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ABSTRACT

Vacation planning is one of the frequent—but nonetheless
laborious—tasks that people engage themselves with online;
requiring skilled interaction with a multitude of resources.
This paper constructs intra-city travel itineraries automati-
cally by tapping a latent source reflecting geo-temporal bread-
crumbs left by millions of tourists. For example, the popular
rich media sharing site, Flickr, allows photos to be stamped
by the time of when they were taken and be mapped to
Points Of Interests (POIs) by geographical (i.e. latitude-
longitude) and semantic (e.g., tags) metadata.

Leveraging this information, we construct itineraries fol-
lowing a two-step approach. Given a city, we first extract
photo streams of individual users. Each photo stream pro-
vides estimates on where the user was, how long he stayed
at each place, and what was the transit time between places.
In the second step, we aggregate all user photo streams into
a POI graph. Itineraries are then automatically constructed
from the graph based on the popularity of the POIs and
subject to the user’s time and destination constraints.

We evaluate our approach by constructing itineraries for
several major cities and comparing them, through a “crowd-
sourcing” marketplace (Amazon Mechanical Turk), against
itineraries constructed from popular bus tours that are pro-
fessionally generated. Our extensive survey-based user stud-
ies over about 450 workers on AMT indicate that high qual-
ity itineraries can be automatically constructed from Flickr
data.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications-
Data mining; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval
∗Part of this research was performed while visiting Yahoo!
Research.
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1. INTRODUCTION
Travel itinerary planning is often a difficult and time con-

suming task for a traveler visiting a destination for the first
time. It involves substantial research to identify points of
interests (POIs) worth visiting, the time worth spending at
each point, and the time it will take to get from one place
to another. Without any prior knowledge, one must either
rely on (1) travel books, (2) personal travel blogs, or (3) a
combination of online resources and services such as travel
guides, map services, public transportation sites, and human
intelligence to piece together an itinerary.

All these options have shortcomings. Travel books do not
cover all cities/locations and, perhaps more importantly, are
not free. Personal travel blogs reflect a single person’s view,
with no guarantees provided over the writer’s experience or
the amount of preparation invested in planning the trip.
Finally, compiling an itinerary by selecting individual POIs
and researching their to’s and fro’s is a task which is both
time consuming and requires significant search expertise.

Fortunately, with the advancement of digital photography
and the rapid rise of rich media sharing sites such as Flickr
(http://www.flickr.com/), millions of travelers are now shar-
ing their travel experiences through rich media data such as
photos. More interestingly, users are increasingly associat-
ing shared media with rich contextual information. Flickr
photos, for example, are usually time-stamped by the date
and time of when they were taken. Furthermore, they are
often tagged with geographical information (i.e., latitudes
and longitudes), which can be easily mapped to the POIs.
Even more frequently, the photos are associated with textual
metadata such as tags, titles, notes, and descriptions.

Such shared photos can be seen as billions of geo-temporal
breadcrumbs that can promisingly serve as a latent source
reflecting the trips of millions of users. Our goal is there-
fore to automatically construct travel itineraries at a large
scale from those breadcrumbs. More specifically, by ana-
lyzing these breadcrumbs associated with a person’s photo
stream, one can deduce the cities visited by a person, which
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POIs that person took photos at, how long that person spent
at each POI, and what the transit time was between POIs
visited in succession. By aggregating such timed paths of
many users, one can construct itineraries that reflect the
“wisdom” of touring crowds. Each such itinerary is com-
prised of a sequence of POIs, with recommended visit times
and approximate transit times between them.

The tasks described above raise several key challenges that
are tag-related, geo-related, or time-related. Tags are used
to capture different user intents. For example, a photo of
a person named Paris taken in NYC may be tagged by the
person’s name. City and POI names have different variants.
For example, “NYC”, “Manhattan” and “The Big Apple” all
relate to NYC. Geo-location information can be misleading.
For example, pictures of a landmark can be taken from afar
such as a picture of the Brooklyn Bridge taken from atop
the Empire State Building in NYC. In this case the latitude
and longitude information may not match the pictured land-
mark. As for time-related challenges, some travelers try to
maximize the number of POIs they visit, while others like to
leisurely tour fewer POIs. Backpackers move between places
faster than a family of four can. In summary, the associa-
tion of photos to cities/POIs needs to be assessed carefully,
and the construction of travel itineraries from photos must
address all the challenges raised above. In addressing these
challenges and others, we make the following contributions:

1. We introduce a novel end-to-end approach that starts
with the analysis of latent information reflected in so-
cial media sharing sites, and ends with the synthesis of
practical information in the form of travel itineraries.

2. As an initial implementation of our approach, we apply
a pipeline of multiple heuristics that together extract
reliable granular evidence of individual tourists’ trips
to a destination from Flickr photos.

3. We aggregate the individual trips to form a graph rep-
resenting collective touristic behavior, and adapt a so-
lution of the Orienteering problem to efficiently gener-
ate intra-city travel itineraries from the graph.

An extensive survey based user study eliciting feedback
from 450 users on Amazon’s Mechanical Turk platform val-
idated our system’s ability to generate high quality travel
itineraries for popular touristic cities.

The rest of the paper is organized as follows: Section 2
surveys related work. Section 3 presents some basic termi-
nology and details how we process Flickr photos to derive
timed travel paths of many users. Then, in Section 4, we
aggregate those paths and generate itineraries. Section 5 re-
ports on our user study, conducted on Amazon Mechanical
Turk. Section 6 presents future challenges and conclusions.

2. RELATED WORK
Our work integrates the two emerging fields of touris-

tic data analysis and touristic information synthesis, and is
therefore related to various works in these two fields. For the
former, there are a number of studies on analyzing landmark
(i.e., POI) visitation patterns from geo-spatial and temporal
evidences left by travelers. However, those works generally
avoid synthesizing or recommending new paths and instead
focus solely on the analysis itself. We survey those works in
Section 2.1. For the latter, a number of other works con-
struct and recommend tourist itineraries at various granu-
larities. They rely, however, on structured and cleansed data

on landmarks and their attributes, and do not deal with the
challenge of analyzing and extracting from noisy data. We
survey those works in Section 2.2. Our work is tangentially
related to several vast fields such as visualizing geo-spatial
databases, tracking movements based on sensor networks,
and constraint optimization. Due to space limitation, we
choose not to survey them here.

2.1 Touristic Data Analysis
Many works mine geo-spatial and textual metadata as-

sociated with Flickr images. Rattenbury et al. [16] ana-
lyze the geo-temporal dynamics of Flickr tags and distin-
guish between tags describing places and events. Ahern et
al. [1] plot aggregated textual metadata associated with geo-
referenced Flickr images on a map interface, thereby expos-
ing how Flickr users at large describe landmarks. Crandall
et al. [8] explore the association of Flickr photos to physical
locations, and apply their techniques to extract landmarks
at various granularity levels that correspond to a geo-spatial
hierarchy. Popescu and Grefenstette [15] deduce visit times
at landmarks based on timestamps of Flickr photos.

A large body of related work was done by Girardin et
al. [11], who analyzed dynamics of people moving through
urban spaces. In [12], the authors study digital footprints,
explicit (e.g. Flickr photos) or implicit (e.g. cell association
in a mobile communication network), that people “leave be-
hind” while traveling through a city; whereas, the focus of
[13] was to tap tourist dynamics for better urban planning
and deployment of location-based services.

Note, apart from tags and geo-information, the visual fea-
tures of photos can also be analyzed to reveal clues about
its content [16, 8]. However the visual features alone do not
lend us any temporal information. Hence we chose to rely
on solely the textual tag and geo-information.

2.2 Touristic Information Synthesis
An early work [7] developed a “tourist guide” system that

used mobile computing technology on wireless infrastructure
to present tourists with tour-related information that could
be tuned to fit multitude of circumstantial contexts. In two
more recent works, Leake and Powell tackle itinerary plan-
ning with Case Adaptation methodology within the frame-
work of the Case Based Reasoning (CBR) by building the
WebAdapt system [14]. WebAdapt taps knowledge bases of
formalized knowledge, such as Wikipedia, and a geographi-
cal gazetteer in helping users to modify and personalize ex-
isting itineraries.

Dunstall et al. [9] developed ETP (Electronic Travel Plan-
ner), a system that constructs an entire vacation by piec-
ing together structured components of types “tour”, “lodg-
ing”, and “transportation”. Tours typically contain places
to visit and activities to perform within a single day and
general area, i.e. between lodgings and transports. The
INTRIGUE system [2] recommends sightseeing destinations
and itineraries while taking into account preferences of in-
dividuals or members of a group.

2.3 Integrating Analysis and Synthesis
Tai et al. [17] is the only prior work that we have found to

be addressing both the mining of itinerary data and its syn-
thesis. Built as an itinerary recommender system for Flickr
users, they treat scenic landmarks photographed by a user
as defining that user’s interests. Given the last few land-
marks photographed by a user, the system recommends a
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sequence of landmarks the user hasn’t photographed (nor,
presumably, visited) yet based on sequences of landmarks
visited by other users. However, the system does not ad-
dress the challenges involved in constructing an itinerary
from scratch, nor does it address the temporal dimension
(visit and transit times) of the proposed itinerary.

In summary, there is a lack of integration between touristic
data mining and synthesizing those mining results to form
itineraries such that the users can easily adopt and leverage.
Our work aims to fill this void by proposing the first end-
to-end system for automatically constructing full itineraries
from the analysis of geo-temporal data available in large
scale rich media sharing sites.

3. CONSTRUCTING TIMED PATHS
We begin by introducing a few basic notations. We have

a set of photos P , their owners U , and a set of cities C, each
with a set of POIs LC extracted from leading web sources.

Each photo p ∈ P is described by its attributes: up iden-
tifies the photo owner; ttp and tup indicate when it was
taken and uploaded (to Flickr), respectively; g

p

lat and g
p

long,
if given, indicate where (i.e., latitude and longitude) it was
taken; and finally {θp

i |i = 1...m} is the set of tags associated
with the photo. For example, a photo of the Eiffel Tower in
Paris may be tagged with “Tour Eiffel, Eiffel Tower, Archi-
tecture, Paris, Travel.”

One interesting feature provided by Flickr is to allow users
organize their photos into photo-sets. Observations indicate
that the users often group travel-related photos into such
photo-sets, with each set devoted to a particular trip or des-
tination. Since descriptive tags attached to the photo-set
apply to all photos within the set, we propagate those tags
to all the photos within the set.

POIs for each city C are obtained from various sources, in-
cluding Yahoo! Travel (http://travel.yahoo.com/) and Lonely
Planet (http://travel.lonelyplanet.com/). Each POI is then
described with the following attributes: pname uniquely
identifies the POI; city is the city it belongs to; and gℓ

lat

and gℓ
long are its latitude and longitude. Examples includ-

ing museums, parks, historical sites, and religious places.
Given those basic building blocks, the first step is to con-

vert the raw user photos into individual timed paths for a
given city C. Intuitively, these paths, which connect various
POIs, are constructed from individual photo streams and
describe the movements of individual tourists. The process
has three main challenges: (i) pruning irrelevant photos that
are not associated with the city of interest or not owned by a
tourist; (ii) mapping photos to the POIs, and (iii) construct-
ing individual timed paths. Each timed path is a sequence
of POIs traversed by a user, annotated with the time spent
by the user at each POI and the transit times between pairs
of successive POIs. Figure 1 gives an overview of the entire
process, which is described in the rest of the section.

We emphasize here that: 1) while our study focus on lever-
aging information from a particular rich media sharing site,
Flickr, the work is easily extensible to any other social repos-
itory, where uses can share semantically and geo-temporally
tagged rich media; 2) while we process the internal Yahoo!
Flickr data repository, the same protocol can essentially be
followed by using the open Flickr API.

3.1 Constructing User Photo Streams
Given a city, pruning away irrelevant photos involves sev-

eral tasks. The first task is to identify photos that are likely

to be taken within the city. The second task is to identify
users who are likely to be tourists of the city (as opposed
to city residents). Finally, since the ultimate goal is to con-
struct travel itineraries with the prediction of visit and tran-
sit times, we must also remove photos whose stored taken
time may be inaccurate.

Identifying photos of the city. To identify photos of the
city, we mainly leverage the semantic tags associated with
users’ photos. We start by collecting the set of names of the
city, including its proper name and various popular variants,
denoted as NC . We then use the following rule to associate
photos with the city:

Rule 1 (Photo-City Association). A photo p is as-
sociated with the city C if p’s set of tags (including any
tags propagated from p’s photo-set) contain at least one tag
matching a name variant in NC .

For example, New York City can be referred to as “NYC”,
“Manhattan”, etc., and any photo whose tags include one
of those variants is associated with New York City. Note
that we do not tap the geo information of the photos at this
stage, as we found that it does not significantly improve the
city-photo association and is far more costly to compute.

Filtering residents of the city. City residents exhibit
different visit patterns from typical tourists. For example,
they are not under pressure to visit many POIs within a
time constraint. Travel itineraries generated from patterns
derived from residents are not likely to be useful for tourists.
To address this problem, we adopt the technique of [13] and
implement the following heuristic rule:

Rule 2 (Tourist User). A user u is considered as a
tourist of the city C, if the span of the taken times between
u’s first and last photos in C is no more than N days. We
empirically set N to 21 in this work.

The assumption here is that while most tourists concen-
trate their visits within a short time period from several
days to a couple of weeks, residents will take pictures of the
city over a much longer period of time. We also enforce that
a user visits at least two POIs of C to be considered as a
tourist. Once a user u is identified as a non-tourist, all of
u’s photos associated with city C are eliminated.

Photo taken time verification. Constructing itineraries
with accurate predictions of visit and transit times requires
the photos to have reliable timestamps, which we verify by
the following rule:

Rule 3 (Accurate Taken Time). A photo p is con-
sidered to have an accurate taken time ttp if its minutes and
seconds are different from those of its upload time tup (both
timestamps are at a resolution of 1 second). If the minutes
and seconds do match, p is considered to have an accurate
taken time if ttp and tup are more than 24 hours apart.

Intuitively, differences in the seconds or minutes eliminate
the possibility that the taken time is set by default to the up-
load time (a practice adopted by Flickr whenever the taken
time info is missing). The 24 hour rule is used to recover
photos mistakenly eliminated in the first round due to the
time zone differences. In the end, if a photo does not have
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Figure 1: Schematic Diagram for constructing timed paths. Given Photosets P, a city C and its POI set LC,
we first construct user photo streams SC. Second, we map the photos to different POIs to get POI-associated
streams SL

C . Finally from SL
C, we generate timed paths, TPC.

an accurate taken time according to the above rule, it is
ignored for the rest of the process.

Finally, we group all photos that satisfy all three rules
by owner, and within each owner, sort the photos by their
taken time. The result is a collection of city photo streams
SC , one for each user.

3.2 Mapping Photos to Points of Interest
The next phase maps photos to POIs. It involves city-

specific POI extraction, followed by photo-POI association.

3.2.1 Extracting Candidate POIs

In this study, we rely on Lonely Planet to extract the
set of popular landmarks (LC) for a given city C. Further-
more, we employ the publicly available Yahoo! Maps API1

to extract the geo-locations (i.e., latitudes and longitudes)
of these POIs. Geo-locations are returned when querying
the Yahoo! Maps API with the names of the POIs.

3.2.2 Photo-POI Association

Algorithm 1 Algorithm for Associating Photos with POIs

Require: City-relevant photo streams SC ; a city C;
1: LC = getPOIs(C);
2: for (p ∈ SC) do

3: for (ℓ ∈ LC) do

4: if (geoMap(p, ℓ) || tagMap(p, ℓ)) then

5: associate(p, ℓ);
6: end if

7: end for

8: end for

9: return Photo streams with photos associated with city POIs

Given geo information of the POIs, there are two main
alternatives to map a photo to a particular POI: geo-based
or tag-based. The former relies on matching the photo’s geo
location to the POI’s geo location, while the latter relies
on matching the photo’s tags to the names of the POIs.
Specifically, for the former, we associate a geo-located photo
p to a POI ℓ ∈ LC whenever ℓ is the POI closest to p,
and p was taken within δ = 100 meters of ℓ. This is our
preferred method for geo identification, especially for large
and distinctive POIs. Such POIs are often photographed
from afar (e.g., the Golden Gate Bridge in San Francisco),
and therefore the POI extracted from their tags may not
match the physical location of where they were taken.

When a photo lacks associated geo information, we apply
tag-based matching as a secondary measure. Given a photo

1http://developer.yahoo.com/maps/

tag and the name of a POI, we compute the similarity be-
tween the two based on their trigram set similarity. We thus
associate a photo p to a POI ℓ whenever ℓ has the highest
similarity with any tag of p among all the POIs, with that
similarity being above an empirically set threshold σ = 0.3.

The overall POI association process is depicted in Algo-
rithm 1. It augments the previously identified individual
photo streams (SC) with associated POI information to pro-
duce the POI photo stream, SL

C .

3.3 Generating Timed Paths
Finally, we describe the process of constructing individ-

ual timed paths, TPC , from SL
C . As summarized in Algo-

rithm 2, it involves two main steps: time segmentation and
path construction.

3.3.1 Segmentation of Photo Streams

So far, a single stream contains all photos of a single user
in a single city. This is not very useful, as two photos might
be adjacent in the stream despite being taken (and their cor-
responding POIs visited) on different days. To address this
issue, we segment each stream into sub-streams using a sim-
ple heuristic: we split the stream whenever the time differ-
ence between two successive photos, ttpi+1 − ttpi is greater
than some threshold τ (we use τ=8 hours in our experi-
ments). Subsequently, each sub-stream containing photos
from a single POI, or containing less than η=3 photos over-
all, was discarded. Such sub-streams cannot reliably con-
tribute to the computation of visit and transit times.

3.3.2 Construction of Timed Paths

In constructing timed paths we rely on the notion of a
timed visit, defined as follows.

Definition 1 (Timed Visit). Let ℓ ∈ LC be a POI of

Algorithm 2 Algorithm for Generating Timed Paths

Require: POI-associated photo streams SL
C

; a city C; a time
threshold τ ;

1: for (s ∈ SLC) do

2: SS = segmentStream(s, τ);
3: for (ss ∈ SS) do

4: pruneNonTourists(ss);
5: addPaths(TP C , ss);
6: end for
7: end for

8: return Timed Paths TPC ;
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city C. A timed visit at ℓ is the triplet (ℓ, ts, te), where ts is
the start time and te ≥ ts is the end time of the visit.

We construct timed visits at ℓ from maximal subsequences
of photos associated with ℓ in a photo stream. The time
stamp of the first photo in the subsequence determines ts,
while that of the last photo determines te. A timed visit
implies a lower bound on the actual time spent by the par-
ticular user at that POI, since the start and end times rep-
resent the earliest time and the last time that a photo was
taken at the POI, and not the actual times of arrival at and
departure from the POI.

Definition 2 (Timed Path). A sequence of timed vis-
its, PC = {(ℓ1, t

s
1, t

e
1), . . . , (ℓk, ts

k, te
k)} is called a timed path

for city C whenever te
j < ts

j+1 for j = 1, . . . , k − 1. The
difference ts

j+1− te
j is called the transit time from ℓj to ℓj+1.

Timed paths are induced by the sequence of timed visits
derived from a photo stream. Transit times imply an upper
bound on the time it took for the particular user to move
from one POI to the next.

4. FROM TIMED PATHS TO ITINERARIES
Given the set of timed paths, our goal is to aggregate the

actions of many individual travelers into coherent itineraries
while taking into consideration POI popularity. To this ef-
fect, we define a full undirected graph GC = (V = LC , E =
LC × LC) on which the following predicates are defined:

T (ℓ ∈ LC) is the visit time at each POI ℓ in LC . Different
people might stay for different durations at a POI for
many reasons, some of which transcend the value of the
landmark itself (e.g. they may stop for a meal there).
Moreover, a single user may visit a POI multiple times,
each with a different visit time. We take the longest
visit of each user u at a POI as u’s visit time and set
T (ℓ ∈ LC) to be the visit time closest to the 75th
percentile among all users. This heuristic overcomes
much of the noise and compensates for the fact that
the visit times we measure are only lower bounds on
the real visit times.

T (e ∈ E) is the median transit time between each pair of
POIs in LC . We allow each timed path to contribute
multiple transits between the same pair of points. The
median, then, is calculated over the set of all transit
times collected from all timed paths. Edges with a
single (or no) transit in the data are assigned a transit
time of infinity.

V (ℓ ∈ LC) is the prize or value that an itinerary gets from
visiting each POI ℓ in LC , and is a function of the
popularity and visit duration of ℓ. We define the pop-
ularity of ℓ as the number of distinct users who visited
it (POIs visited by less than 10 users are removed).
The dependency on the visit duration is required, to
prevent bias towards POIs with short visit durations.
We set the prize to be the product of the popularity
and the visit duration. Alternative definitions of the
prize function may also factor in the number of pho-
tos taken at ℓ. Examining the effectiveness of different
prize functions is part of our future work.

Note that while (theoretically) transit times should obey the
triangle inequality, this may not hold with the transit times
we empirically collect. To overcome this difficulty and en-
force the triangle inequality, we apply metric completion on
GC . The drawback of metric completion is that an erroneous

(short) transit duration at one edge can propagate to many
other edges. To mitigate this risk, we ignore transit times
of edges for which only a single transition was recorded.

4.1 Itineraries and the Orienteering Problem
An itinerary is a path in the graph GC , where a node

(POI) in the path may be visited more than once. Let I be
an itinerary; its prize V (I) is defined as the sum of prizes
of the unique set of POIs (i.e., a POI’s prize is counted
only once even if it is visited multiple times) along the path.
The time T (I) of the itinerary is the sum of visit times
to the unique set of POIs along the path, plus the transit
times along all edges on the path (including those that are
traversed more than once). The intuition behind counting
prize and visit time only once for POIs visited multiple times
is that one might pass through a place several times, always
paying the transit time, but spending time there to view the
place only once. However, since GC satisfies the triangle
inequality, we can assume without loss of generality that
an itinerary is a simple path. Under this assumption, T (I)
becomes the sum of visit times of its nodes plus the transit
times of its edges.

Given the definitions above, we formulate the Itinerary
Mining Problem (IMP) as follows.

Instance: A graph G = (LC , E) with edge costs (=transit
times) {T (e)|e ∈ E} obeying the triangle inequality,
(time) budget B, node prizes {V (ℓ)|ℓ ∈ LC}, node
costs (=visit times) {T (ℓ)|ℓ ∈ LC} and two nodes s, t ∈
LC .

Objective Find an itinerary in G from s to t of cost (=time)
at most B maximizing total node prizes.

We note here that, the time budget B is typically set to
whole days. And s and t can either be provided by the user
or be implicitly set by the itinerary recommendation appli-
cation based on prior knowledge such as the POI popularity.

Proposition 1. The Itinerary Mining Problem is NP-
Hard.

The proposition can be easily proved by a reduction from
the Hamiltonian Path problem [10].

Note, IMP is closely related to the well-studied, NP-Hard
Orienteering problem. In the Orienteering problem there are
only edge costs (no node costs), and its classic formulation is
over undirected graphs. Many polynomial-time approxima-
tion algorithms for the classical Orienteering problem and
its variants are available in the published literature [3, 5].

A common extension of the Orienteering problem specifies
a time window for visiting each node. A node v, then, con-
tributes to the prize collected by a path only if the path
reaches v within its time window. Time windows allow
us to model recommended visit times of POIs. In this re-
gard, Chekuri et al. [4] give an incomparable approximation
ratio of O(max{log OPT, log Lmax

Lmin
}) for Orienteering with

time windows, where Lmin and Lmax are the lengths of the
shortest and longest time windows, respectively. Besides,
an O(log2 n)-approximation algorithm for Orienteering with
time windows is also given by [5].

Note, typically, the above algorithms all have large time
complexity in practice–O(n8) or worse. However, Chekuri
and Pál [6] take a different approach and propose a quasi-
polynomial recursive greedy approximation algorithm for
Orienteering, whose approximation ratio is ⌈log k⌉+1, where

39



k is the length of the optimal path (in terms of nodes). This
approximation ratio is appealing in our context, as we ex-
pect a reasonable itinerary to visit only a few POIs each day.
By imposing an upper bound k̄ on k, the time complexity

of the algorithm can be reduced to O((2 + nA log B)log k̄).
Moreover, the algorithm is highly extensible.

4.2 Approximating IMP
As mentioned above, the major difference between IMP

and the Orienteering problem is that IMP includes node
costs. Hence we reduce IMP to the directed Orienteering
problem by adding T (ℓ) to the cost of each edge entering
ℓ.2 Algorithm 3 is a restatement of Chekuri and Pál’s algo-
rithm [6], which we include here for completeness.

Algorithm 3 Recursive greedy algorithm for Orienteering
(RG-QP) [6]

Require: Graph G, source s, destination t, budget B, a set X of
nodes that cannot be used and the number of internal nodes
allowed on the path k.

1: If(distG(s, t) > B), return Infeasible
2: P ← s, t
3: If(i = 0), return P
4: for (each v ∈ V [G]) do
5: for (each possible prize a) do

6: B1 ← minb{RG-QP(s, v, b, X, ⌊(k − 1)/2⌋) ≥ a}
7: If(B1 =∞), continue
8: P1 ← RG-QP(s, v, B1, X, ⌊(k − 1)/2⌋)
9: P2 ← RG-QP(v, t, B −B1, X ∪ V (P1), ⌊k/2⌋)

10: If(prize(P1 · P2) > prize(P )), P ← P1 · P2

11: end for

12: end for

13: return P

The idea of the recursive greedy algorithm is to guess the
middle node v of the path and the amount of prize collected
by the path in the first half (i.e., up to node v). The algo-
rithm then determines how much budget has to be invested
in the first half to collect the guessed prize, and calls itself
recursively on both halves of the path.

4.3 Multi-Day Itineraries
An easy extension of Algorithm 3 allows it to produce

multi-day (actually, multi-part) itineraries. The idea is to
supply the algorithm with multiple triplets comprised of
start-point, end-point, and time allowance. Each triplet rep-
resents a “part” and corresponds to the parameters s, t and
B of the IMP formulation above. Typically, the end-point
of triplet j would be the start point of triplet j + 1, repre-
senting the location where a tourist might spend a night. In
a multi-day stay in a city, those might all be the tourist’s
hotel. A multi-day itinerary is considered valid if it is the
concatenation of sub-itineraries that connect the source and
destination nodes of the triplets while respecting the corre-
sponding time allowance.

A limitation of this approach for automatically construct-
ing itineraries for road trips (as opposed to multi-day city
stays) is the need to specify as input to the algorithm the
“layover points”. It would be interesting to either mine rec-
ommended layover spots from user data, or to have the algo-
rithm reach“eligible layovers”at certain intervals (say, every
9-10 trip hours). We leave such extensions for future work.
2We omit a few additional details of the reduction that ac-
count for the visit time of the source node s.

Table 1: Sample POIs for the five selected cities.
City #POIs Sample POIs

Barcelona 74 Museu Picasso, Plaza Reial
London 163 Buckingham Palace, Churchill

Museum, Tower Bridge
NYC 100 Brooklyn Bridge, Ellis Island
Paris 114 Tour Eiffel, Musee du Louvre
San Francisco 80 Aquarium of the Bay, Golden

Gate Bridge, Lombard Street

Table 2: Data preparation statistics: only valid

timed paths are counted.
City #User Streams #Timed Paths

Barcelona 6,530 6,087
London 31,351 19,052
NYC 6,375 3,991
Paris 14,438 10,651
San Francisco 13,089 12,308

5. EXPERIMENTAL EVALUATION
We evaluate the quality of travel itineraries constructed

by our system in an extensive user study conducted through
the Amazon Mechanical Turk (AMT)3 system. Through the
user study or the survey, we show that users perceive our au-
tomatically generated itineraries as being as good as (or even
slightly better than) itineraries provided by professional tour
companies. Furthermore, we show that users are satisfied
with the recommended transit and visit times for the POIs
within the itineraries. Finally, we discuss some interesting
observations learned from the user study. Note that while
our system is able to construct multi-day itineraries, these
experiments focus on one-day itineraries.

5.1 Experimental Data Preparation
City and POI Selection. We generated itineraries for
cities that are popular travel destinations, as reflected in
about three years of Flickr data from the second half of this
decade. Specifically, the popularity of a city is determined
by the number of distinct users who have provided photos for
that city (as described in Section 3.1). Five popular and ge-
ographically distributed cities were chosen: Barcelona, Lon-
don, New York City (NYC), Paris, and San Francisco.

For each city, we obtained a list of POIs by pooling in-
formation from different sources (e.g., Lonely Planet) as de-
scribed in Section 3.2. Table 1 illustrates the number of
POIs obtained for each city, as well as some sample POIs
for each one. Table 2 illustrates some statistics on the data
we extracted Flickr for the chosen cities. Each user stream
(Section 3.1) corresponds to an unsegmented sequence of
photos by the same user for a single city. Each valid timed
path corresponds to a segmented user stream, where the
segmentation and validity checking are accomplished as de-
scribed in Section 3.3.

3https://www.mturk.com/

Table 3: Ground truth itinerary sources.
City Ground Truth Sources

Barcelona www.barcelona-tourist-guide.com
London www.theoriginaltour.com
NYC www.newyorksightseeing.com
Paris www.carsrouges.com
San Francisco www.allsanfranciscotours.com
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Figure 2: Sample itineraries constructed by our sys-
tem for NYC: (a) one-day, (b) two-day itineraries.

Itinerary and Ground Truth Generation. For each
city, we generate four itineraries using our system. We first
select the city’s four most popular POIs and designate them
as ℓ1 (most popular) through ℓ4. The popularity of a POI is
determined by the number of distinct users who have pro-
vided a photo associated with the POI. The four itineraries
for each city are then constructed by setting the starting
point and ending point as (ℓ1, ℓ3), (ℓ1, ℓ4), (ℓ2, ℓ3), (ℓ2, ℓ4),
with a time budget of 12 hours. Each constructed itinerary
is presented as an ordered list of POIs, along with the rec-
ommended visit time for each POI and the estimated transit
time from one POI to the next. Figure 2 illustrates two sam-
ple itineraries for NYC. Note that an application based on
our algorithm may either select automatically the starting
and ending points of the itineraries (as in this experiment),
or expose that degree of freedom to its users. Even users
unfamiliar with a city would typically be able to designate
such starting and ending points - these might be the more
famous POIs of the city, or simply the users’ hotels.

In order to compare our automatically constructed itineraries
with baseline itineraries, we obtained itineraries provided by

top tour bus companies for each city and considered them as
ground truth itineraries (Table 3). Note that visit or transit
times do not come with typical bus tour itineraries; hence
we derive these times using our system and construct the
ground truth itineraries.

5.2 Experimental Methodology
Because of the diverse geographical nature of the chosen

cities, conducting on-site user studies is difficult as it re-
quires finding enough users who are deeply familiar with
foreign cities. Hence we design several user studies using
the Amazon Mechanical Turk (AMT) based Human Intel-
ligent Tasks (HITs) and seek feedback on various aspects
of the itineraries constructed by our system from a large
number of anonymous users.

5.2.1 Amazon Mechanical Turk

The concept of AMT is to provide a crowd-sourcing mar-
ketplace where requesters (i.e., individuals or institutions
who have tasks to be completed) and workers (i.e., indi-
viduals who can perform the tasks in exchange for mone-
tary reward) can come together. AMT provides a platform
where the tasks (i.e. HITs) are hosted and executed, money
is transferred securely, and the reputation of workers and
requesters is tracked. The simplest HIT is often presented
as a web form, where the worker answers the questions on
the form and AMT transmits the answers to the requester
for further analysis. The requester can also specify certain
criteria that a worker must satisfy in order to perform the
task. Identical HITs are grouped, and a single user can be
limited to perform at most x HITs from each group, ensuring
that results are produced by a diverse set of users.

5.2.2 User Study Design

For the purpose of our user study, AMT workers are now
recruited to work on the HITs with the condition that the
same worker can only work on a single HIT in a group (al-
though the worker can work on multiple HITs across mul-
tiple groups). Further, to ensure only reliable workers are
recruited, we enforce on AMT that only workers who have
an approval rate (i.e., the percentage of a worker’s HIT re-
sponses being accepted by the requesters) greater than 95%
can undertake a HIT. Furthermore, we start each HIT with
a qualification test to identify expert workers. In the test,
the worker is presented with three photos, corresponding to
“lesser-known” POIs of the city, and accompanied by mul-
tiple options of names of different POIs, only one of which
is correct. These POIs (and photos) are chosen such that
workers who are familiar with the city should recognize them
with ease, while random users would typically not recognize
them. For Paris, an example of such a POI is “Pont Neuf”.
We enforce that only the workers who correctly identify all
three POIs qualify to proceed.

5.3 Comparative Evaluation of Itineraries
We first discuss user study results based on a “side-by-

side” comparison between two given itineraries.

5.3.1 Survey Questionnaire

We design a survey questionnaire comprising the AMT
HITs where we do not reveal to a worker whether an itinerary
is the ground truth itinerary or one of those constructed by
our system. The goal of this survey is to understand how
the workers perceive our system-generated itinerary (say,
itinerary A) and the ground truth itinerary (say, itinerary B)
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via direct comparison. There are two questions of interest in
this survey: in Q1, we ask the workers to rate the overall use-
fulness of the two itineraries via five different comparative
measures: whether itinerary A is significantly better, some-
what better, similar, somewhat worse or significantly worse
compared to itinerary B. The second question Q2 deals with
evaluating the appropriateness of the presented POIs in the
two itineraries. This question also evaluates the effective-
ness of itinerary A against B based on the five comparative
measures discussed above.

In this survey, we have four system-generated itineraries
and a ground truth itinerary for each city. Each itinerary is
represented as 10 identical HITs. Hence, the total number
of HITs in this survey over all five touristic cities is 40×5 =
200.
Evaluation Metric. To quantify the responses from the
workers based on this questionnaire, we present an evalua-
tion metric called Mean Response Volume. The metric esti-
mates the usefulness of the itineraries from two aspects, such
as the overall utility of the itineraries and appropriateness of
POIs. That is, it measures the number of worker responses
received per option4 (in Q1 and Q2) in the survey question-
naire. Specifically, for a given option opt and a question q,
it is given as:

MRV(opt, q) =
1

nq(opt)

1

|C|

∑

C∈C

∑

I

n
I,C
q (opt), (1)

where nI,C
q (opt) is the number of workers who chose the

option opt in question q for the HIT involving our system-
generated itinerary I and city C; and nq(opt) is the total
number of workers who responded to option opt for question
q across all HITs.

5.3.2 Results

From the results in Figure 3, we observe that majority
of the workers chose options first and second (i.e. signifi-
cantly better and somewhat better) for the system-generated
itinerary, against the ground truth one. As shown in the pie
charts, we observe that 66% workers found our suggested
itineraries better than the ground truth itineraries in terms
of overall usefulness (only 14% found our itineraries to be
not so useful). Whereas with respect to POI appropriate-
ness, the pie chart indicates that 52% workers found our
itineraries better (about 16% workers preferred the ground
truth POIs). Hence to summarize, the results reveal that
our proposed itineraries are able to improve overall satisfac-
tion of itineraries by a large margin of 52%, while by 36%
for POI utility, compared to the ground truth itineraries.

5.4 Independent Evaluation of Itineraries
In the second part of our experimental results, we seek

the worker’s feedback in order to independently evaluate the
utility of a presented itinerary.

5.4.1 Survey Questionnaire

Table 4 illustrates the questionnaire geared towards this
purpose. The first two questions (Q1 and Q2) evaluate the
overall usefulness of the presented itinerary. The overall use-
fulness is likely to be dependent on the quality of the POIs,
the order in which they are to be visited, the visit time of the

4To recall, the options are: significantly better, somewhat
better, similar, somewhat worse and significantly worse.

Figure 3: Mean Response Volume for experiments
over survey questionnaire II. Two kinds of evalua-
tion are shown: overall usefulness of itineraries (over
the five cities) and the appropriateness of the POIs.

POIs, and the transit time between POIs. To obtain a better
understanding, we design specific questions to evaluate the
visit and transit times (Q3 and Q4). Those four questions
are presented as multiple-choice questions to measure the
feedback from the worker at four discrete qualitative levels.

The next three questions help us examine the itinerary
in more detail. We judge the relevance of the recommended
POIs in Q5(a) by asking the worker to tell us the POI(s) s/he
finds undesirable in the itinerary. In Q5(b) and Q5(c), we
seek feedback from the worker on which POIs s/he finds to
have unreasonable visit times and transit times, respectively.
For all three questions, a multiple-selection drop-down list
of POIs (or POI pairs for transit times) from the itinerary
is presented to the worker, and the worker is free to select
as many as s/he finds appropriate.

For this survey, we construct 10 identical HITs as a group
for each itinerary and each city, giving a total of 5 × 5 = 25
groups and a total of 250 HITs.
Evaluation Metrics. Our first metric is the Mean Weighted
Response. Recall that Q1 through Q4 in the questionnaire
seek workers’ feedback on the itineraries in terms of overall
usefulness and satisfaction. Each question has four possible
responses, with the first reflecting complete dissatisfaction
and the fourth reflecting strong satisfaction. We number
those responses from 1 (worst) to 4 (best). To provide a
quantitative measure, we aggregate the responses to each
question q from the workers in the same group, into a single
number, Mean Weighted Response (MWR), given as:

MWR(q) =
1

nq

4∑

i=1

i · nq(i) (2)

where nq(i) denotes the number of workers who chose re-
sponse i to question q, and nq =

∑4
i=1 nq(i) is the total

number of workers who answered q. The responses are as-
signed linear weights, with the weight of each response being
its ordinal number. Therefore, the higher MWR(q) is, the
better the workers feels about an itinerary.

Our second metric is the Mean Average Error Fraction
based on the responses for Q5 in our survey questionnaire.
We compute the percentage of the number of POIs (Q5(a)),
visit times (Q5(b)), or transit times (Q5(c)), that are con-
sidered bad or inaccurate by a particular worker, out of the
total number of POIs, visit times or transit times in the
itinerary, averaged over all workers working on the particu-
lar itinerary. Formally, for each itinerary I, we have Mean
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Table 4: Description of Independent Evaluation
Questionnaire.
Q1: Overall, would you rate the proposed itinerary as:
—Not at all useful to a tourist
—Not so useful to a tourist
—Somewhat useful to a tourist
—Very useful to a tourist

Q2: How would you rate the set of points of interest
included in the itinerary?
—Make no sense
—Mostly inappropriate
—Somewhat appropriate
—Mostly appropriate

Q3: How would you rate the visit times at the
landmarks, as proposed by the itinerary (from a tourist
perspective)?
—Not accurate at all
—Somewhat accurate
—Mostly accurate
—Completely accurate
If you picked choices 3 or 4, did you find the visit times
too short or too long?

Q4: How would you rate the transit times between
the landmarks, as proposed by the itinerary (from a
tourist perspective)?
—Not accurate at all
—Somewhat accurate
—Mostly accurate
—Completely accurate
If you picked choices 3 or 4, did you find the transit
times too short or too long?

Q5(a): Which landmarks you would rather not visit
in this itinerary?
Q5(b): Which visit times are too long/short?
Q5(c): Which transit times are too long/short?

Table 5: Mean weighted responses for London.
London Itineraries Q1 Q2 Q3 Q4

IMP Itinerary 1 3.1 2.9 2.7 2.8
IMP Itinerary 2 3.5 2.1 2.7 2.5
IMP Itinerary 3 3.4 2.5 2.8 2.7
IMP Itinerary 4 3.5 2.7 2.9 3.1
Ground Truth Itinerary 3.4 2.6 2.6 2.6

Error Fraction (MEF):

MEF(I) =
1

|U(I)|

∑

u∈U(I)

b(u)

|I|
(3)

where U(I) is the set of workers responding on itinerary I
and b(u) is the number of POIs (resp. visit times, transit
times) reported as bad by worker u.

5.4.2 Results

In this section, we describe our analysis on the user study
of the above survey questionnaire. We observe the overall
satisfaction of the workers for the itineraries. Table 5 illus-
trates the MWR for all five itineraries of London—the four
IMP itineraries generated by our system, and the ground
truth bus tour. Observe that the MWR values for all four
IMP itineraries and all survey questions are close to (in fact,
often better than) the ground truth itinerary. This indicates
that the proportion of workers who liked (resp., disliked) the

Figure 4: Mean Average Weighted Response from
workers on itineraries over five cities—Barcelona,
London, Paris, NYC, and San Francisco.

itineraries is the same for our system-generated itineraries
and the expert-generated ground truth one.

This observation is consistent across all five cities we ex-
amined, as shown in Figure 4. In this context, for simplic-
ity, we take the mean of the MWRs of four IMP itineraries
to compute a single number, Mean Average Weighted Re-
sponse (MAWR), and compare the MAWR with the MWR
of the ground truth itinerary. We observe that in terms
of overall usefulness (Q1) and POI satisfaction (Q2), IMP
itineraries are as good as professionally generated ground
truth itineraries. The results also indicate that workers are
generally happy with the visit (Q3) and transit (Q4) times
that our system produces5.

In our second part, we now perform an analysis of the
worker responses on quality of POIs. We take the average
of the MEF values over all IMP itineraries to derive a single
number, called Mean Average Error Fraction (MAEF) and
compare it against the MEF of the ground truth itinerary.
The results of these “bad” POIs and “inaccurate” visit and
transit times across different cities are shown in Figure 5.
We observe that the error fractions are reasonably small.

6. CONCLUSIONS
This paper addressed the question of automatic gener-

ation of travel itineraries for popular touristic cities from
large-scale user contributed rich media repositories. Our so-
lution (1) generates per-user timed paths using geo-temporal
attributes of each photo, (2) aggregates those paths into a
graph, and (3) computes an approximate solution to a vari-
ant of the Orienteering problem to construct itineraries. Ex-
tensive user studies that evaluated the quality of the result-
ing itineraries yielded promising results. To the best of our
knowledge, this is the first end-to-end work that leverages
geo-temporal breadcrumbs to build travel itineraries. The
following paragraphs highlight some of the challenges that
we plan on addressing in the future.
Optimizing our parameters. The algorithms described
in this paper use multiple parameters. Our concrete set-

5Since visit and transit times are generated by our system
for ground truth itineraries, we do not provide comparison
between them and IMP itineraries on Q3 and Q4.
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Figure 5: The mean error fraction of (a) POIs, (b) Visit Times, and (c) Transit Times.

ting of those parameters demonstrates the validity of the
approach, but is not necessarily optimal. Fine tuning the
parameters will require more extensive experiments.
Different strokes for different folks. Our generated
itineraries cater mostly to a general tourist. In practice,
travelers with different lifestyles, interests, traveling habits
often plan different itineraries when visiting the same lo-
cation, and display different behaviors while on vacation.
It is challenging to apply different filtering and aggregation
techniques to accommodate different types of travelers, and
to construct “off the beaten track” itineraries that cater to
niche audiences rather than mainstream crowds.
Time constraints. Itineraries may incorporate temporal
constraints such as opening hours of museums, places espe-
cially nice at sunset, areas popular on weekends, etc.
Considering co-visitation patterns. Our current method-
ology may produce itineraries which include pairs of POIs
that, despite their individual popularity, rarely appear to-
gether in timed paths. Low co-visitation might indicate that
those POIs are either almost never simultaneously attractive
to the same person, or are equivalent in some sense, render-
ing one redundant once visiting the other. This translates
naturally to defining monotone sub-modular prize functions,
as discussed in [6]. The challenge, however, is mining such
complex prize functions from Flickr data.
Coverage. Our evaluation focused on 12-hour itineraries in
five major cities. It will be interesting to extend our method
and its evaluation to smaller and less popular cities, as well
as to multi-day itineraries that go beyond city confines.
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