Distributed Computing over
Communication Networks:

Topology

(with an excursion to P2P)



Some administrative comments...

There will be a ,,Skript* for this part
of the lecture. (Same as slides,
except for today... ©)

Will be online together with the slides
after the lecture (or during...).

Co-lecturer
Thanks to Prof. D

Theory of

Distributed Computing |
(Part 2: Message Passing)

Dr. Stefan Schmid
(shared m yr' Dr. Petr Kuznetsov

ared memory): Dr. 1 i
r. Roger Wattenhofer for basis of manuscript!

S h e

Moreover, the course follows

*’5"""*:-_\_;{‘_‘: the cool book by Peleg (but only
O first, simple chapters are covered)
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Shared Memory vs Message Passing?

Same same but different?

. different;
- communication over networks

- focus on message or communication (bit-)
complexity
- decoupling / synchronicity / ...: not necessarily
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Shared Memory vs Message Passing?

Same same but different?

.... Same?

not in this course...

Sharing Memory Robustly in Message-Passing Systems

HAGIT ATTIYA
The Technion, Haifa, Israel

AMOTZ BAR-NOY
IBM T. J. Watson Research Center, Yorktown Center, Yorktown Heighis, New York

AND
DANNY DOLEV

IBM Almaden Research Center, San Jose, California and Hebrew University, Jerusalem, Israel

Abstract. Emulators that translate algorithms from the shared-memory model to two different
message-passing models are presented. Both are achieved by implementing a wait-free, atomic,
single-writer multi-reader register in unreliable, asynchronous networks. The two message-passing
models considered are a complete network with processor faillures and an arbitrary network with
dynamic link failures.

These results make it possible to view the shared-memory model as a higher-level language for
designing algorithms in asynchronous distributed systems. Any wait-free algorithm based on
atomic, single-writer multi-reader registers can be automatically emulated in message-passing
systems, provided that at least a majority of the processors are not faulty and remain connected.
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What you will learn!

Topology: What (communication) network is good?

The basics: leader election, tree algorithms, ...

Classical TCS reloaded: Maximal independent sets
computed distributedly?

Distributed lower bounds?

Graph coloring

maybe: social networks or game theory

ﬁ Stefan Schmid @ T-Labs, 2011



Good Topologies?

Topology (,network graph*)
— sometimes given (e.g., social networks)

— sometimes chaotic / semi-structured / ,organically growing* (e.g., unstructured
peer-to-peer networks)

— sometimes subject to design and optimization (e.g., parallel computer
architectures, structured peer-to-peer networks, etc.)

Twitter Social Network, 20K nedes 250K edges
sl o

Gnutella 2001 Chord DHT

Image Copyright UMBC eBiquity Research Group

What is a ,,good topology“?!

ﬁ Stefan Schmid @ T-Labs, 2011



Good Topologies?

What is a ,,good topology“? It depends...

- How to interconnect the cities of a country with an efficient railroad
infrastructure?

- How to to interconnect components of a parallel computer?

- How to interconnect peers of a peer-to-peer system?

- Or even: how to control the ,topology* of a wireless network?! (E.g.,
setting the ,transmission radii“ in a smart manner may save energy
and increase the throughput due to less interference, etc.)

ol Possible criteria?!

Stefan Schmid @ T-Labs, 2011



Criteria?

Simple and efficient routing: implication for topology?

e.g., ,short” paths and low diameter (wrt #hops, latency, energy, ...?), no state
needed at ,routers” (destination address defines next hop), good expansion
(for flooding), etc.

Scalability: implication for topology?
e.g., small number of neighbors to store (and maintain?), low degree, large
maxflow, redundant paths / no bottleneck links, ...

Robustness (random or worst-case failures?): implication for topology?

e.g., ,Symmetric* structure, no single point of failure, redundant paths, good
expansion, large mincut, k-connectivity, ...

ﬁ Stefan Schmid @ T-Labs, 2011



Does the Gnutella P2P network have a robust topology?

Not very much... Gnutella topology and also the protocol does
not scale well: Gnutella went down when Napster was
L2unplugged”...



Criteria?

Example: Robustness (e.g., Gnutella)
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Measurement study 2001 with ~2000 peers: [Saroiu et al. 2002]

Left: all connections

Middle: 30% random peers removed: still mostly connected (,giant component®), robust to random
failures / leaves

Right: 4% highest degree peers removed: many disconnected components, not robust
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Can we design the topology of a wireless network?!
No notion of ,wires”, only disks!

Yes, even if node positions are given!
E.g., by adjusting transmission power! Or by using only a subset of the neighbors to

forward things.

Interesting field of topology control in wireless networks!

What could be purpose?

Reduce interference, increase throughput, ...
... While maintaining shortest paths or minimal
energy paths!

Key words: Gabriel graphs, Delaunay graphs,
etc.




Example: XTC Topology Control

g
AP
’-f o ‘.,’

Left: Unit Disk Graph (connected to all nodes at distance at most 1)
Middle: Gabriel Graph (subset of links only)
Right: XTC Graph (subset of links can be locally computed)
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Short Excursion: Peer-to-Peer Networks

Napster:
centralized, ,no topology*

Gnutella:
fully decentralized, ,random topology*

DHT:
,Structured®, often hypercubic topology (why?)

ﬁ Stefan Schmid @ T-Labs, 2011



Napster: Centralized index
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Napster
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<Beach Boys: Pet Sounds @ 170.13.01.02>

L
m
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Napster

<Beach Boys: Pet Sounds @ 170.13.01.02>

ﬁ Stefan Schmid @ T-Labs, 2011



Napster

H—

<Aphex Twin: Ptolemy @ 212.17.11.69>
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<Beach Boys: Pet Sounds @ 170.13.01.02>
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Napster

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin; Ptolemy @ 212.17.11.69>

ﬁ Stefan Schmid @ T-Labs, 2011



Napster

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin; Ptolemy @ 212.17.11.69>

-
I

~2Aphex Twin: Ptolemy*“?
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Napster

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin; Ptolemy @ 212.17.11.69>

-
I

@ 212.17.11.69!

ﬁ Stefan Schmid @ T-Labs, 2011



Napster

<Beach Boys: Pet Sounds @ 170.13.01.02>

<Aphex Twin; Ptolemy @ 212.17.11.69>

p2p file
transfer

ﬁ Stefan Schmid @ T-Labs, 2011



Gnutella: Unstructured network & flooding

Peers basically connect to neighbors of neighbors:
high clustering...

ﬁ Stefan Schmid @ T-Labs, 2011



Gnutella




Gnutella




Gnutella

Stefan Schmid @ T-Labs, 2011

Answers come

back via multihop

Then: direct download
Download from one source



Distributed Hash Tables (DHTS)

DHTs: decentralized peer-to-peer systems with routing wrt to keys
Oversimplifying:

1. The topology of DHTSs is often hypercubic (easy routing, good degree and
diameter, robustness, ...)

2. Which peers should store which data?
Concept of consistent hashing:
map both peers and files/data onto a 1-dimensional virtual ring [0,1)
- Peers have random ID
- Files (e.g., contents or file names) are hashed to [0,1) too
=> defines how peers are connected
=> peer closest to file is responsible for storing (pointer to) data

ﬁ Stefan Schmid @ T-Labs, 2011



Distributed Hash Tables (DHTS)

DHTs: decentralized peer-to-peer systems with routing wrt to keys

Basic idea:

»,some hypercubic
connections* ©

So we have to move all files to the corresponding peers??
No! Idea: leave files at peers which already store them, and only
store pointers to these files in the DHT! (1st indirection!)

ﬁ Stefan Schmid @ T-Labs, 2011



Kad (Simplified!)

The Kad system: DHT accessed by eMule client
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Background: Kad Keyword Request

closest peer

—m < h(kl)

—~2—

-

requester

Lookup only with first keyword
in list. Key is hash function on
this keyword, will be routed to
peer with Kad ID closest to this
hash value.

(2nd indirection!)

ﬁ Stefan Schmid @ T-Labs, 2011



Background: Kad Keyword Request

closest peer

h((2): <k1, k2, k3>

(f3): <k1, k2*, k3> =

requester

Peer responsible for this
keyword returns different sources
together with keywords.

ﬁ Stefan Schmid @ T-Labs, 2011



Background: Kad Source Request

a5 —
»,some hypercubic
connections* © =
L :-ﬁf closest peer
%‘ //
e h(f3)
requester

Peer can use this hash to find
peer responsible for the file
(possibly many with same content
/ same hash)

ﬁ Stefan Schmid @ T-Labs, 2011



Background: Kad Source Request

p3

p2 :JF, ‘:JP
=
pl 32
sources:
pl,p2,p3 — & (losest peer
requester

Peer provides requester with a list
of peers storing a copy of the file.
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Background: Kad Download

requester

Eventually, the requester can download
the data from these peers.

ﬁ Stefan Schmid @ T-Labs, 2011



Back to Topologies: Graph Theory

Network topologies are often described as graphs!
Graph G=(V,E): V = set of nodes/peers/..., E= set of edges/links/...

d(.,.): distance between two nodes (shortest path), e.g. d(A,D)=?
D(G): diameter (D(G)=max, , d(u,v)), e.g. D(G)=?

I"(U): neighbor set of nodes U

o(U) = |T'(V)| / |U| (size of neighbor set compared to size of U)
a(G) = miny <y a(U): expansion of G (meaning?)

< <J

ﬁ Stefan Schmid @ T-Labs, 2011

Expansion captures ,bottleneck
D



Graph Theory

Explanation: T'(U), a(U)?

Neighborhood is
just C, so...

.. a=1/3.

ﬁ Stefan Schmid @ T-Labs, 2011



Graph Theory

Explanation: T'(U), a(U)?

(V)

o(U)=1/3 (bottleneck!)

ﬁ Stefan Schmid @ T-Labs, 2011



What is a good topology?

Complete network: pro and cons?

7R~
NS

Pro: robust, easy and fast routing, small diameter...
Cons: does not scale! (degree?, number of edges?, ...)

ﬁ Stefan Schmid @ T-Labs, 2011



Good Topologies?

Line network: pro and cons?

Degree? Diameter? Expansion?

Pro: easy and fast routing (tree = unique paths!), small degree (2)...
Cons: does not scale! (diameter = n-1, expansion = 2/n, ...)

Expansion: U (V|2 nodes) TI'(U) (=1 node)

) ) ) )
U Can we reduce diameter without

increasing degree much?

Stefan Schmid @ T-Labs, 2011



Good Topologies?

Binary tree network: pro and cons? \
Degree? Diameter? Expansion? / / \
)

Pro: easy and fast routing (tree = unique paths!), small degree (3), log
diameter...

Cons: bad expansion = 2/n, ...

I'(U) (= 1 node)

Expansion:
U (~|V|/

All communication
from left to right tree
goes through root! ®

Stefan Schmid @ T-Labs, 2011



Good Topologies?

) ) )
2d Mesh: pro and cons?

) ) )
Degree? Diameter? Expansion? ) ) )

Pro: easy and fast routing (coordinates!), small degree (4), <2 sqrt(n)
diameter...

Cons: diameter?, expansion = ~2/sqrt(n), ... '

= sqgrt(n) nodes)

Expansion:
U (~n/2 nodes)




Good Topologies?

d-dim Hypercube: Formalization?

Nodes V = {(b,,...,b,), b€{0,1}} (nodes are bitstrings!)
Edges E = for all i (b,,..., b;, ..., by)

connected to (b,, ..., 1-b;, ..., by)

10
I— )
r—) | 100 é|7 (|
0 1 | )
® o ' (_'l
001

Degree? Diameter? Expansion? How to get from (100101) to (011110)?

29 = n nodes => d = log(n): degree
Diameter: fix one bit after another => log(n) too

ﬁ Stefan Schmid @ T-Labs, 2011



Good Topologies?

d-dim Hypercube:

Nodes V = {(b,...,b,), be{0,1}}
Edges E = for all i: (b,..., b;, ..., by)
connected to (by, ..., 1-b;, ..., b))

Expansion? Find small neighborhood!
1/sqrt(d)=1/sqrt(log n)

ldea: nodes with ix“1" are connected to which nodes?
To nodes with (i-1)x“1" and (i+1)x“1“...:

CRCEFE

all nodes all nodes

with 0x“1* with 1x*1*  all nodes
with 2x“1“

ﬁ Stefan Schmid @ T-Labs, 2011



Good Topologies?

ldea:
How many nodes? V) (= ?)

U (~n/2 nodes) = binomial(d,d/2+1)
all nodes all nodes U

ith Ox“1%  with 1x“1" aI_I nodes
with 2x“1*

Expansion then follows from computing the ratio...

ﬁ Stefan Schmid @ T-Labs, 2011



Many networks are hypercubic!

Butterfly graph: (known? e.g., for parallel architectures)

Nodes V = {(k, b,...by) € {0,...,d} x {0,1}9} (2-dimensional: ,number + bitstring")
Edges E = for all i: (k-1, b,...b,...b)

connected to (k, b,...b,...b,) and (k, b,...1-b,...b,)

Essentially a rolled-out hypercube! Diam, Deg, Exp? How many nodes in total?

00 01 10 11 ‘

0 1 0 "
: ' | |
I I 1 D | g+1
1 ' | |
2 ) .

2d

Degree 4, Diameter 2d (e.g., go to corresponding ,bottom®, then up)

ﬁ Stefan Schmid @ T-Labs, 2011



Many networks are hypercubic!

Butterfly graph:

Nodes V = {(k, b,...by) € {0,...,d} x {0,1}9}

Edges E = for all i: (k-1, b,...b,...b)

connected to (k, b,...b,...by) and (k, b,...1-b,...by)

Expansion:

U (~n/2 nodes)
V) (=7)
~ n/d

Expansion roughly 1/d.

ﬁ Stefan Schmid @ T-Labs, 2011



Many networks are hypercubic!

Cube-Connected Cycles: Hypercube with ,replaced corners*
Nodes V = {(k, b,...b,) € {0,...,d-1} x {0,1}9}

Edges E = for all i: (k-1, b,...b,...b)

connected to (k-1, b,...b,...by), (k+1, b,...b,...b,) and (k, b,...1-b,...b,)

Example: 110

ﬁ Stefan Schmid @ T-Labs, 2011



Many networks are hypercubic!

De Bruijn Graph:

Nodes V = {(b,...b,) € {0,1}} (bitstrings...)

Edges E = for all i: (b,...b,...by)

connected to (b,...b,0) and (b,... b,1) (,shift left and add 0 and 1%)

Example:
01 001 011
\ \)10 101 \
00 / ) 11 000 / o / ) 111
10 100 110

How to route on this topology?
Fill in bits from the back...

ﬁ Stefan Schmid @ T-Labs, 2011



What is the degree-diameter tradeoff? Idea? Proof?

—Theorem

Each network with n nodes and max degree d>2 must
have a diameter of at least log(n)/log(d-1)-1.

In two steps, at most

) d (d-1)
'L ) additional nodes can be reached!
) So in k steps at most:
l4 )
) = . (d—1)F =1 _d-(d—1)*
'/" 1+§d‘(d—1)*=1+d-w_1)_15 R

1 d d-1
To ensure it is connected this must be at least n, so:

(d—1)* = L —d2) L = logy_y ((f{ _dQ) -n) =  k=zlogy n+logyy (—Q] ; 2)

Reformulating yields the claim... ©

ﬁ Stefan Schmid @ T-Labs, 2011



Example: Pancake Graphs

Graph which minimizes max(degree, diameter)?
Solution: Pancake graph gives log n/log log n

Example: d-dim Pancake graph

1234 4321

Nodes = permutations of {1,...,d}

. 3214 2134 2341
Edges = prefix reversals
314 3124
# nodes? degree? L )
d! many nodes and degree (d-1).
1132 1342 4213 1423
) 432 4312 1243 4123
Routing?

41 e143

E.g., from (3412) to (1243)?
Fix bits at the back, one after the other, in
two steps, so diameter also log n/ log log n.

ﬁ Stefan Schmid @ T-Labs, 2011



So we know:
hypercube graphs, de Bruijn graphs, ...

But how but if number of nodes/peers is not a power of two
or so?

And how to join and leave a network without much
disruptions and ,local state changes"” / few messages?

We sketch to ideas...:

1. Continuous-discrete approach

2. Graph simulation



Continuous-Discrete Approach (Naor & Wieder)

ldea:
1. Map peers to a virtual ring [0,1), at uniform random positions

2. Define ,continuous graph®: to which ,points” should nodes connect
(and find routing algorithms on continous graph etc.)
3. ,Discretize graph®: nodes are responsible for the links in their neighborhood (routing
adapted easily)

‘55\ Continuous graph: e.g., node at
2 (1+x)/2 position X connects to points

x/2 and (1+x)/2

Discrete graph: responsibility zones...

It turns out: for x/2 and (1+x)/2 we get
a de Bruijn graph! And we can build
also hypercubes etc.! ©




Other idea: Simulate the desired topology!

1. Take a graph with desirable properties

2. Simulate the graph by representing each vertex by a set of peers

3. Find a token distribution algorithm on this graph to balance peers

4. Find an algorithm to estimate the total number of peers in the system

5. Find an algorithm to adapt the graph‘s dimension

ﬁ Stefan Schmid @ T-Labs, 2011



Example: Hypercube

How to connect peers
- In vertex?
- between vertices?

How many joins and leaves
per time unit can be tolerated?

ﬁ Stefan Schmid @ T-Labs, 2011



Further reading:

Novel Architectures for P2P Applications: the Continuous-Discrete
Approach™

MONI NAOR? UDI WIEDERS
Theory of g i i G 5 s o
Distributed Computing | S
(Part 2: Message Passing)
Abstract

We prop a new approach for constructing P2P networks based on a dynamic decomposition of
a continuous space into cells corresponding to servers. We demonstrate the power of this approach
by suggesting two new P2P architectures and various algorithms for them. The first serves as a DHT
(Distributed Hash Table) and the other is a dynamic expander network. The DHT network, which we
call Distance Halving, allows logarithmic routing and load, while preserving constant degrees. It offers
an optimal tradeoff between the degree and the path length in the sense that degree d guarantees a path

. length of O(log, n). Another advantage over previous constructions relative sil city. A major

Dr. Stefan Schmid icw Gt atio of this coisteuction 15 4 dyristie cackig tachnique Tt maintali How Joad ad korage

Co-lecturer (share(l memeory): Dr. Petr Kuznetsov even under the occurrence of hot spots. Our second construction builds a network that is guaranteed to
Thanks to Prof. Dr. Roger Wattenhofer for basis of manuscript! be an expander. The resulting topologies are simple to maintain and implement. Their simplicity makes

it easy to modify and add protocols. A small variation yields a DHT which is robust against random
Byzantine faults. Fina r approach, it is possible to construct any family of
constant degree graphs in a dynamic environment, though with worse parameters. Therefore we expect

that more distributed data structures could be designed and implemented in a dynamic environment

Spring 2011

End of lecture

Stefan Schmid @ T-Labs, 2011
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