
Distributed Computing with Imperfect
Randomness

Shafi Goldwasser?, Madhu Sudan, and Vinod Vaikuntanathan

MIT CSAIL, Cambridge MA 02139, USA
{shafi,madhu,vinodv}@theory.csail.mit.edu

Abstract. Randomness is a critical resource in many computational
scenarios, enabling solutions where deterministic ones are elusive or even
provably impossible. However, the randomized solutions to these tasks
assume access to a source of unbiased, independent coins. Physical sources
of randomness, on the other hand, are rarely unbiased and independent
although they do seem to exhibit somewhat imperfect randomness. This
gap in modeling questions the relevance of current randomized solutions
to computational tasks. Indeed, there has been substantial investigation
of this issue in complexity theory in the context of the applications to
efficient algorithms and cryptography.
In this paper, we seek to determine whether imperfect randomness, mod-
eled appropriately, is “good enough” for distributed algorithms. Namely,
can we do with imperfect randomness all that we can do with perfect
randomness, and with comparable efficiency ? We answer this question
in the affirmative, for the problem of Byzantine agreement. We construct
protocols for Byzantine agreement in a variety of scenarios (synchronous
or asynchronous networks, with or without private channels), in which
the players have imperfect randomness. Our solutions are essentially as
efficient as the best known randomized protocols, despite the defects in
the randomness.

1 Introduction

Randomization has proved useful in many areas of computer science including
probabilistic algorithms, cryptography, and distributed computing. In algorithm
design, randomness has been shown to reduce the complexity requirments for
solving problems, but it is unclear whether the use of randomization is inherently
necessary. Indeed, an extensive amount of research in the complexity theoretic
community these days is dedicated to de-randomization: the effort of replacing
random string by deterministic “random-looking” strings.

The case of using randomness within the field of distributed computing is,
in contrast, unambiguous. There are central distributed computing problems for
which it is provably impossible to obtain a deterministic solution, whereas effi-
cient randomized solutions exist. The study of one such problem, the Byzantine
Agreement problem is the focus of this paper.
? Grant Information

1.1 Byzantine Agreement: Randomized versus Deterministic
Protocols

The problem of Byzantine Agreement (BA) defined by Pease, Shostak and Lam-
port [PSL80] is for n players to agree on a value, even if some t of them are
faulty. Informally, for any set of initial values of the players, a BA protocol
should satisfy the following: (1) Consistency: All non-faulty players agree on the
same value. (2) Non-triviality: If all the players started with some value v, they
agree on v at the end of the protocol. The faulty players might try to force the
non-faulty players to disagree. The good players, in general, do not know who
the faulty players are. A BA protocol should ensure that the good players agree,
even in the presence of such malicious players.

The possibility of BA depends crucially on the model of communication
among the players. When the players communicate via a synchronous network
with point-to-point channels, there are (t+1)-round deterministic BA protocols
(one in which no player tosses coins) even in the presence of t < n

3 faults. A lower
bound of t+1 communication rounds is known for every deterministic protocol.
When the players communicate via an asynchronous network, the celebrated
result of Fischer, Lynch and Paterson [FLP83] shows that BA is impossible to
achieve even in the presence of a single faulty player.

Yet, Ben-Or [BO83] in 1983 showed how to achieve Byzantine agreement in
an asynchronous network tolerating a linear number of faults via a randomized
protocol with expected exponential round complexity. More efficient random-
ized protocols in asynchronous as well as synchronous networks followed, some
of which (due to [Rab83,Bra84,DSS90,FM97,Fel,CR93]) assume the existence of
private communication channels between pairs of participants (or alternatively
cryptographic assumptions), and some do not require secret communication (no-
tably Chor-Coan [CC85]).

To summarize these works, both synchronous and asynchronous BA can be
achieved via a randomized protocol in expected O(1) number of rounds tolerating
an optimal number of faults, assuming private channels of communication exist.
Without any secret communication requirements, for t < n/3 a randomized pro-
tocol exists for synchronous BA using O(t

log n) rounds 1, whereas the best asyn-
chronous BA protocol still requires exponential number of rounds [BO83,Bra84].

1.2 What type of Randomness is Available in the Real World?

The common abstraction used to model the use of randomness by a protocol (or
an algorithm), is to assume that each participant’s algorithm has access to its
own source of unbiased and independent coins. However, this abstraction does
not seem to be physically realizable. Instead, physical sources are available whose
outcome seem only to be “somewhat random”.

This gap between available physical sources and the abstract model has been
addressed starting with the work of von Neumann [von63] and Elias [Eli72] in
1 In recent unpublished work, Ben-Or and Pavlov [BOP] show how to improve this to

O(log n) rounds.

the sixties which deal with sources of independent bits of unknown bias. In more
recent works, sources of dependent bits were modeled by Santha-Vazirani [SV84],
Chor-Goldreich [CG85], and finally Zuckerman [Zuc90] who presented the weak
random source generalizing all previous models.

Informally, for a weak random source, no sequence of bits has too high a
probability of being output. A weak random source is a block source [CG85] if
this is guaranteed for every output block (for a block size which is a parameter
of the source) regardless of the values of the previous blocks output. Namely,
whereas a general weak random source guarantees some minimum amount of
entropy if sampled exactly once, a block source guarantees a minimum amount
of entropy each time a sample is drawn (where a sample corresponds to a block).

Two natural questions arise. (1) Can weak random sources be used to extract
a source of unbiased and independent coins? (2) Even if not, can weak random
sources be used within applications instead of perfect random sources, with the
same guarantee of correctness and complexity?

The first question was addressed early on, in conjuction with introducing
the various models of imperfect randomness. It was shown that it is impossible
to extract unbiased random coins with access to a single weak random source
[SV84,CG85,Zuc90]. Researchers went on to ask (starting with Vazirani [Vaz85])
whether, given two (or more) weak random sources (all independent from each
other), extraction of unbiased random bits is possible. Indeed, it was shown
[Vaz85,CG85,Zuc90] that two sources suffice. Whereas original works focus on
in-principle results, recent work by Barak, Impagliazzo, and Wigderson [BIW04]
and others focuses on constructive protocols aimed at efficient extraction from
a constant number of independent weak random sources.

The second question is the type we will we focus on in this work. In the
context of probabilistic algorithms, it was shown early on in [CG85,Zuc90] that
a single weak random source can be used to replace a perfect source of random-
ness for any BPP or RP algorithm. Very recently, Dodis et al [DS02,DOPS04],
asked the same question about weak random sources within cryptographic pro-
tocols. Namely, is it possible for cryptographic appplications (e.g. encryption,
digital signatures, secure protocols) to exist in a world where participants each
have access to a single weak source of randomness? Surprisingly, they show that
even if these sources are independent of each other, many cryptographic tasks
are impossible. These tasks include private-key and public-key encryption, zero
knowledge protocols, two-party secure protocols and more.

We thus are faced with a natural and intriguing question in the context of
distributed computing: Are weak random sources suffiently strong to replace perfect
random sources within randomized distributed computing protocols ? This is the
starting point of our research.

1.3 The Choice of our Randomness Model

The model of randomness we assume in this work is that each player has its
own weak source (or block source) that is independent of the sources of all the
other players, as was assumed in the works of Dodis et al in the context of

cryptographic protocols. Other models may have been assumed. For example,
(1) Each player has two or more independent weak random sources. Clearly,
BA can be acheived with no additional effort by each player applying known
extractors locally to his own independent sources. However, the assumption of
local independence is problematic, for the following practical reason: random-
ness sampled from two sources located close-by are unlikely to be independent
of each other. Therefore, it is not reasonable to assume that each player has
multiple independent random sources. Our model looks at the other extreme of
this setting – we assume that different players are so well-separated geographi-
cally that their random strings are independent. However, the most general, and
reasonable model is the following: (2) Each player has a weak random source,
but those sources are correlated, in that the randomness sampled by player i has
a large min-entropy even conditioned on the values for random strings sampled
by all other players. We stress that our model is a natural starting point and a
close approximation to the real world. We have partial results on the the more
general model, which we plan to investigate further in the future.

1.4 Our Results

We focus on the problem of achieving consensus in a complete network of n
participants t of which can be malicious faults as defined by[PSL80]. We address
both the settings of synchronous and asynchronous networks, and both the cases
of private channels (when each pair of participants have a secret communication
channel between them) and the case of a full information network (when no se-
crecy is assumed for any communication between any pair of participants). We
note that by the results mentioned above by Dodis et al [DOPS04], making cryp-
tographic assumptions instead of the assumption of physical private channels, is
doomed for failure.

The model of randomness that we assume, is for each player in the protocol
to have access to a single source of randomness (which is independent from the
other players sources).We will show,

1. In the case of block sources: how to obtain the best bounds of fault-tolerance
and round complexity currently achieved by randomized distributed proto-
cols. Assuming private channels, we show for both synchronous and asyn-
chronous networks an O(1) expected round protocol for t < n

3 faults (match-
ing [FM97,CR93]). In the full-information model, we show for synchronous
networks an O(t

log n) expected round protocol for t < n
3 (matching [CC85])

and a O(2n) expected round protocol for t < n
3 (matching [Bra84]).

2. In the case of general weak sources: We assume private channels. For syn-
chronous networks, we show an O(1) expected round protocol for t < n

3
faults (matching [FM97]). For asynchronous networks, we get an O(1) ex-
pected rounds protocol for t < n

5 . The question of finding a BA protocol for
the full information model where each player has a weak source is left open.

1.5 Our Methods

To achieve our results we build in various ways on top of the existing distributed
algorithms [FM97,CC85,BO83,Bra84]. In general, we follow a 2-step Extract and
Simulate approach to designing such BA protocols. We utilize first O(1) rounds
for a pre-processing protocol, in which the parties interact with each other so that
at the end, a large number of them obtain a private uniformly random string.
The randomness so obtained is used to run existing randomized BA protocols.

We construct various extraction protocols, in which the players interact to
obtain unbiased and independent random bits. The problem that we will need
to overcome is naturally that when a player receives a sample from another
player (which may be faulty), he cannot assume that the sample is good and
not constructed to correlate with other samples being exchanged. We construct
extraction protocols that work even if some of the players contribute bad inputs
which may depend on samples they have seen sent by honest players (in the case
of full information protocols).

As building blocks, we will use the extractors of [Zuc90,CG85,Raz05] as well
as the strong extractors of [DO03,Raz05]. A strong extractor is one which ensures
that the output of the extraction is random even if one is given some of the inputs
to the extractor. Our procedures will guarantee that a certain fraction of the
non-faulty players obtain perfectly unbiased and independent coins. However,
this will not necessarily be the case for the all the non-faulty players, and thus
one may fear that when running existing randomized BA protocols with only
some of the non-faulty players having perfect randomness, the fault-tolerance of
the final protocol may go down. Luckily this is not the case, due the following
interesting general observation.

When we analyze the current usage of randomness in [FM97,CC85], we find
on closer look that one may distinguish between how many non-faulty players
truly need to have access to perfectly unbiased and independent sources of ran-
dom coins, and how many non-faulty players merely need to follow the protocol
instructions. The number of non-faulty players which need to have access to per-
fect coins is drastically lower than the total number of non-faulty players. In the
case of [FM97], it suffices for t+1 players to posses good randomness whereas we
need all the n− t non-faulty players to follow the protocol to prove correctness
and expected O(1) termination. In the case of [CC85] it suffices for (1

2 + δ)n (for
arbitrarily small constant δ > 0) players to possess good randomness.

1.6 Future Work

Two questions are left open when each player has a general weak source (rather
than a block source): (1) How to achieve BA in the full information model, and
(2) How to achieve optimal fault-tolerance in the case of asynchronous networks
in the private channels model. We currently achieve O(1) rounds for t < n/5.

It is of great interest to study the possibility of other tasks in distributed
computing, such as leader election and collective coin-flipping, when the players
have imperfect randomness. We briefly note that the results in this paper can be

used to show the possibility of both these tasks, in the model where the players
have independent block sources.

2 Definitions and the Model

2.1 The Network, Communication and Fault Models

We let n denote the total number of players in the system and t the number
of faulty players. We consider various models of communication between the
players. In all cases, the n players form a fully-connected communication graph.
i.e, each player i can send to every other player j a message in one step. In the
private channels model, the communication between players i and j is invisible
to all the players but i and j. In contrast, in the full-information model, the
communication between any two players is publicly visible.

We consider synchronous and asynchronous communication in the network.
In the former case, each processor has access to a global clock, and commu-
nication is divided into rounds. Messages sent in a round are received in the
beginning of the next round, and the network ensures reliable message deliv-
ery. In the case of asynchronous communication, however, the only guarantee is
that the messages sent are eventually received by the recipient. Messages can be
arbitrarily re-ordered, and arbitrarily delayed.

We consider Byzantine faults in this paper. Byzantine players can deviate
arbitrarily from the prescribed protocol, and co-ordinate with each other so
as to mislead the good players into disagreement. We do not assume that the
Byzantine players are computationally bounded. We refer to Byzantine players
variously as bad or faulty players, whereas the rest of the players are referred to
as non-faulty or good players. The coalition of Byzantine players is informally
referred to as the adversary. We allow the adversary to be rushing. i.e, the
adversary can see all the messages sent by the good players in a round r, before
deciding what to send in round r.

2.2 The model of randomness

Each player has his own source of (imperfect) randomness, and the sources of
different players generate mutually independent distributions.

Weak Random Sources Let Uk denote the uniform distribution on k bits. If
X is a random variable which has a distribution D, then we write X ∼ D. The
distance between distributions is measured in the `1 norm. Thus, the distance
between distributions D1 and D2 (denoted by ∆(D1, D2)) is

∑
a |PrX1∼D1 [X1 =

a]−PrX2∼D2 [X2 = a]|. When ∆(D1, D2) ≤ ε, we say that D1 and D2 are ε-close.
A source of randomness X of length k is simply a random variable that takes

values in {0, 1}k. If X is not uniformly distributed, we say that the source X is a
weak random source. The randomness contained in a source is usually measured
in terms of its min-entropy. A source X of k bits has min-entropy δk, if for every
a ∈ {0, 1}k, Pr[X = x] ≤ 2−δk. In this case, we call X a (k, δ)-source.

Definition 1 ((k, δ)-source). A (k, δ)-source (or a (k, δ)-weak source) is a ran-
dom variable X that takes values in {0, 1}k such that for any x ∈ {0, 1}k,
Pr[X = x] ≤ 2−δk.

A block source is a sequence of random variables (X1, X2, . . .) such that each Xi

(of length k bits) has min-entropy δk, even if conditioned on any realization of
the other blocks. This corresponds to sampling multiple times from a source of
random bits, when we are guaranteed that each sample has some new entropy.
Intuitively, the block-length k specifies how often new entropy is guaranteed to
be generated by the source.

Definition 2 ((k, δ)-block Source). A (k, δ)-block source is a sequence of ran-
dom variables X1, X2, . . . (each of length k) such that any Xi has a min-entropy
of δk conditioned on all the other random variables. That is, Pr[Xi = ai | X1 =
a1, . . . , Xi−1 = ai−1, Xi+1 = ai+1, . . .] ≤ 2−δk.

We use (X, Y) to denote the joint distribution of the random variables X and Y .
In particular, (X, Um) denotes the joint distribution of X and an independent
uniform random variable Um.

Extractors Many real-world applications require uniform randomness. Given
a (k, δ)-source X, our first attempt would be to extract “pure randomness”
from X. That is, to construct a deterministic function Ext : {0, 1}k → {0, 1}m
(for some m > 0) such that for any (k, δ)-source X, ∆(Ext(X), Um) is small.
But, it is easy to show that this task is impossible in general. Faced with the
impossibility of deterministic extraction from a single source, it is natural to
ask if one can extract uniform randomness given two independent (k, δ)-sources.
The answer to this is yes, as was shown by Chor-Goldreich [CG85] for the case
when δ > 1

2 , and more recently by Raz [Raz05] for the case when one of the two
sources has min-entropy at least k

2 and the other has min-entropy at least log k.
Below, we formally define the notion of a deterministic two-source extractor,

which is a key tool in our constructions.

Definition 3 ((k, δ) two-source Extractor). A function Ext : ({0, 1}k)2 →
{0, 1}m is a (k, δ) two-source extractor if for any (k, δ)-source X1 and any in-
dependent (k, δ)-source X2, Ext(X1, X2) is ε-close to Um.

A strong two-source extractor is one in which the output of the extractor is
independent of each of the inputs separately. More formally,

Definition 4 ((k, δ) two-source strong extractor). A function Ext : ({0, 1}k)2 →
{0, 1}m is a (k, δ) two-source strong extractor if for any (k, δ)-source X1 and any
independent (k, δ)-source X2, the distribution (Ext(X1, X2), Xi) is ε-close to the
distribution (Um, Xi) for i ∈ {1, 2}.
Dodis and Oliveira [DO03] consider the notion of a super-strong extractor (which
is essentially a two-source strong extractor, according to the definition above)
and prove that some well-known constructions of two-source deterministic ex-
tractors indeed yield two-source strong extractors. More recently, Raz [Raz05]
shows how to construct very general two-source strong extractors.

3 Extracting Randomness in a Network

Each player participating in a randomized distributed protocol is traditionally
assumed to have a uniformly distributed string that is independent of the ran-
dom strings of the other players. In addition, some protocols assume that the
randomness of each player is private. i.e, the faulty players have no information
on the randomness of the good players. There is no guarantee on the behavior
of the protocol if the players use a weak random source or if the players have
public randomness.

Our goal would be to run a distributed extraction protocol among the players
such that the good players help each other extract a uniform random string
collectively from their (mutually independent) weak random sources, even in
the presence of some malicious parties. The malicious colluding parties could
each contribute an arbitrary string, possibly correlated with what they see in
the network, as input to the extraction protocol.

One of the building blocks in our randomness extraction protocols is a multi-
source extractor whose output is random even if an arbitrary subset of the input
sources do not have any min-entropy, but all the sources are independent. We
call this a (κ, τ)-immune extractor.

Definition 5 ((κ, τ)-immune extractor). Let X1, X2, . . . , Xκ+1 be (k, δ)-block
sources. A function Ext that takes as input a finite number of blocks from each
of the κ + 1 block sources is called a (κ, τ)-immune (k, δ)-extractor if for any
block sources X1, X2, . . . , Xκ+1 such that (i) X1 is a (k, δ)-source, (ii) at least
κ− τ among the κ sources X2, . . . , Xκ+1 are (k, δ) sources, and (iii) all the Xi’s
are independent, Ext(X1, X2, . . . , Xκ+1) is ε-close to Um.

In above definition, we are guaranteed that the τ “bad” sources (those which
do not have any randomness) are independent of the κ + 1− τ “good” sources.
We might need to deal with worse situations. In particular, the τ bad sources
could be dependent on some of the “good” sources. A (κ, τ)-strongly immune
extractor extracts uniform randomness even in this adversarial situation.

Definition 6 ((κ, τ)-strongly-immune extractor). Let X1, X2, . . . , Xκ+1 be
(k, δ)-block sources. A function Ext that takes as input a finite number of blocks
from each of the κ + 1 block sources is called a (κ, τ)-strongly-immune (k, δ)-
extractor if for any block sources X1, X2, . . . , Xκ+1 such that (i) X1 is a (k, δ)-
source independent of all other Xi, and (ii) at least κ − τ among the κ sources
X2, . . . , Xκ+1 are (k, δ)-sources and are mutually independent, Ext(X1, X2, . . . , Xκ+1)
is ε-close to Um.

Some distributed protocols might require the players to have private ran-
domness. But, if the players are connected by non-private channels, most of the
inputs to the extraction protocols are publicly visible. In this case, the output
of the extraction protocol might depend on the values that were publicly trans-
mitted and is thus not private. Therefore, we need to construct (κ, τ)-strongly
immune strong extractors to cope with this situation. The constructions are as
given below.

I-Ext: A (t, t− 1)-immune extractor.

– Let Ext be any (k, δ) two-source extractor.
Let X2

1 , X3
1 , . . . , Xt+1

1 denote t distinct blocks of the (k, δ)-block source X1.
Let X2, . . . , Xt+1 be one block each from the t other sources.

– I-Ext({Xi
1}t+1

i=2, X2, . . . , Xt+1) =
⊕t+1

i=2 Ext(Xi
1, Xi).

Theorem 1. I-Ext is a (t, t − 1)-immune extractor, assuming that Ext is a
(k, δ)-two source extractor.

Proof (Sketch). At least one of the sources (say Xj , 2 ≤ j ≤ t + 1) has min-
entropy δk and Xj is independent of all the Xi

1 (i = 2, . . . , t + 1). Also, Xj
1 has

min-entropy δk conditioned on all the blocks Xj′

1 (j′ 6= j). That is, the distrib-
ution of (Xj

1 |X
j′

1 = xj′

1) has min-entropy at least δk. Therefore, Ext(Xj
1 |(X

j′

1 =
xj′

1), Xj) is ε-close to Um. Now, consider any j′ 6= j. The joint distributions
(Xj

1 |X
j′

1 , Y) and (Xj′

1 , Z) are independent. Therefore, Ext(Xj′

1 , Xj′) is indepen-
dent of Ext(Xj

1 , Xj), for all j′ 6= j. This proves that
⊕t

i=2 Ext(Xi
1, Xi) is close

to Um.

We need the following fact, to prove Theorem 2.

Fact 1 Suppose X1, X2 and Y are random variables, and Z is a random vari-
able such that Z is independent of X1 and X2. If (X1, Y) ≈ (X2, Y), then
(X1, f(Y, Z)) ≈ (X2, f(Y,Z)).

Theorem 2. There exists a (t, t− 1)-strongly immune strong extractor SI-Ext.

Proof (Sketch). In the construction of I-Ext, using a two-source strong extractor
(for instance, those of [DO03,Raz05]) in the place of Ext gives us SI-Ext. We
prove the theorem for the case when t = 2. The general case follows quite easily
from this proof.

Let the distributions under consideration be X1, Y and Z. Here, the distri-
butions Y and Z could be dependent, but both are independent of X. At least
one of Y and Z have min-entropy δk. W.l.o.g, this is Y . Then, since X1

1 has
min-entropy δk conditioned on X2

1 = x2
1, Ext((X1

1 |X2
1 = x2

1), Y) is ε-close to
Um. More importantly, the output of Ext is independent of Y (this is because
Ext is a strong extractor).[

(Ext((X1
1 |X2

1 = x2
1), Y), Y

]
≈

[
Um, Y

]
Now, Z is some computable function of Y . Say, Z = f(Y). Then, by Fact 1,[

(Ext((X1
1 |X2

1 = x2
1), Y), f(Y)

]
≈

[
Um, f(Y)

]

[
(Ext((X1

1 |X2
1 = x2

1), Y), Z
]
≈

[
Um, Z

]
Again, applying Fact 1, and using the fact that Y and X2

1 are independent, and
(X1

1 |X2
1 = x2

1) and X2
1 are independent, we get[

(Ext((X1
1 |X2

1 = x2
1), Y), Ext(X2

1 , Z)
]
≈

[
Um, Ext(X2

1 , Z)
]

Thus, Ext((X1
1 |X2

1 = x2
1), Y) is ε-close to Um and independent of Ext(X2

1 , Z).
Xoring these two values thus gives a value that is ε-close to Um. This proves that
SI-Ext is a (3, 1)-strongly immune extractor.

Now, we need to prove that SI-Ext is a strong extractor. Let D1
def
= Ext((X1

1 |X2
1 =

x2
1), Y) and let D2

def
= Ext(X2

1 , Z). We know that[
D1, Y

]
≈

[
Um, Y

]
and therefore

[
D1, Y, Z

]
≈

[
Um, Y, Z

]
.

This is because Z = f(Y). We also know that
[
D1, X

2
1

]
≈

[
Um, X2

1

]
, since

D1 is the result of extracting from (X1
1 |X2

1 = x2
1) and Y , both of which are

independent of X2
1 . Since X2

1 and Z are independent, and so are X2
1 and Y ,[

D1, X
2
1 , Y, Z

]
≈

[
Um, X2

1 , Y, Z
]
. Therefore,[

D1, X
2
1 , Y, Z, Ext(X2

1 , Z)
]
≈

[
Um, X2

1 , Y, Z,Ext(X2
1 , Z)

]
.

Note that the last component of this distribution is precisely D2. Thus, D1 is
random, given D2, Y , Z and X2

1 . Thus[
D1 ⊕D2, X

2
1 , Y, Z

]
≈

[
Um, X2

1 , Y, Z
]
.

In particular, this means
[
D1 ⊕D2, Y, Z

]
≈

[
Um, Y, Z

]
, which is the definition

of the extractor being strong. ut

4 Byzantine Agreement Protocols in the case of Block
Sources

In this section, we show how to construct randomized Byzantine agreement (BA)
protocols that work even when the players have access to block sources (resp.
general weak sources), using the extraction protocols of the previous section.
Our transformations are fairly generic and they apply to a large class of known
randomized BA protocols.

The protocol Synch-PC-Extract ensures that, in the presence of at most t
faults, at least 2bn

2 c − 2t good players get private random strings, if the good
players have independent block sources.

Protocol Synch-PC-Extract

– Group the players P1, P2, . . . , Pn into pairs (p1, p2), . . . , (pn−1, pn). Let Ext
be an (n, δ) two-source extractor. (Note: Assume for simplicity that n is even.
If not, add a dummy player.)

– Each player Pi does the following:
• If i is even, sample a k-bit string Xi from the source, and send it to Pi−1.
• If i is odd:
∗ Sample a k-bit string Xi from the source, and receive a k-bit string

Xi+1 from Pi+1.
∗ Compute an m-bit string Ri ← Ext(Xi, Xi+1).
∗ Send to Pi+1 the first m

2 bits of Ri and store the remaining bits
locally.

Protocol Asynch-Extract

– Each player pi does the following: (Note: Ext is either a (t + 1, t)-immune
extractor or a (t + 1, t)-strongly immune strong extractor).

• Wait to receive t + 1 strings Y1, Y2, . . . , Yt+1 from t + 1 different players.
• Sample blocks X1

1 , X2
1 , . . . , Xt+1

1 from the random source.
• Compute and Store Ri ← Ext({Xj

1}
t+1
j=1, Y1, Y2, . . . , Yt+1).

Protocol Synch-FI-Extract

– Group the players P1, P2, . . . , Pn into 4-tuples (p1, p2, p3, p4), . . . , (pn−3, pn−2, pn−1, pn).
Let SI-ext be a (3, 2)-strongly immune strong extractor.
(Note: Assume for simplicity that n is a multiple of four. If not, add at most
two dummy players.)

– Each player pi does the following:
(Assume that pi is in a 4-tuple with pi+1, pi+2 and pi+3.)

• Samples six blocks Xj
1 (j = 1, . . . , 6) from its random source.

• Send Xj
1 to pi+j (for j = 1, . . . , 3). Store Xj

1 (j = 4, . . . , 6).
• Receive k-bit strings Yj from pi+j (j = 1, . . . , 3).
• Compute Ri ← SI-ext({X4

1 , X5
1 , X6

1}, Y1, Y2, Y3) and store Ri.

Theorem 3 (Synchronous, Private Channels). If n ≥ 3t + 2, then there
exists a BA protocol that runs in expected O(1) rounds tolerating t faults, assum-
ing the players are connected by a synchronous network with private channels,
and have (k, δ) block-sources with δ > 1

2 .

Proof (Sketch). In the first round, the players run the protocol Synch-PC-Extract.
Let Ri denote the output of player i after running Synch-PC-Extract. Now, the
players run the O(1)-round BA protocol of [FM97], with player i using Ri as the
randomness to the [FM97] protocol.

Consider the set of all pairs (pi, pi+1) such that both players in the pair
are good. There are at least bn

2 c − t ≥ b t
2c + 1 such pairs. In each pair, the

players extract uniform and independent random strings. Thus, there are at
least 2(b t

2c + 1) ≥ t + 1 players at the end of the protocol with m-bit strings
that are ε-close to uniform. If both the players pi and pi+1 in a pair are good,
then the inputs used to compute Ri are invisible to the adversary. It follows that
at least t + 1 players have private, uniformly random strings. Lemma 1 asserts
that, if at least t+1 players have private, uniform randomness, then the protocol
of [FM97] is an O(1)-round BA protocol tolerating any t < n

3 faulty players.

Lemma 1. If n ≥ 3t + 1, then there exists a BA protocol that runs in expected
O(1) rounds tolerating t faults in a synchronous network with private channels,
even if only t + 1 (out of n− t) good players have private randomness.

Proof (Sketch). The protocol of Feldman and Micali [FM97] is such a BA pro-
tocol. Refer to Appendix A for the BA protocol and the proof of this theorem.

The protocol Asynch-Extract ensures that, all the good players get private
random strings, at the end of the protocol. This protocol requires the players to
have block sources, informally because the players need multiple samples from
the source.

Theorem 4 (Asynchronous, Private Channels). If n ≥ 3t + 1, then there
exists a BA protocol that runs in expected O(1) rounds tolerating t faults, assum-
ing the players are connected by an asynchronous network with private channels,
and have (k, δ) block-sources with δ > 1

2 .

Proof (Sketch). In the first round, the players run the protocol Asynch-Extract
with a (t+1, t)-immune extractor in the place of Ext. Let Ri denote the output
of player i after running Asynch-Extract. Now, the players run the O(1)-round
BA protocol of [CR93], with player i using Ri as the randomness to the [CR93]
protocol.

Each player pi gets t + 1 strings, eventually. This is because n ≥ 2t + 1 and
there are at most t faulty players. At least one of the t + 1 strings is “good”.
i.e, it comes from a (k, δ) block-source which is independent from pi’s source.
By the (t + 1, t)-immunity of Ext, this means that the output Ri of player i is
ε-close to uniform. Further, the output Ri of pi is private, informally because
one of the inputs to Ext is unknown to the faulty players.

Theorem 5 (Synchronous, Full-Information Model). If n ≥ 3t + 1, then
there exists a BA protocol that runs in expected O(t

log n) rounds tolerating t faults,
assuming the players are connected by a synchronous network with non-private
channels, and have (k, δ) block sources with δ > 1

2 .

Proof (Sketch). In the first round, the players run the protocol Synch-FI-Extract.
Using the randomness so obtained, run the Chor-Coan BA protocol [CC85].

Consider the set of 4-tuples of players such that at most two players in the
4-tuple are bad. There are at least bn

4 c − b
t
3c ≥ b

5t
12c such pairs. In each such

pair, the good players extract uniform and independent random strings, since
there are at least two good players in such a 4-tuple and Ext is a (3, 2)-strongly
immune extractor (We need strong immunity of Ext since some of the bad inputs
to Ext might be correlated with the good inputs). There are at least 4b 5t

12c ≥
5
9n

players at the end of the protocol with m-bit strings that are ε-close to uniform.
Moreover, the random strings Ri of these players are private, since Ext is a
strong extractor.

Now, by Lemma 2, if at least (1+ δ)n
2 players have private, uniform random-

ness, then the protocol of [CC85] is an O(t
log n)-round BA protocol tolerating

any t < n
3 faulty players. We are done, since we have 5

9n good players who have
uniform randomness.

Lemma 2. If n ≥ 3t + 1, then there exists a BA protocol that runs in expected
O(t

log n) rounds tolerating t faults in a synchronous network with non-private
channels, even if only (1

2+δ)n (out of n−t) good players have private randomness
(for some δ > 0).

Proof. The protocol of Chor and Coan [CC85] is such a BA protocol. Refer to
Appendix C for the protocol and the proof of this lemma.

Theorem 6 (Asynchronous, Full-Information Model). If n ≥ 3t+1, then
there exists a BA protocol that runs in expected O(2n) rounds tolerating t faults,
assuming the players are connected by an asynchronous network with non-private
channels, and have (k, δ) block-sources with δ > 1

2 .

Proof (Sketch). Analogous to the proof of Theorem 4. The players run the pro-
tocol Asynch-Extract with a (t + 1, t)-strongly immune strong extractor in the
place of Ext.

4.1 The Case of General Weak Sources

Theorem 7 (Synchronous, Private Channels). If n ≥ 3t + 2, then there
exists a BA protocol that runs in expected O(1) rounds tolerating t faults, assum-
ing the players are connected by a synchronous network with private channels,
and have weak sources with min-entropy rate δ ≥ 1

2 .

Proof (Sketch). The protocol used in the proof of Theorem 3 suffices to prove
this. This is informally because, the extractor uses at most one sample from each
source.

Theorem 8 (Asynchronous, Private Channels). If n ≥ 5t + 2, then there
exists a BA protocol that runs in expected O(1) rounds tolerating t faults, assum-
ing the players are connected by an asynchronous network with private channels,
and have weak sources with min-entropy rate δ ≥ 1

2 .

Proof. The protocol used in the proof of Theorem 3, with the following slight
modification, suffices to prove this. The change is that, each player, after re-
ceiving a string from its partner in a pair, sends a message indicating that the
extraction protocol is complete. When player i receives such a message from
n − 2t players, he stops the extraction protocol and sets Ri = φ. Each player
eventually receives such a message from n−2t players, since at least n−2t play-
ers are in pairs in which both the players are good. When a player i receives such
a message, it knows that at least n − 4t players have indeed extracted uniform
randomness. Since n− 4t ≥ t + 1, we are done.

References

[BIW04] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting random-
ness using few independent sources. In FOCS, pages 384–393, 2004.

[BO83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract). In PODC, pages 27–30, 1983.

[BOP] Michael Ben-Or and Elan Pavlov. Byzantine agreement in the full-
information non-adaptive model. unpublished manuscript.

[Bra84] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In
PODC, pages 154–162, 1984.

[CC85] Benny Chor and Brian A. Coan. A simple and efficient randomized byzantine
agreement algorithm. IEEE Trans. Software Eng., 11(6):531–539, 1985.

[CG85] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. FOCS, pages 429–
442, 1985.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with
optimal resilience. In STOC, pages 42–51, 1993.

[DO03] Yevgeniy Dodis and Roberto Oliveira. On extracting private randomness
over a public channel. In RANDOM-APPROX, pages 252–263, 2003.

[DOPS04] Yevgeniy Dodis, Shien Jin Ong, Manoj P, and Amit Sahai. On the
(im)possibility of cryptography with imperfect randomness. In FOCS, pages
196–205, 2004.

[DS02] Yevgeniy Dodis and Joel Spencer. On the (non)universality of the one-time
pad. In FOCS, pages 376–, 2002.

[DSS90] Cynthia Dwork, David B. Shmoys, and Larry J. Stockmeyer. Flipping per-
suasively in constant time. SIAM J. Comput., 19(3):472–499, 1990.

[Eli72] P. Elias. The efficient construction of an unbiased random sequence. Ann.
Math. Statist., 43(3):865–870, 1972.

[Fel] Paul Feldman. Asynchronous byzantine agreement in expected constant
number of rounds. unpublished manuscript.

[FLP83] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of
distributed consensus with one faulty process. In PODS, pages 1–7, 1983.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for
synchronous byzantine agreement. SIAM J. Comput., 26(4):873–933, 1997.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM., 27:228–234, 1980.

[Rab83] Michael O. Rabin. Randomized byzantine generals. FOCS, pages 403–409,
1983.

[Raz05] Ran Raz. Extractors with weak random seeds. STOC, to appear, 2005.
[SV84] M. Santha and U. V. Vazirani. Generating quasi-random sequences from

slightly-random sources. In FOCS, pages 434–440, Singer Island, 1984.

[Vaz85] Umesh V. Vazirani. Towards a strong communication complexity theory
or generating quasi-random sequences from two communicating slightly-
random sources (extended abstract). In STOC, pages 366–378, 1985.

[von63] J. von Neumann. Various techniques for use in connection with random dig-
its. In von Neumann’s Collected Works, volume 5, pages 768–770. Pergamon,
1963.

[Zuc90] David Zuckerman. General weak random sources. In FOCS 1990, pages
534–543, 1990.

Appendix A – Proof of Lemma 1

We describe the salient features of Feldman-Micali protocol for Byzantine Agree-
ment in a network with private channels, tolerating t < n

3 faulty players.
The protocol consists of three building blocks: a graded broadcast protocol,

an n/3-resilient verifiable secret-sharing protocol and an oblivious common-coin
protocol. The graded broadcast protocol is deterministic.

The graded VSS protocol of Feldman-Micali [FM97] has the property that the
Sharing protocol is randomized, and the only instructions in Share are executed
by the dealer h. The share-verification and recovery are deterministic. It follows
that as long as the dealer has uniform randomness, P is a graded VSS protocol.

Lemma 3. If n ≥ 3t + 1, there exists an O(1)-round protocol, which is a t-
resilient graded Verifiable Secret-Sharing (VSS) protocol, assuming only that
the dealer has randomness.

Definition 7 (Oblivious Common Coin). Let P be a fixed-round protocol in
which each player x has no input and is instructed to output a bit rx. We say that
P is an oblivious common coin protocol with fairness p and fault-tolerance t if for
all bits b, for every set of t players who are corrupted, Pr[∀ good players i, ri = b] ≥
p. We refer to an execution of P as a coin. The coin is unanimously good if ri = b
for every good player i.

Lemma 4. If n ≥ 3t + 1 and if there exists an O(1)-round graded VSS protocol
that tolerates t faults and which works assuming only that the dealer has ran-
domness, then there exists an O(1)-round oblivious coin protocol, which assumes
only that t + 1 good players have randomness.

So far, all the subprotocols (Gradecast and Graded VSS) required at most one
of the participating players to have uniform randomness. But, the common coin
protocol requires that t+1 players have uniform randomness. The lemma shows
that t + 1 is a tight bound.

Proof. The Oblivious Coin protocol of Feldman-Micali [FM97] is given below.
The proof that it is enough for t + 1 players to have randomness, follows.

Protocol Oblivious Common Coin

1. (for every player i): For j = 1, . . . , n, randomly and independently choose a
value sij ∈ [0, . . . , n− 1].
(Note: We will refer to sij as the secret assigned to j by i.)
Concurrently run Share and Graded-Verify (of a VSS protocol) n2 times,
once for each pair (h, j) ∈ [1 . . . n]2, wherein h acts as a dealer, and shares
shj , the secret assigned by h to j.
Let verificationhj

i be player i’s output at the end of Graded-Verify for the
execution labeled (h, j).
(Note: Informally, verificationhj

i indicates what player i thinks about the re-
coverability of the secret assigned by h to j.)

2. (for every player i): Gradecast the value (verification1i
i , verification2i

i , . . . , verificationni
i).

(Note: The gradecasted value by player i is precisely player i’s opinion about
the recoverability of the secret assigned by all the other players to itself.)

3. (for every player i): for all j, if

(a) in the last step, you have accepted player j’s gradecast of a vector ej ∈
{0, 1, 2}n,

(b) for all h, |verificationhj
i − ej [h]| ≤ 1, and

(c) ej [h] = 2 for at least n− t values of h,

then set playerij = ok, else set playerij = bad.
4. (for every player i): Recover all possible secrets.

Concurrently run Recover on all the n2 secrets shared. Denote by valuehj
i

your output for execution (h, j). If playerij = bad, set SUMij = bad, else
set

SUMij = {
∑

h such that ej [h]=2

valuehj
i } mod n.

If for some player j, SUMij = 0, output ri = 0, else output ri = 1.

We now sketch the proof that the above protocol is an Oblivious Common Coin
protocol, assuming at least t + 1 good players have uniform randomness, and at
most t players are faulty. This follows from the following series of observations.

– In step 3(a) of the protocol, all the good players that accept the gradecast of
a player i receive the same vector ei, even if it player i is bad. This means,
every good player i computes SUMij as a sum of the same set of values.

– If SUMij is not set to bad, all the addenda of SUMij had ej [h] = 2, which
means verificationhj

i ≥ 1 (by Step 3(b) of the above protocol). This in
turn means, by the property of graded VSS, that there is a unique secret
corresponding to the (h, j)th execution of Share, which can be recovered.
Thus, for every player j (who may be malicious), there exists a value γ such
that, for any good player i, SUMij is either γ or bad.

– Moreover, if SUMij 6= bad, then SUMij is a sum of at least n− t values (by
Step 3(c) of the above protocol). At least one of the n− t values is shared by
a good player who has randomness (since there are at least t + 1 of them).

Thus, since all the values shared are independent2, SUMij is either set to
bad or a random number γ.

– Given this, we can prove that the coin is sufficiently common and sufficiently
random. The proof proceeds identically to that of [FM97]. More precisely,
we can prove that for any bit b, Pr[∀ good players i, ri = b] ≥ min(e−1, 1−
e−2/3).

Lemma 5 ([FM97]). Given an oblivious-coin protocol as a black-box, there is
a deterministic protocol that achieves BA in O(1) rounds.

Appendix B – Proof of Lemma 2

We describe the Chor-Coan protocol for Byzantine Agreement in a full-information
network, tolerating t < n

3 faulty players.
The players are divided into fixed disjoint groups of size g. The ith group con-

sists of the set of players {p(i−1)g+1, . . . , pig}. For any player pi, let GROUP(pi)
denote the group that pi belongs to. The protocol proceeds in phases where, in
each phase, the players try to reach agreement on their values. A more formal
description of the protocol follows:
Note: When the protocol begins, each player pi has an input bit bi.

1. For e = 1 to ∞, each player pi does the following:
Comment: e is the current phase.
(a) Sends to every player the message (e,Phase1, bi).
(b) Receive messages from every other player of the form (e,Phase1, ∗).
(c) If for some v, there are ≥ n− t messages of the form (e,Phase1, v),

i. then set bi ← v,
ii. else set bi ← “?”

(d) If GROUP(pi) ≡ e (mod bn
g c)

i. then set coin← b, {Note : b is a random bit}
ii. else set coin← 0

(e) Send to every player the message (e,Phase2, bi, coin).
(f) Receive messages of the form (e,Phase2, c, coin) from every player.
{ Note: Let NUM(c) be the number of messages received that contain c. }

(g) If NUM(c) ≥ n− t for some bit c, decide c.
(h) Else, if NUM(c) ≥ t + 1 and NUM(c) > NUM(c̄), set bi ← c.
(i) Else, set bi ← majority of the coinj ’s from the group x, where x ≡

e(mod bn/gc).

Proof of Lemma 2. The following properties of the protocol are easily verified:
(a) If a player pi decides at the end of a phase, all players decide by the end of
the next phase. (b) If a player sets bi ← c at the end of a phase (instruction h,
above), then no player pj sets bj ← c̄. Given this, it is easy to see that agreement
is reached when all the remaining players (ones who set bi to be the coin-toss
2 It turns out that this statement is not precise, and has to be proven by a more careful

simulation argument, for which we refer the reader to [FM97].

from a group) set bi to c (in instruction i). It remains to analyze the expected
number of rounds in which this event happens.

Set the size of a group to be g = 2m = log n. Call a group e good if more
than m + 1 players in the group are non-faulty. Call a coin-toss good if at least
m + 1 good players in a group tossed the same coin (with a fixed value – 0 or
1). It is clear that

Pr[coin-toss of a group e is good | e is a good group] ≥ 1
2m+1

.

Now, lets analyze how many bad groups there can be. There are at most t <
(1
2 − ε)n players who have no randomness, and these players can make at most
t

m+1 < (1
2 − ε) 2n

log n = (1 − 2ε) n
log n groups bad. Since there are n

log n groups in
total, the number of good groups is at least 2εn

log n .
The protocol terminates as soon as there is a good coin-toss. The expected

number of good groups that have to toss coins before they get a good coin is
precisely 2m+1 ≤ 2

√
n. The probability that a good coin is not formed after

n3/4 groups tossing coins is negligible, by a Chernoff Bound. Thus, the expected
number of rounds to each agreement is 2t

log n + n3/4 + O(1).

