Hidden Communication in P2P Networks

Steganographic Handshake and Broadcast

Raphael Eidenbenz, Thomas Locher, Roger Wattenhofer

INFOCOM 2011

Spy Rendezvous

In London, April's a spring month.

..whereas in St.Petersburg we're freezing our butts off.

MI6 CIA

Spy Rendezvous

Regular peers

Share files

Conspirers

Talk to other conspirers without raising suspicion

Steganographic Channels

- P2P File sharing
 - Block request sequence
 - Block subset selection
- Timing
- Bandwidth
- Ports

Steganographic Broadcast

Send a message to all conspirers

n Bittorrent-like p2p file sharing system n-c

Steganographic Broadcast

- Send a message to all conspirers
- Bittorrent-like p2p file sharing system

Efficient Broadcast

Lemma

If each conspirer randomly connects to $8 \frac{n}{c} \ln(nc)$ peers, then the subnetwork induced by the *c* conspirers is connected w.h.p.

Efficient Broadcast

Lemma

If each conspirer randomly connects to $8 \frac{n}{c} \ln(nc)$ peers, then the subnetwork induced by the *c* conspirers is connected w.h.p.

Algorithm

Get 8 $\frac{n}{c}$ ln(nc) peer addresses

Acquire 6 log *n* blocks

Reveal types of connected peers

Broadcast message M in conspirer subnetwork

- Space complexity $O\left(\frac{n}{c}\log n + |M|\right)$
- Communication complexity $O\left(\frac{n}{c}\log n + \log^2 n + |M|\log n\right)$ w.h.p.

Stronger Authority Models

- Individual Monitoring
 - Authority monitors individual communication links, no correlation
 - |M| ∈ $\Theta(m \log m)$ where m is the # of blocks
- Complete Monitoring
 - Authority monitors complete network
 - $|M| \in \Theta(\sqrt{m} \log^2 m)$
- Stochastic Monitoring
 - Trade-off: Hidden communication vs. False positives

Steganographic Handshake in BitThief

- BitThief is a BitTorrent client that
 - Free rides with BitTorrent clients [1], and
 - Trades tit-for-tat (T4T) with other BitThiefs [2]

- [1] Locher et al., Free Riding in Bittorrent is Cheap, HotNets 2006
- [2] Locher et al., Rescuing Tit-for-Tat with Source Coding, P2P 2007

Reprise

Questions & Comments?

References

- P. Erdös and A. Rényi, On Random Graphs, Publicationes Mathematicae, 1959.
- R. Van der Hofstad, Random Graphs and Complex Networks, 2007.
- BitThief A Free Riding BitTorrent Client. http://bitthief.ethz.ch
- Locher et al., Free Riding in Bittorrent is Cheap, HotNets 2006
- Locher et al., Rescuing Tit-for-Tat with Source Coding, P2P 2007

Encoding Bits Into a Permutation

- Encode a message M in a permutation
 - Represent M as a factorial number
 - $M = 10001_2 = 2210_1$ because $0 \cdot 0! + 1 \cdot 1! + 2 \cdot 2! + 2 \cdot 3! = 17 = M$
 - M is encoded into $\Pi=(3,4,2,1)$ as the Lehmer Code of Π is 2210.

Lehmer Code

- Counts the # swaps to get to Π
- (1,2,3,4) ..2 swaps..
- (3,1,2,4) ..2 swaps..
- (3,4,1,2) ..1 swap..
- (3,4,2,1) ..0 swaps..
- -(3,4,2,1)

Proof of Lemma 3.2

- If each conspirer randomly connects to $8 \frac{n}{c} \ln(nc)$ peers, then the subnetwork induced by the c conspirers is connected w.h.p.
- Proof:
- For each conspirer u, it holds that $E[|N_u^c|] = 8 \ln(nc)$.
- $P[|N_u^c| < 4\ln(nc)] = P[|N_u^c| < \frac{E[|N_u^c|]}{2}] \le e^{-\frac{E[|N_u^c|]}{2^22}} = \frac{1}{nc}$ (Chernoff)
- $P[\forall u \in C: |N_u^c| \ge 4 \ln(nc)] > 1 \frac{1}{n}$
- If each edge of a graph G with c nodes is present with probability $\ln(nc)/c$ then G is connected with probability $> 1 \frac{1}{n}$ (Corollary from [Hofstad 2007])
- In such a graph G, all nodes have less than $4 \ln(nc)$ neighbors w.h.p.
- Each conspirer implicitly chooses 4 ln(nc) random neighbors in the conspirer subgraph.

Broadcast under Individual Monitoring

Authority monitors individual communication links

• $|M| \in \Theta(m \log m)$ where m is the # of blocks

Broadcast under Complete Monitoring

- Authority monitors all connections, and correlates data
 - No under-reporting
 - No re-requesting

- Acquire $8 \sqrt{n} \ln(nc)$ random blocks
- $|M| \in \Theta(\sqrt{m} \log^2 m)$

Broadcast under Stochastic Monitoring

- Regular peers choose their request order permutation according to a distribution C
- Authority classifies a peer as a conspirer if it uses a request order permutation Π with $p(\Pi) < \epsilon$
- Trade-off in the choice of threshold ε
 - Amount of hidden communication vs. False positives

Broadcast under Stochastic Monitoring

- Regular peers choose their request order permutation according to a distribution C
- Authority classifies a peer as a conspirer if it uses a request order permutation Π with $p(\Pi) < \epsilon$

Algorithm 4 ENC_{stochastic}

```
1: i := 0;

2: repeat

3: \Pi := ENC_{order}(M \oplus \mathcal{K}(i)||i);

4: i++;

5: until p(\Pi) > \epsilon

6: return \Pi;
```

K is a deterministic PRG

Spy Rendezvous

In London, April's a spring month.

..whereas in St.Petersburg we're freezing our butts off.

MI6 CIA