1p} € Irorb (iee., if X is a forbidden set), then the two p X m
matrices obtained by restricting S and S' to rows i1,1z,...,1, are equal up to a
column permutation.

The collections Cg and Cy are obtained by permuting the columns of the corresponding basis
matrix (S° for Cp, and St for C1) in all possible ways. Note that, in this case, the size of the
collections Cg and C; is the same and it is denoted by r. This technique has been introduced
in [8]. The algorithm for the VCS based on the previous construction of the collections Cq
and C; has small memory requirements (it keeps only the basis matrices S® and S!) and
it is efficient (to choose a matrix in Cy (Cy, resp.) it only generates a permutation of the
columns of SO (S, resp.)).

The following lemma has been proved in [1]. We will use it in our constructions for
extended visual cryptography schemes.

Lemma 2.3 Let (I'qual, 'Forb) be an access structure on a set P of n participants. Let Cy
and Cy be the matrices in a (U'qual, I'forb, m)-VCS and let D be any n X t boolean matriz.
The collections of matrices C, = {M oD : M € Co} and C{ = {M oD : M € Ci} comprise
a (FQuah Irorb, m + t)-VCS.

3 Extended Visual Cryptography Schemes

To realize a VCS for an access structure I' on a set of n participants we want to encode a
secret image into n shares in such a way that the properties of Definition 2.1 are satisfied.
In the case of EVCSs the n shares have to be innocent looking images. Therefore, we start
with n+ 1 images (the first n are associated with the n participants whereas the last is the
secret image) to obtain n shares that have to be still meaningful, that is, any user is able
to see the image in his transparency we started with. Hence, any technique to implement
EVCSs has to take into consideration the colour of the pixel in the secret image we want
to obtain. In the following, we will refer to the colour of a white (black) pixel as a w pixel
(b pixel). In general, we denote with CS'""", where ¢, ¢1,...,¢, € {b,w}, the collection of
matrices from which the dealer chooses a matrix to encode, for ¢+ = 1,...,n, a ¢; pixel in
the image associated to participants ¢ in order to obtain a ¢ pixel when the transparencies
associated to a set X € I'qual are stacked together. Hence, to realize an EVCS we have to
construct 2™ pairs of such collections (C;} ", C,* "), one for each possible combination of
white and black pixels in the n original images.

A participant P is isolated if {P} € I'qual, that is, if he can reconstruct the secret by
himself, without the concurrence of other participants. In this paper we assume that there is
no isolated participant in the access structure. This assumption is not so strong as it could
seem, since it does not make sense to consider isolated participants in EVCS. If we allow
access structure to contain isolated participants in EVCS, then this would mean that from
a meaningful picture (the one held by the isolated participant) we are able to get the secret
image just looking at it, without performing any cryptographic computation. Clearly, this
is impossible, unless the picture held by the isolated participant is the secret itself. Hence,
through this paper we assume that the access structures do not contain isolated participant.
Moreover, we assume that no information is known on the pixels of the original images beside
that they can be either white or black. For instance, no probability distribution is known
on the pixels and no information like “a black pixel is more likely to occur than a white
pixel” is known.



An extended visual cryptography scheme for an access structure I' is defined as follows.

Definition 3.1 Let (I'qual, 'Forb) be an access structure on a set of n participants. A family

of 2" pairs of collections (multisets) of nxm boolean matrices {(Cful"'C",C[fl"'C") =
Cl ey Cn €0, W
constitutes a weak (I'qual, U'forb, m)-EVCS if there exist values o(m) and {tX}xerQ | satis-

fying:

1. Any (qualified) set X € I'qual can recover the shared image.
Formally, for any X € U'qual and for any cy, ..., ¢, € {b,w} the threshold tx and the
relative difference o(m) are such that for any M € Cg°" we have that w(Myx) <
tx — a(m) - m; whereas, for any M € C;*"°" it results that w(Mx) > tx.

2. Any (forbidden) set X = {41,...,7,} € I'forb has no information on the shared image.
Formally, for any ¢;\,...,c;, € {b,w} the pair of collections Ujcq1, . n)\x Ue;efbw)
Dt with t = {b,w}, where D7 is obtained by restricting each n X m matriz
in C{1™ to rows iy, .. .1, are indistinguishable in the sense that they contain the
same matrices with the same frequencies.

3. After the original innocent looking images are encoded they are still meaningful, that
is, any user will recognize the image on his transparency.
Formally, for any i € {1,...,n} and any ¢1,...,¢;_1,¢ix1,...,cn € {byw} it results
that
min w(M;) > max w(M;
pin w(M;) > max w(M;),

B eroe;_ybegy ) en
where Mb = Ucl,...,ci_1 Cix1 ,...,cne{b,w}cw

“.Ci—l wci-l—l cCp

c1
and Mw = Ucl,...,ci_1 Cix1 ,...,cne{b,w}Cw

The first condition states that a qualified set of users, belonging to I'qual, stacking their
transparencies can correctly recover the secret image. The second condition is related to
the security of the scheme, it implies that by inspecting the shares and only the original
images associated to a non qualified subset of participants one cannot gain any information
on the shared image. Finally, the third condition implies that the original images are not
“modified”, that is, after we encode the n original innocent looking images by using the 27
pairs of collections (CSH ", C; "), where ¢1,...,¢, € {b,w}, any user will recognize the
image on his transparency.

The dealer on input n + 1 images, that is, the images for the n participants and the
secret image, generates n shares to be distributed to the participants.

We considered EVCS in which the 2" the pairs of collections {(Cful"'cn7cgl~~.cn)}7 where

Cly...y¢p € {byw}, have the same parameter m. This is not a restriction at all, but
we considered EVCS having the the same parameter m only to avoid overburdening the
notation. From an arbitrary EVCS we can obtain an EVCS having the same parameter m

for all the collections {(Cful"'cn,szl"'C")}.

Next example shows how to realize a 2 out of 2 weak EVCS.

Example 3.2 The following collections C51¢2) where ¢, ¢y, co € {b, w}, realize a 2 out of 2

weak EVCS.



ww —
Chv =

[ 1001 | o
1010 } G =

oub { 1001 ] [oto1 ] [ o101 '} oub { [ 1001 | [ o101 ] }
w - ’ ’ b - 3

1001 ] [ o101 ]
0110 || 1010

1011 0111 0111 0111 1011

bw _
cr =

(1011 ] [o111] [ 1110 '}

F 1011 ] [ o111 ]
1010 || o110 || 0110

0110 |’ | 1010

o {' 1011 | [ o111 | } o {' 1011 | [ o111 | [ 1110 ]}'
w 1011 | 7] 0111 b 0111 || 1011 || 0111
Notice that for any choice of ¢y, ¢ € {b, w} and for any M € C1®* we have that w(My o) =
3; whereas for any M € C;'® it results that w(My 53) = 4. Therefore, Property 1. of Defi-
nition 3.1 is satisfied and the participants 1 and 2 can recover the shared image. Moreover,
for i = 1,2 and ¢, ¢y, c5 € {b,w}, let D1 be the set of vectors obtained by restricting each

¢yt
matrix in CS'°? to row 7. We have that:

DL UDYy = {[1001],[1001],[0101], [0101]} = DyyruDy
D uDk, = {[1011],[0111],[1110],[1011],[0111]} = Dy U DY
DUy UDhY, = {[1010],[1010],[0110], [0110]} = DyyuDyY
Dyt UDY, = {[1011],[0111],[0111],[1011],[0111]} = Dpiu D},

Hence, Property 2. of Definition 3.1 is satisfied and any participant cannot gain any infor-
mation on the shared image.

Finally, for ¢ € {b,w} and for i = 1,2, if ¢, = w then w(M;) = 2; whereas if ¢; = b
then w(M;) = 3. Thus, Property 3. of Definition 3.1 is satisfied and any participant will
recognize the original innocent looking image on his transparency.

A

3.1 A Stronger Model for EVCS

In the previous section we dealt with extended visual cryptography schemes in which the
participants in a forbidden set cannot gain any information on the shared image by inspect-
ing their shares and the original images associated to them. We can consider a stronger
security condition by stating that by inspecting the shares associated to a non qualified
subset of participants one cannot gain any information on the shared image, even though
he knows the original images of all n participants we started with. So, given an access
structure (I'qual, I'Forb), we define a (I'qual, I'forb, m)-EVCS as follows.

Definition 3.3 Let (I'qual, I'forb) be an access structure on a set of n participants. A
(U'qQuats U'forb, m)-EVCS is a weak (I'qual, I'Forb, m)-EVCS with the following additional prop-
erty:

1. For any choices of ¢1,...,¢c, € {b,w}, the pair of collections (C31 ", C,*" ™) consti-
tutes a (I'qual, I'Forb, m)-VCS.



The first condition is related to the security of the scheme, it implies that by inspecting the
images associated to a non qualified subset of participants one cannot gain any information
on the shared image, even though they know the original images of all n participants we
started with. This is due to the fact that, for any ¢y,...,¢, € {b,w}, the pair of col-
lections (Cge,C,'" ") constitutes a visual cryptography scheme. The second condition
implies that a qualified set of users, belonging to I'qual, stacking their transparencies can
correctly recover the secret image and that the original images are not “modified”, that
is, after we encode the n original innocent looking images by using the 2" pairs of collec-
tions (Cgl o, C,t "), where ¢q,...,¢, € {b,w}, any user will recognize the image on his
transparency.

It is worthwhile to notice that for any X € I'qual and for any ¢y, ...,¢, € {b,w} the
threshold ¢y and the relative difference a(m) satisfy tx < ¢} and t3 7" —a " (m)-m <
tx —a(m)-m, where t} 7" is the threshold associated to set X and a® " (m) is the relative
difference of the (I'Qual; I'Forb, m)-VCS represented by the pair of collections (CgH 7, C;' 7).

It is easy to see that the 2 out of 2 EVCS given in Example 3.2 does not satisfy the
stronger conditions of Definition 3.4. Indeed, any pairs of collections CS!®> and C;'“, where
¢, ¢z € {b,w}, does not form a 2 out of 2 threshold VCS as Property 2. of Definition 2.1 is
not satisfied..

The next example shows how to realize a 2 out of 2 threshold EVCS. This scheme is
realized using the general construction presented in Section 4. The resulting family of pairs
of collections of matrices are the same as that proposed in [8].

Example 3.4 The collections C$*2, where ¢, ¢1, c2 € {b, w}, of a 2 out of 2 threshold EVCS
are obtained by permuting the columns of the following matrices.

s = [10] e s o [
s [10] s o [
oo [] e o [
e [o] e o [

A

In this paper we consider only schemes satisfying the conditions of Definition 3.4 as it
is generally better to use the strongest security condition in designing any cryptographic
protocol.

4 A General Construction for Extended VCS

Our general construction uses hypergraph colourings. We begin with some relevant def-
initions. A hypergraph is a pair of the form (X, B), where B C 2. (In other words, a
hypergraph is a set of subsets of a given set.) Members of X are called vertices and mem-
bers of B are called edges. (In the case where every edge has cardinality two, a hypergraph
is in fact a graph.)



A g-colouring of a hypergraph H = (X, B) is a function ¢ : X — {1, ..., ¢} such that
{o(x) v e B} =22

for all B € B such that |B| > 2. (In other words, every edge having at least two vertices
contains at least two vertices receiving different colours.) The chromatic number of H,
denoted x(H ), is the minimum integer ¢ such that a g-colouring of H exists.

We will have more to say about chromatic numbers of hypergraphs later on, but for
now we observe that y(H) < |X]| for any hypergraph H = (X,B). This is easily seen
by assigning a different colour to every vertex. (This colouring will be called the trivial
colouring.)

Our general construction for extended VCS, which we present in Figure 1, uses an
arbitrary ¢-colouring ¢ of the hypergraph (P,[g). In this construction, we describe how
to encode n pixels, one for each of the input images, to obtain a pixel of the secret image.
Clearly, to encode the whole images we repeat the protocol of Figure 1 on all the pixels in
the images.

Input:
1. An access structure (I'qual, I'rorb) On a set P of n participants.
2. The basis matrices S° and S* of a (I'qual, UForb, m)-VCS.
3. The colours ey, ..., ¢, € {b,w} of the pixels in the original n images.
4

. The colour ¢ € {b,w} of the pixel of the secret image the dealer wants to
share.

5. A g-colouring ¢ of the hypergraph (P,Ty).
Generation of the n shares:
1. Construct an n x ¢ matrix DD as follows:
Fori=1tondo

if ¢; = b then set all entries of row 7 of D to 1.
else set entry (7, ¢(¢)) of D to 0 and set all remaining entries of

row ¢ to 1.

2. The collection CS*“~ is constructed by considering the matrices obtained
by permuting, in all possible ways, the columns of the matrix

Geren — SPoD ife=w
¢ T StoD ifc=b.

3. Let M be a matrix randomly chosen in C5' .

Output: The matrix M.

Figure 1. The protocol to generate the shares for EVCSs

In the previous protocol the collections CS1“» are obtained by permuting, in all possible
ways, the columns of the matrix S, Because of Lemma 2.3 we do not need to permute



the columns of the matrix D in step 2. Even though we use more random bits, we prefer
to permute all the columns to achieve more uniform distribution of the subpixels.

The construction presented in Example 3.4 used the trivial 2-colouring of the hypergraph
({1,2},{{1,2}}) and it is based on a 2 out of 2 threshold VCS described by the following

basis matrices:
o | 10 1| 10
ST = [ 10 and S* = o1 |-

The matrix D we concatenated to S° and S* to obtain the collections C1°2, where ¢, ¢y, ¢y €
{b, w}, is constructed as follows

or] oo

10 I ¢y = ¢ =w

o1 ] .

1 ifey =wand eca = b
D= _ -

11 .

10 ifegy =band ¢ =w

11 ],

1 if ¢y =¢3 =0.

Here is another small example to illustrate the construction.

Example 4.1 Let P = {1,2,3,4,5} and let I'qual = ¢l(I'g), where I'g = {{1,2,3,4},{1,5}}.
Assume that Trop = 27\I'qual- A visual cryptography scheme for (I'qual, [Forb) can be
obtained using the following basis matrices.

00001111 00001111
00110011 00110011
So = | 01010101 S1 = 01010101
01101001 10010110
00001111 11110000

Let H = (P,I'g). Now it is not hard to see that y(H) = 2. For example, if we define
o(1) =1 and ¢(2) = ¢(3) = ¢(4) = ¢(5) = 2, then ¢ is a 2-colouring.

Therefore the collections C**""* and Cg”bwww are obtained by permuting the columns of

the following basis matrices S and S;;Ubwww, respectively.
0000111101 0000111101
0011001111 0011001111
St = | 0101010110 | S,“"™*™ = | 0101010110
0110100110 1001011010
0000111110 1111000010

10



Let us now show that the construction given in Figure 1 actually produces an ex-
tended VCS. First we observe that, by Lemma 2.3, it results that any pair of collec-
tions (Cgt ", C, ") constitutes a VCS for (I'qual, I'forb). This implies that the extended
visual cryptography scheme so obtained is secure as, for any e¢q,...,¢, € {b,w} and
for any X = {u1,...,4x)} € DForb, it results that Sir[X] = S [X] (i.e., for any
€1y .., ¢y € {b,w} the two collections of the | X| x (m 4 ¢) matrices obtained by restricting
each n X (m+¢q) matrix in C; " and C;'"" to rows iy, 13, .. ., % x| are indistinguishable in
the sense that they contain the same matrices with the same frequencies).

Next, we claim that for any ¢;,...,¢, € {b,w} and for any X € I'qua the or of the
rows of the matrix D corresponding to participants in X has weight w(Dyx) = ¢. Suppose
that this is not the case. Then some component of Dy is zero, say the jth component. It
follows that ¢(i1) = ... = ¢(i|x|) = j, which contradicts the fact that ¢ is a g-colouring of
the hypergraph (P, Ty).

This implies that for any c1,...,¢, € {b,w}, for any M € CSn, and any M € Cytem
it results that w(MX) >tx +q and

w(Mx) <tx+q—d(m+q) - (m+q),

where
o (m+q)=alm)-m/(m+q),

tx is the threshold of the scheme for (I'qual, ['Forb) We start with, and a(m) is the relative
difference satisfying Definition 2.2 for the access structures (I'qual, ['Forb) When we use the
VCS based on the basis matrices S and S'. Therefore, when transparencies associated to
participants in a set X € ['qual are stacked together the secret image will be visible.
Finally, notice that even though the n original images are modified they are still mean-
ingful as, for ¢ = 1,...,n, a white pixel in the image of the ¢-th participant is encoded into
m + ¢ sub-pixels of which w(S?) 4+ ¢ — 1 are black; whereas, a black pixel in the image of
the i-th participants is encoded into m + ¢ sub-pixels of which w(S}) 4+ ¢ = w(S?) + ¢ are
black. Therefore, participant z is still able to distinguish the image on his transparency.
Therefore, the next theorem holds.

Theorem 4.2 Let (I'qual, U'Forb) be an access structure on a set P of n participants. If
there exists a (I'Qual, I'Forb, m)-VCS constructed using basis matrices and a g-colouring of
the hypergraph (P, 1), then there exists a (I'qual, I'Forb, m + q)-EVCS.

5 Applications

In the construction of Figure 1, we would like to minimize ¢, i.e., by taking ¢ = x(H) where
H = (P,I'o). In general, however, it is an NP-hard problem to compute the chromatic
number of a hypergraph. In particular, determining if a hypergraph has chromatic number
equal to two is already an NP-complete problem. Even if we restrict our attention o to
graphs, the situation is not much better, as it is NP-complete to determine if a graph has
chromatic number equal to three. It is NP-hard even to compute an approximation of the
chromatic number of a graph. In fact, recently in [7] it has been proved that for some € > 0
it is NP-hard to approximate the chromatic number of graphs with n vertices by a factor
of n¢. Moreover, is has been shown that for every ¢ > 0 the chromatic number cannot be
approximated by a factor of n'/5~¢ unless NP = ZPP. Other results on the hardness of
approximating the chromatic number can be found in [4].
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However, we can make use of some known results to get upper bounds and/or exact
values of y for some interesting classes of access structures. As well, for “small” access
structures it is not too difficult to compute the chromatic number.

As far as general bounds are concerned, there is an upper bound on y which depends
on a suitable definition of “maximum degree” of a hypergraph. Suppose H = (X,B) is a
hypergraph. For a vertex 2 € X, define the degree of 2 to be

dz)=max{|A|: ACB, EnF ={a}forall E,Fe A E+# I}

(Note that if H is a graph then the definition of d(z) reduces to the usual graph-theoretic
definition of the degree of z.) Then define d,,q,(H) = max{d(z) : # € X }. Notice that for
any hypergraph H = (P,'g) we have that dy...(H) < [[gl.

The following result can be found in [5, p. 431], for example.

H
H

Theorem 5.1 Suppose H is a hypergraph. Then x(H) < dpar(H) + 1.

Note that this result reduces to the well-known Vizing’s Theorem when H is a graph.

5.1 Threshold Schemes

One case of interest is a threshold access structure. Let (I'qual, I'fForb) be the access structure
of a k out of n threshold scheme. The basis consists of all k-subsets of an m-set. This
hypergraph is called the complete uniform hypergraph KF. Tt is not hard to see that the
chromatic number is y(K¥) = [z%5 1. In fact a function ¢ : {1,...,n} — {1,...,¢} will be
a g-colouring of K¥ if and only if o7 (j)| <k —1for 1 < j <q.

Hence, the next theorem holds.

Theorem 5.2 Let (I'qual, I'Forb) be a (k, n)-threshold access structure. If there exists a

(U'qQuats U'Forb, m)-VCS constructed using basis matrices then there exists a (I'ual, I'Forb, M +

[z ])-EVCS.

Results on VCS for threshold access structures can be found in [1] and [8]. The next
corollary is an immediate consequence of Theorem 5.2 and [8, Lemma 3].

Corollary 5.3 Let (I'qual, I'Forb) be an (n, n)-threshold access structure. Then there exists
a (FQuah FForby 2n—1 + 2)-EVCS

Here is another example.

Example 5.4 Let (I'ual, 'Forb) be a (3,4)-threshold access structure. A visual cryptogra-
phy scheme for (I'qual, I'Forb) can be obtained using the following basis matrices presented
in [1]:

000111 111000
So = 001011 S, = 110100
001101 110010
001110 110001
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A 2-colouring of Kj can be obtained by defining ¢(1) = ¢(2) = 1 and ¢(3) = ¢(4) = 2. So
we will get an extended VCS with m = 8.

The collections

are obtained by permuting the columns of the basis

Co and

WWWW
Cb

matrices S;"" and 57" respectively, where

5.2

00011101 11100001

o wwww _ | 00101101 | oy, _ | 11010001
w ~ | oo110110 w ~ | 11001010
00111010 11000110

Complete Bipartite Graphs

Suppose that the basis I'g is a complete bipartite graph K, ;. It is obvious that the chromatic
number of any bipartite graph is equal to two. Also, it was shown in [1, Theorem 7.5] that
there is a (I'qual, I'Forb, 2)-VCS if (I'qual, ['Forb) is the strong access structure with basis K p.
Applying Theorem 4.2, the following result is obtained.

Theorem 5.5 Suppose that (I'qual, Urorb) is the strong access structure with basis K, .
Then there exists a (I'Qual, I'Forb, 4)-EVCS.
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Appendix
Example of an Extended Visual Cryptography Scheme

In this appendix an example of the secret image, the shares corresponding to single
participants, and few groups of participants are depicted. The family of qualified sets is

I'Qual = {{17 2}7 {27 3}7 {17 2, 3}'

All remaining subsets of participants are forbidden.

Secret Image

Share of participant 1 Share of participant 2
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Image of participants 1 and 2 Image of participants 2 and 3

Image of participants 1, 2, and 3

Image of participants 1 and 3
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