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Abstract:
This paper introduces notions from computational complexity into the study of financial derivatives. Tradi-
tional economics argues that derivatives, like CDOs and CDSs, ameliorate the negative costs imposed due to
asymmetric information between buyers and sellers. This is because securitization via these derivatives allows
the informed party to find buyers for the information-insensitive part of the cash flow stream of an asset (e.g.,
a mortgage) and retain the remainder. In this paper we show that this viewpoint may need to be revised once
computational complexity is brought into the picture. Assuming reasonable complexity-theoretic conjectures,
we show that derivatives can actually amplify the costs of asymmetric information instead of reducing them.
We prove our results both in the worst-case setting, as well as the more realistic average case setting. In the
latter case, to argue that our constructions result in derivatives that “look like” real-life derivatives, we use the
notion of computational indistinguishability a la cryptography.
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1 Introduction
A financial derivative is a contract entered between

two parties, in which they agree to exchange payments
based on the performance or events relating to one or
more underlying assets. For instance, the contract
may specify that the buyer pays the seller $1M if the
DOW is above 11, 000 exactly 1 year after the con-
tract date. In recent years the market for derivatives
has grown tremendously, both in volume and sophisti-
cation. The total volume of trades dwarfs the world’s
GDP. Of special interest in this paper are derivatives
such as collateralized debt obligations (CDOs) used in
securitization of debt, which transformed the financial
industry over the last three decades. By bundling to-
gether risky assets like consumer mortgages or credit
card debt, they create new classes of assets that are
— assuming a “law of large numbers” applies—much
less risky.

The explosive growth of derivatives has attracted
criticism. Warren Buffet famously called derivatives

∗Full version of this extended abstract available from
http://www.cs.princeton.edu/ rongge/. Research supported
by NSF grants CNS-0627526, CCF-0426582 and CCF-0832797,
0830673, 528414, US-Israel BSF grant 2004288, Sloan Founda-
tion, and Packard Foundation.

“financial weapons of mass destruction,” and many
believe derivatives played a role in enabling problems
in a relatively small market, U.S. subprime lending, to
cause a global recession. (See Section 2 for more back-
ground on financial derivatives and [7, 8] for a survey
of the role played by derivatives in the recent reces-
sion.) Critics suggest that derivatives should be reg-
ulated by a federal agency similar to FDA or USDA.
Opponents of regulation counter that derivatives are
contracts entered into by sophisticated investors in
a free market, and play an important beneficial role
that would be greatly harmed by a slow-moving reg-
ulatory regime akin to that for medicinal drugs and
food products.

From the viewpoint of economic theory, derivatives
can be beneficial by “completing the market” and by
helping ameliorate the effect of asymmetric informa-
tion. The latter refers to the fact that securitization
via derivatives allows the informed party to find buy-
ers for the information-insensitive part of the cash
flow stream of an asset (e.g., a mortgage) and retain
the remainder. DeMarzo [9] suggests this beneficial
effect is quite large. He shows that even though one
would expect that informed sellers would be able to
cheat their buyers by suitable “cherry picking” based
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upon their hidden information, in fact derivatives like
CDOs protect the buyers.

The practical downside of using derivatives is that
they are complex assets that are difficult to price.
Studies suggest that valuations for a given product by
different sophisticated investment banks can be easily
17% apart [5] and that even a single bank’s evalua-
tions of different tranches of the same derivative may
be mutually inconsistent [11]. Many sources for this
complexity have been identified, including the compli-
cated structure of many derivatives, the sheer volume
of financial transactions, the need for highly precise
economic modeling, the lack of transparency in the
markets, and more. Recent regulatory proposals fo-
cus on improving transparency as a partial solution
to the complexity.

This paper shows that the seeming difficulty of pric-
ing is quantifiable using computational complexity,
and has a strong bearing on the issue of asymmet-
ric information. From a distance, such results should
not look surprising to computer scientists. Consider
for example a derivative whose contract contains a
1000 digit integer n and has a nonzero payoff iff the
unemployment rate next January, when rounded to
the nearest integer, is the last digit of a factor of n. A
relatively unsophisticated seller can generate such a
derivative together with a fairly accurate estimate of
its yield (to the extent that unemployment rate is pre-
dictable), yet even sophisticated buyers like Goldman
Sachs would have no idea what to pay for it since they
do not know how to factor n. This example shows
both the difficulty of pricing arbitrary derivatives and
the possible increase in asymmetry of information via
derivatives. It suggests that derivative contracts could
contain information that is in plain view yet cannot be
understood with any foreseeable amount of computa-
tional effort. This can be viewed as an extreme case
of bounded rationality [14] whereby even the most
sophisticated investment banks cannot be fully ratio-
nal since they do not have unbounded computational
power.

Of course, the above “factoring derivative” is far
from any contract that is currently traded on deriva-
tives market, so such a hardness result is not useful.
Popular derivatives in securitization such as CDOs
involve threshold functions (see Section 2). We show
that interesting problems involving derivative pricing
are NP-hard for even these classes of derivatives, and
in fact are NP-hard to approximate (Section 3). The
intractability of approximation arises in cases where
there is a small amount of asymmetric information —
the seller knows a little bit more than the buyer about
the underlying assets.

While the above hardness result hints at the diffi-
culty of designing accurate pricing algorithms, it does
not —like all NP-hardness results— rule out this en-
deavor on “real-life” instances.

In the finance industry as well as finance theory it
is customary to consider assets whose yields are dis-
tributed according to standard models like Gaussian
copula. From a computer science viewpoint this im-
plies moving to the setting of average-case complexity.
The model used in this extended abstract is a very
simple subcase of the Gaussian copula, where yields
are either 0 or 1. Our most important result shows
that the pricing problem in our simple model are at
least as hard as the planted dense subgraph problem,
even in these settings. (Note that since this is a hard-
ness result, if it holds in simpler models it also ex-
tends for any more complicated model that contains
the simpler model as a subcase.) Furthermore, we ar-
gue that the hard instances “look indistinguishable”
from real-life instances that are randomly generated.
High level idea: The high level idea in our main re-
sult is that everyday derivatives like CDOs are defined
using threshold functions on various subsets of the as-
set pools. Our result is related to the well known fact
that random election involving n voters can be swung
with significant probability by making

√
n voters vote

the same way. Private information for the seller can
be viewed as a restriction of the input distribution
known only to the seller. The seller can structure
the derivative so that this private information corre-
sponds to “swinging the election.” What is surpris-
ing is that a computationally limited buyer may not
have any way to distinguish such a tampered derivative
from untampered derivatives. Formally, the indistin-
guishability relies upon the conjectured intractability
of the planted dense subgraph problem.1 This is a well
studied problem in combinatorial optimization (e.g.,
see [6, 12, 15]), and the planted variant of it has also
been recently proposed by Applebaum et al. [3] as a
basis for a public-key cryptosystem.
Akerloff’s notion of lemon costs. Akerloff’s clas-
sic 1970 paper [2] gives a simple framework for quan-
tifying asymmetric information. The simplest setting
is as follows. You are in the market for a used car. A
used car in working condition is worth $1000. How-
ever, 20% of the used cars are lemons (i.e., are use-
less, even though they look fine on the outside) and
their true worth is $0. Thus if you could pick a used
car at random then its expected worth would be only

1Note that debt-rating agencies such as Moody’s or S&P
currently use simple simulation-based approaches [20], and
hence may fail to detect tampering even in the parameter
regime where the densest subgraph can be solved in polynomial-
time using, say, semidefinite programming.
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$800 and not $1000. Now consider the seller’s per-
spective. Suppose sellers know whether or not they
have a lemon or not. Then a seller who knows that
his car is not a lemon would be unwilling to sell for
$800, and would exit the market. Thus the market
would feature only lemons, and nobody would buy or
sell. Akerloff’s paper goes on to analyze reasons why
used cars do sell in real life. We will be interested in
one of the reasons, namely, that there could be a dif-
ference between what a car is worth to a buyer versus
a seller. In the above example, the seller’s value for a
working car will have to be $200 less than the buyer’s
in order for trade to occur. In this case we say that
the “lemon cost” of this market is $200. Generally,
the higher this cost, the less efficient is the market.
Cost of complexity. We will define a notion of
“lemon cost” for derivatives. When sellers have more
information than buyers, they have an incentive to
structure the derivatives to their advantage. The
lemon cost is the maximum advantage they can gain
(see Section 2.1) on their entire bundle of assets.
We quantify the cost of complexity by comparing the
lemon cost in the case that the buyers are computa-
tionally unbounded, and the case that they can only
do polynomial-time computation. We will show that
there is a significant difference between the two sce-
narios.

Note that the lemon issue for derivatives has been
examined before. It is well-recognized that since a
seller is more knowledgeable about the assets he is
selling, he may design the derivative advantageously
for himself by suitable cherry-picking. However it was
believed (and shown in the above-mentioned work of
DeMarzo) that the effects of such cherry-picking can
be mitigated. This belief is questioned by our paper.

Could one tackle the tempering issues raised here
by instituting a Lemon Law for derivatives, guaran-
teeing a way to “roll-back” an agreement if an irreg-
ularity is discovered? We suggest (see Section 5.1) a
surprising answer: in many models, even the problem
of detecting the tampering ex post may be intractable.
In contrast, we also mention some preliminary results
(see Section 6) suggesting that one could mitigate the
problems we identify by using certain exotic deriva-
tives whose design (and pricing) is influenced by com-
puter science ideas. Though these are provably tam-
per proof in our simpler model, it remains to be seen
if they can find economic utility in more realistic set-
tings.
Companion paper: This paper is geared to a CS
audience and proves simple cases of the result —
for binary CDOs only—that showcases the essential
computer science ideas. There is a companion pa-

per geared to economics audiences that quantifies the
economic effects of complexity more carefully. The
hardness results are proved in more realistic models
of derivatives that involve tranching, and they lead to
classification of different derivative families according
to the “cost of complexity.” The asset distributions in-
volve industry-standard models, and the lemon issue
is studied in a DeMarzo-like model of asymmetric in-
formation, which contrasts the results with DeMarzo’s
and thus may be interesting to economists.

2 Definitions and Finance Back-
ground

A derivative is a contract entered between two par-
ties to exchange payments based on some events to
underlying assets. Derivatives are extremely general:
the events can be discrete events such as default or
change in credit rating, as well as just market perfor-
mance. The assets themselves can be a company, a
loan, or even another derivative. Neither party has
to actually own the assets in question. The payment
structure can also be fairly complex, and can also de-
pend on the timing of the event. See the book [16]
for a general treatment of derivatives and [17] for a
practical aspects of evaluating the kind of derivatives
discussed below. The papers [7, 8] discuss the role
derivatives played in bringing about the recent eco-
nomic crisis. In Section 4.4 we compare the features
of our model with the kind of derivatives used in prac-
tice.

Formally, a derivative may be viewed as a function
f(X1, X2, . . . , Xs) that maps a vector of economic
variables X1, X2, . . . , Xs to a real number, which rep-
resents the payment (possibly negative) from the first
party to the second. This function is specified in
the derivative’s contract, which can run into hun-
dreds of pages. Economists typically think of the Xi’s
as stochastic variables (possibly dependent). Thus
the fair “price” of this derivative for a risk averse
buyer is E[f(X1, X2, . . . , Xs)]. For example, in a
credit default swap (CDS), Party A “insures” Party
B against default of a third Party C, by promising to
pay amount M if C defaults in one year. This con-
tract may be viewed as specifying a function f(X1)
whereX1 is an indicator random variable for the event
“C defaults in one year” and f : {0, 1} → � where
f(0) = 0,f(1) =M .

In the derivative pricing problem, we are given a
description of f , and joint distribution of the under-
lying variables X1, X2, . . . , Xs, and need to compute
E[f(X1, X2, . . . , Xs)]. While computing the expec-
tation exactly is �P, if f is efficiently computable
in a bounded domain, and the joint distribution of
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X1, X2, . . . , Xs is sampleable, then one can approx-
imate this expectation up to arbitrary inverse poly-
nomial accuracy using the Monte Carlo method (i.e.,
repeatedly sample values for X1, X2, . . . , Xs and em-
pirically estimate E[f(X1, X2, . . . , Xs)]), and this is a
popular approach in practice.

We will be interested in derivatives that arise in
debt securitization, where consumer debt such as
mortgages are packaged into new products with lower
risk. A simple example is a collateralized debt obli-
gation (CDO). For simplicity suppose the seller owns
D mortgages whose returns are iid Bernoulli variables
that are equally likely to be 1 or 0. Individually, these
may be too risky for risk-averse investors such as pen-
sion funds. Viewed as a bundle, these can be viewed
as a single asset whose distribution is B(D, 1/2) and
thus approximately gaussian when D is moderately
large. This entire bundle is split into two parts ac-
cording to a threshold α ∈ [0, 1]. The first part, called
the senior tranche is a claim to the first αD units of
income from the assets. Typically α is less than the
expected fraction of assets with a return (i.e. 1/2 in
this case), and so with very high probability the se-
nior tranche’s return will be exactly αD. For this
reason senior tranches were often considered invest-
ment grade assets and given very high ratings such
as AAA (the highest possible rating reserved only for
the safest of investments). The second part, called the
junior tranche, is a claim to the rest of the income.
Obviously, the junior tranche has much higher vari-
ance than the senior tranche. The sellers often retain
this tranche as a sign of confidence in the underlying
assets. (We note that the above is a highly simplified
description. Often the pool is split into more than
two tranches.)

From a computer science viewpoint, a CDO is a
threshold function (aka perceptron). It is not uncom-
mon to also find CDO2, which are CDOs of CDOs.
These can be viewed as depth 2 threshold circuits.
Higher depth circuits such as CDO3 also exist but
are less common. For all of those approximate pric-
ing can be done via Monte Carlo simulation, while
it’s �P-complete to compute the exact expectation for
higher depth circuits.

In this paper we are concerned with situations in-
volving asymmetric information, where the seller may
have more accurate information about the distribu-
tion of Xi’s than the buyer. For example, a bank
that creates the above CDO could know that certain
mortgages will default with probability higher than
1/2. This problem of asymmetric information has
been recognized before, and the common wisdom is
that the senior tranche isolates the buyer from its ef-

fect, and hence allows them to invest in the informa-
tion insensitive part of the pool, where they are not
at a disadvantage compared to the seller. This paper
seeks to question this received wisdom.

In this version geared to a CS audience, we study
these issues with respect to Binary CDOs, which is a
discrete version of the above, where the senior tranche
gets αD as long as the total yield of D assets is above
αD, and gets nothing otherwise. The junior tranche
gets the rest of the income. While binary CDOs are
not as common in practice, they capture all the es-
sential elements of the more general case, which is
presented in the companion paper to this paper.

2.1 Quantifying Asymmetric Information,
Lemon Costs and Cost of Complexity

We borrow notions from Akerloff’s work on lemons
to quantify the cost of asymmetric information be-
tween seller and buyer. For simplicity this definition
assumes that assets take values in {0, 1}. A lemon is
an asset whose value is 0 and this is known to the seller
but not to the buyer. We assume the buyer knows the
total number of lemons but not their identity.

For any derivative F on N inputs, input distribu-
tion X over {0, 1}N , and n ≤ N , we define the lemon
cost of F for n junk assets as

∆(n) = ∆F,X(n)
= E[F (X)]
− min
S⊆[N ],|S|=n

E[F (X)|Xi = 0∀i ∈ S]

where the min takes into account all possible ways in
which seller could “position” the junk assets among
the N assets while designing the derivative. (We’ll
often drop the subscripts F,X when they are clear
from context.) As we discussed earlier, the first term
E[F (X)], which represents the expected value of the
derivative when there are no lemons, can be computed
approximately with any inversed polynomial precision
by Monte Carlo methods. The main difficulty in com-
puting ∆(n) lies in the minimization in the second
term. The lemon cost captures the inefficiency intro-
duced in the market due to the existence of “lemons”
or junk assets. When the buyers suspect that there
might be n lemons in the assets, he would buy the as-
set only if the seller is willing to sell him the asset for
E[F (X)]−∆(n). (There are economic and regulatory
reasons why the seller might be willing to do so, as
explained in the companion paper.)

Of course, the above definition of lemon costs ig-
nores the computational complexity of computing
∆(n). In real life, one must assume that all actors
are computationally limited. Accordingly, we will fo-
cus on the complexity of computing ∆(n).
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3 Worst-case Complexity of Comput-
ing Lemon Cost

In this section we show that computing the lemon
cost is NP-hard and furthermore even computing ap-
proximations is NP-hard.

3.1 Derivative Lemon Cost Problem
As we explained in Section 2, a derivative can be

viewed as a function f that takes inputs (payoffs of as-
sets or other derivatives), and outputs the payoff. The
inputs (payoffs of assets) have a certain known distri-
bution. The derivative pricing problem is to compute
the expected value of f given the input distribution.
The most common type of functions appear in deriva-
tives are the threshold functions (such as CDSs, CDOs
or CDO2s in Section 2). For the input distribution, in
many models, the input variables are assumed to be
independent. In more complex models, the input vari-
ables are assumed to take value according to a Gaus-
sian copula, which means they are Gaussians with a
block diagonal covariance matrix (the block diagonal
covariance matrix models the correlation within a cer-
tain area or industry).

Here we consider the difficulty of pricing derivatives
when some inputs may be lemons —in other words,
the difficulty of evaluating ∆(n) defined above. In this
problem, the seller has N assets (inputs) whose values
are i.i.d. distributed (has payoff 0 with probability
p and has payoff 1 with probability 1 − p). Up to
now there’s no difference between this problem and
derivative pricing. The key difference is, the seller
knows n out of N assets are “lemons” which always
gives payoff 0. The buyers only know the number n
but not which assets are lemons. So the buyers want
to know the lemon cost (as defined in Section 2.1) of
the derivatives. We now formally define the class of
derivatives we consider and the lemon cost:

Binary CDO’s.
A (first order) binary CDO is a derivative f de-

pending on inputs x = (x1, . . . , xN ) that has the fol-
lowing form: f(x) outputs c if

∑
j∈S xi is at least some

threshold t and outputs 0 otherwise, where S ⊆ [N ],
and c, t ≥ 0. An order r binary CDO is a derivative of
this form where the xi’s in the sum are replaced with
order (r− 1) binary CDO’s. A portfolio of order r bi-
nary CDO’s, is a derivative f(x) = f1(x)+· · ·+fM (x),
where each of the fi’s is an order r binary CDO, and
for every x, f(x) ≤ ∑Ni=1 xN . (This ensures that
the seller can always cover the value of the derivative
from the underlying assets.) The Derivative Lemon
Cost Problem of order r (DLC[r]) is defined as the
task of, given input a portfolio f = f1 + · · · + fM
of order r derivatives on N inputs and a number of

lemons n < N , computing the number

∆∑
fi

(n) = E[
m∑
i=1

fi]− min
S⊆[N ],|S|=n

E[
m∑
i=1

fi|xS = 0]

(where xS = 0 means xi = 0 ∀i ∈ S.)
We show that it’s NP-hard to approximate DLC[1]

with approximation 1+ε for a fixed ε > 0, andDLC[2]
is NP-hard to approximate up to Ω(2(logN)1/3−ε) for
any ε. The hardness of approximating a single deriva-
tive can be shown by adding an additional level of
derivative that computes the sum of fi’s, so our re-
sult also implies hardness of approximating the lemon
cost of a single derivative of order 2 and 3.

3.2 Hardness of DLC[1]
Theorem 1. It’s NP-hard to approximate DLC[1]
with approximation 1 + ε for a fixed ε > 0

Proof. We give a gap-preserving reduction from max
independent set with degree bound d toDLC[2]. Max
independent set with degree bound d is known to be
MAX SNP-complete [18]. By their construction we
can assume that there are constants δ and ε, such
that given a graph G with k vertices and max degree d
(think of d as a constant), it’s NP-hard to tell whether
the graph has an independent set of size (δ + ε)k or
all independent sets of the graph has size smaller than
δk.

From G we construct a graph G′, where if a vertex
v ∈ G has degree dv < d, then we add d− dv vertices
in G′ and connect them with v. The vertices ofG′ cor-
respond to the inputs, the derivatives are constructed
as follows:

For any e = (u, v) ∈ G′, a first order derivative
fe = u ∧ v. Let n = (δ + ε)k, it’s easy to see the
following claim

Claim 1.1. Lemon cost of a particular vertex set in
G′ is 1/4 · (number of edges adjacent to the set).

So we want to maximize the number of edges adja-
cent to the vertex set. Notice that the newly added
vertices in G′ have degree 1 so we’ll never choose
them, and all original vertices in G′ have degree d.

When there’s an independent set of size (δ + ε)k,
we can choose that set and the lemon cost is (δ +
ε)kd/4. However, when there’s no independent set of
size larger than δk the lemon cost is at most (δkd +
εk(d− 1))/4. Picking ε′ = (δ+ε)d

δd+ε(d−1) − 1 > 0, we have
thus shown the NP-hardness of computing a 1 + ε′-
approximation to DLC[1].
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3.3 Hardness of DLC[2]
We use the hardness of approximating Label Cover

to prove the hardness of DLC[2]. By results of [19]
and [10], we have the following theorem:

Theorem 2. For any constant ε, for a regular la-
bel cover instance with k vertices and alphabet size
w = poly(k), it’s NP-hard to distinguish between the
following two cases,

Completeness: there is a label assignment that all
edges are satisfied.

Soundness: no assignment can satisfy more than
2−(log k)1−ε fraction of the edges.

By reducing Label Cover to DLC[2], we prove that

Theorem 3. For any ε, DLC[2] is NP-hard to ap-
proximate up to Ω(2(logN)1/3−ε).

Proof. For a label cover problem with k vertices and
alphabet size w, we reduce it to a DLC[2] prob-
lem with kw assets. When xvl = 0, the label l
for vertex v is chosen. For each edge e = (u, v)
in the label cover, we create a 2nd order derivative
fe = ∧wi=1(xui ∨ xvπ(i)). Clearly, fe = 0 if and only if
the edge is satisfied. We set p = 1/w and n = k.

Completeness
Choose the set of lemons to be the satisfying as-

signment. Then all edges are satisfied, so
∑
e fe = 0.

Lemon cost is E[
∑m
i=1 fi] = (1− 1/w2)wm > m/2.

Soundness
With exponentially small probability, the average

number of labels will be larger than 3 (the expected
value is 2), so the contribution of this case is ex-
ponentially small and we ignore that. Let g(k) =
2−(log k)1/3−ε When average number of labels is at
most 3, assume the fraction of edges satisfied is more
than g(k). By averaging the fraction of vertices with
more than 12/g(k) labels chosen is no more than
g(k)/4, and the fraction of edges that are adjacent
to these vertices is at most g(k)/2. Thus there are at
least g(k)/2 fraction of satisfied edges that are adja-
cent to vertices with less than 12/g(k) labels, denote
the set of these edges by S. For each vertex, if it has
labels chosen, randomly pick a label. For edges in S,
the probability that they are still satisfied is at least
g2(k)/122, therefore the expected number of satisfied
edge in this (partial) assignment is at least Ω(g(k)3).
However, apply Theorem 2 with ε′ = 4ε, this is im-
possible in the soundness case. By contradiction we
see the expected number of satisfied assignment is at
most mg(k), and lemon cost cannot be larger than
that.

Combining the two cases, we showed that it is hard
to distinguish whether a DLC[2] instance with N =
kw = poly(k) inputs has value at least m/2 or mg(k),
therefore DLC[2] is hard to approximate up to factor
Ω(1/g(k)) = Ω(2(logN)1/3−ε) for any ε > 0.

4 Hardness of Computing Lemon
Costs on Average: the Setup

Though the previous section exhibits the worst-case
hardness of computing the lemon costs, these hard-
ness results involve special structure in the deriva-
tives and thus have limited implication for real-life
markets (this is analogous to the observation about
the “factoring derivative” mentioned in the introduc-
tion). In this section we try to prove the hardness
on more real-life instances, which necessitates, at the
minimum, consideration of average-case complexity.
In addition, one must exhibit hardness in context of
derivatives that “look like” real-life derivatives, and
here we will also bring in the notion of computational
indistinguishability from cryptography.

We start by giving an overview of our construction
in Section 4.1, and then explain the notion of lemon
cost and cost of complexity in this setting. We intro-
duce the planted dense subgraph and survey the pa-
rameter ranges where it is believed to be intractable.
The full analysis of lemon costs is fully explained in
Section 5.

4.1 An Illustrative Example
Consider a seller with N assets (e.g., “mortgages”)

each of which pays either 0 or 1 with probability
1/2 independently of all others (e.g., payoff is 0 iff
the mortgage defaults). Thus a fair price for the
entire bundle is N/2. Now suppose that the seller
has some inside information that an n-sized subset
S of the assets are actually “junk” or “lemons” and
will default (i.e., have zero payoff) with probability
1. In this case the value of the entire bundle will be
(N−n)/2 = N/2−n/2 and so we say that the “lemon
cost” in this setting is n/2.

In principle one can use derivatives to significantly
ameliorate the lemon cost. In particular consider the
following: seller creates M new financial products,
each of them depending on D of the underlying as-
sets.2 Each one of the M products pays off N/(3M)

2We will have MD� N and so the same asset will be con-
tained in more than one product. In modern finance this is
normal since different derivatives can reference the same asset.
But that one can also think of this overlap between products
as occurring from having products that contain assets that are
strongly correlated (e.g., mortgages from the same segment of
the market). Note that while our model may look simple, sim-
ilar results can be proven in other models where there are de-
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units as long as the number of assets in its pool that
defaulted is at most D/2 + t

√
D for some parameter

t (set to be about
√

logD), and otherwise it pays 0.
Henceforth we call such a product a “Binary CDO”.3
Thus, if there are no lemons then the combined value
of theseM products, denoted V , is very close to N/3.

One can check (see Section 5) that if the pooling is
done randomly (each product depends on D random
assets), then even if there are n lemons, the value
is still V − o(n), no matter where these lemons are.
We see that in this case derivatives do indeed help
significantly reduce the lemon cost from n to o(n),
thus performing their task of allowing a party to sell
off the least information-sensitive portion of the risk.

However, the seller has no incentive to do the pool-
ing completely randomly because he knows S, the set
of lemons. Some calculations show that his optimum
strategy is to pick some m of the CDOs, and make
sure that the lemon assets are overrepresented in their
pools—to an extent about

√
D, the standard devia-

tion, just enough to skew the probability of default.
(Earlier we described this colloquially as “swinging
the election.”)

Clearly, a fully rational (i.e., computationally un-
bounded) buyer can enumerate over all possible n-
sized subsets of [N ] and verify that none of them
are over-represented, thus computing lemon cost ex-
actly.However, for a real-life buyer who is compu-
tationally bounded, this enumeration is infeasible.
In fact, the problem of detecting such a tampering
is equivalent to the so-called hidden dense subgraph
problem, which computer scientists believe to be in-
tractable (see discussion below in Section 4.3). More-
over, under seemingly reasonable assumptions, there
is a way for the seller to “plant” a set S of such over-
represented assets in a way that the resulting pooling
will be computationally indistinguishable from a ran-
dom pooling. The bottom line is that under compu-
tational assumptions, the lemon cost for polynomial
time buyers can be much larger than n. Thus intro-
ducing derivatives into the picture amplifies the lemon
cost instead of reducing it!

4.2 Cost of Complexity
As we see in the illustrative example, when the bi-

nary CDOs are generated by a random distribution,

pendencies between different assets (e.g., the industry standard
Gaussian copula model), see discussion in Section 4.4.

3This is a so-called synthetic binary option. The more pop-
ular collateralized debt obligation (CDO) derivative behaves in
a similar way, except that if there are defaults above the thresh-
old (in this case D/2 + t

√
D) then the payoff is not 0 but the

defaults are just deducted from the total payoff. We call this a
“Tranched CDO”. More discussion of binary CDOs appears in
Section 4.4.

the lemon cost is small, but the seller has the incen-
tive to generate CDOs with another distribution that
looks indistinguishable from a random distribution,
and the lemon cost in this distribution is much higher
than the cost in a random distribution. Because of
this computational indistinguishability, we conclude
that computationally limited buyers will compute an
inaccurate estimate of the lemon cost for at least one
of the distributions: they either under-estimate the
worth of the truly random derivative, or over-estimate
the worth of the derivative with planted dense sub-
graph, and thus will be off by an amount equal to the
difference in the lemon cost for the two derivatives.
This difference is the cost of complexity. Fully ra-
tional buyers will not have this problem because they
can distinguish the two distributions and compute the
exact value of the lemon cost.

Following this intuition, we define the cost of com-
plexity by analyzing a “pricing game”. In the pricing
game, Alice gives Bob a contract of derivative F (or
derivatives), and Bob needs to compute his estima-
tion of the lemon cost. When Bob has unbounded
computational power obviously he can compute the
correct value of the lemon cost. However, when Bob
is bounded in polynomial time, then it’s not surpris-
ing that in some situations Bob will not be able to
compute the actual lemon cost.

Two distributions over (representations of) deriva-
tives D1 and D2 are (S, ε)-computationally indistin-
guishable, denoted by D1 ≈S,ε D2, if for every circuit
C of size at most S, |C(D1)−C(D2)| ≤ ε. We define
the cost of complexity CoCS,ε of a class F of deriva-
tives (e.g. CDOs on N inputs) and distribution X on
the inputs as
CoCS,ε(F , X) = max

D1≈S,εD2
E
D1

[∆F,X (n)]− E
D2

[∆F,X(n)] .

Asymptotically, we define the cost of complexity of
an infinite class F of derivatives to be the minimum
cost where S is any arbitrarily large fixed polynomial
in the numberN of inputs, and ε > 0 is any arbitrarily
small constant.
Can the cost of complexity be mitigated? In
Akerloff’s classic analysis, the no-trade outcome dic-
tated by lemon costs can be mitigated by appropriate
signalling mechanism —e.g., car dealers offering war-
ranties to increase confidence that the car being sold
is not a lemon. In the above setting however, there
seems to be no direct way for seller to prove that the
financial product is untampered. (It is believed that
there is no simple way to prove the absence of a dense
subgraph; this is related to the NP 
= coNP conjec-
ture.). Furthermore, we can show that for suitable
parameter choices the tampering is undetectable by
the buyer even ex post. The buyer realizes at the end
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that the financial products had a higher default rate
than expected, but would be unable to prove that this
was due to the seller’s tampering (see Section 5.1).
Nevertheless, we do show in Section 6 that one could
use Computer Science ideas in designing derivatives
that are tamperproof in our simple setting.

4.3 Densest Subgraph Problem
It is convenient to view the relationship of deriva-

tives and assets as a bipartite graph, see Figure 1.
Derivatives and assets are vertices, with an edge be-
tween a derivative and an asset if the derivative de-
pends on this asset.

Figure 1: Using a bipartite Graph to represent assets and
derivatives. There are M vertices on top corresponding to
the derivatives and N vertices at the bottom correspond-
ing to assets. Each derivative references D assets.

Throughout the paper, we’ll use the following pa-
rameters. We say that an (M,N,D) graph is a bi-
partite graph with M vertices on one side (which we
call the “top” side) and N on the other (“bottom”)
side, and top degree D. We’ll often identify the bot-
tom part with assets and top part with derivatives,
where each derivative is a function of the D assets it
depends on. We say that such a graph G contains an
(m,n, d) graph H , if one can identify m top vertices
and n bottom vertices of G with the vertices of H in
a way that all of the edges of H will be present in G.
We will consider the variant of the densest subgraph
problem, where one needs to find out whether a given
graph H contains some (m,n, d) graph.

Fix M,N,D,m, n, d be some parameters. The (av-
erage case, decision) densest subgraph problem with
these parameters is to distinguish between the follow-
ing two distributions R and D on (M,N,D) graphs:
• R is obtained by choosing for every top vertex D

random neighbors on the bottom.
• P is obtained by first choosing at random S ⊂

[N ] and T ⊆ [M ] with |S| = n, |T | = m, and then
choosing D random neighbors for every vertex
outside of T , and D − d random neighbors for
every vertex in T . We then choose d random
additional neighbors in S for every vertex in T .

Hardness of this variant of the problem was recently
suggested by Applebaum et al [3] as a source for pub-

lic key cryptography4. The state of art algorithms
for both the worst-case and average-case problems are
from a recent paper of Bhaskara et al [6]. Given their
work, the following assumption is consistent with cur-
rent knowledge:

Densest subgraph assumption.
Let (N,M,D, n,m, d) be such that for some posi-

tive δ, N = o(MD), (md2/n)2 = o(MD2/N), n =
Ω(N0.5+δ), m = Ω(M0.5+δ), d = Õ(D0.5) then there
is no ε > 0 and poly-time algorithm that distinguishes
between R and P with advantage ε.

Since we are not proposing a cryptosystem in this
paper, we chose to present the assumption in the
(almost) strongest possible form consistent with cur-
rent knowledge, and see its implications. Needless
to say, quantitative improvements in algorithms for
this problem will result in corresponding quantitative
degradations to our lower bounds on the lemon cost.
In this paper we’ll always set d = Õ(

√
D) and set m

to be as large as possible while satisfying (md2/n)2 =
o(MD2/N), hence we’ll have m = Õ(n

√
M/N).

4.4 Our Construction versus Real-life
Derivatives

We now discuss on a more technical level the rela-
tion of our constructions to commonly used types of
derivatives.

Role of random graph
Real-life constructions do not use a random graph.

Rather, seller tries to put together a diversified port-
folio of assets which one can hope are “sufficiently in-
dependent.” We are modeling this as a random graph.
Many experts have worried about the “adverse selec-
tion” or “moral hazard” problem inherent because the
seller could cherry-pick assets not beneficial to buyer.
It is generally hoped that this problem would not be
too severe since the seller typically holds on to the
junior tranche, which takes the first losses. Unfortu-
nately, this intuition is shown to be false in our model.

Binary vs tranched.
Although in most CDOs in practice use “tranching”

instead of binary payoff, the results for binary CDOs
are still relevant. First, in practice the cost function
of a CDO can be quite this continuous, since as soon
as the tranche incurs any loss it can suffer from a
rating downgrade, and a subsequent significant drop
in value. Also, one can take an insurance against such
an event, in the form of a credit default swap (CDS),

4Applebaum et al used somewhat a different setting of pa-
rameters than ours, with smaller planted graphs. We also note
that their cryptosystems rely on a second assumption in addi-
tion to the hardness of the planted densest subgraph.
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hence obtaining a derivative that has approximately
the same behavior as the binary CDO we use in this
paper. More discussions about tranching will appear
in our companion paper.

One significant aspect we ignored in this work is
that in standard derivatives the timing of defaults
makes a big difference, though this seems to make
a negative results such as ours only stronger. It is
conceivable that such real-life issues could allow one
to prove an even better hardness result.

Asymptotic analysis.
In this paper we used asymptotic analysis, which

seems to work best to bring out the essence of compu-
tational issues, but is at odds with economic practice
and literature, that use fixed constants. This makes it
hard to compare our parameters with currently used
ones (which vary widely in practice). We do note that
algorithms that we consider asymptotically “efficient”
such as semi definite programming, may actually be
considered inefficient in current banking environment.
Some of results hold also for a threshold of a constant
number (e.g. 3) of standard deviations, as opposed to√
logD (see Section 5.1), which is perhaps more in line

with economic practice in which even the senior most
tranche has around 1% probability of incurring a loss
(though of course for current parameters

√
logD ≤ 3).

The role of the model
The distribution we used in our results, where ev-

ery asset is either independent or perfectly correlated
is of course highly idealized. It is more typical to as-
sume in finance that even for two dissimilar assets,
the default probability is slightly correlated. How-
ever, this is often modeled via a systemwide compo-
nent, which is easy to hedge against (e.g. using an
industry price index), thus extracting from each asset
a random variable that is independent for assets in dif-
ferent industries or markets. In any case, our results
can be modified to hold in alternative models such as
the Gaussian copula. More discussions involving the
model will appear in the companion paper.

5 Lemon Cost Bounds for Binary
CDOs

In this section we formalize the illustrative example
from Section 4.1. We will calculate the lemon cost in
“honest” (random) binary CDOs, and the effect on
the lemon cost of planting dense subgraphs in such
derivatives.

Recall that in the illustrative example there are
N assets that are independently and identically dis-
tributed with probability 1/2 of a payoff of zero and
probability 1/2 of a payoff of 1. In our setting the

seller generates M binary CDOs, where the value of
each derivative is based on the D of the assets. There
is some agreed threshold value b < B/2, such that
each derivative pays 0 if more than D+b

2 of the as-
sets contained in it default, and otherwise pays some
fixed amount V = D−b

2D
N
M (in the example we used

V = N/(3M) but this value is the maximal one so
that, assuming each asset participates in the same
number of derivatives, the seller can always cover the
payment from the underlying assets).

Since each derivative depends on D independent
assets, the number of defaulted assets for each deriva-
tive is distributed very closely to a Gaussian distri-
bution as D gets larger. In particular, if there are no
lemons, every derivative has exactly the same proba-
bility of paying off, and this probability (which as b
grows becomes very close to 1) is closely approximated
by Φ( b2σ ) where Φ is the cumulative distribution func-
tion of Gaussian (i.e., Φ(a) =

∫ a
−∞

1√
2π e
−x2/2dx), b is

our threshold parameter and σ ∼ √D is the stan-
dard deviation. Using linearity of expectation one
can compute the expected value of all M derivatives
together, which will be about N D−b2D

N
M ∼ N/2. Note

that this calculation is the same regardless of whether
the graph is random or not.

We now compute the effect of n lemons (i.e., as-
sets with payoff identical to 0) on the value of all the
derivatives. In this case the shape of the pooling will
make a difference. As in Section 4.3, we use bipartite
graph to represent the shape of pooling.

If the seller is honest and pick a random regu-
lar graph (we call the distribution of random regular
graphs D1), then intuitively the effect of lemons will
be small because of law of large numbers.

To increase his expected profit seller can carefully
design this graph by choosing a graph with another
distribution D2, using his secret information. The
key observation is that though each derivative de-
pends upon D assets, in order to substantially affect
its payoff probability it suffices to fix about σ ∼ √D
of the underlying assets. More precisely, if t of the
assets contained in a derivative are lemons, then the
expected number of defaulted assets in it is D+t

2 , while
the standard deviation is

√
D − t/2 ≈ √D/2. Hence

the probability that this derivative gives 0 return is
Φ( t−b2σ ) which starts getting larger as t increases. This
means that the difference in value between such a pool
and a pool without lemons is about V · Φ( t−b2σ ).

Suppose the seller allocates ti of the junk assets to
the ith derivative. Since each of the n junk assets are
contained in MD/N derivatives, we have

∑M
i=1 ti =

57



S. ARORA, B. BARAK, M. BRUNNERMEIER AND R. GE

nMD
N . In this case the lemon cost will be

V ·
M∑
i=1

Φ( ti − b
2σ

)

Since the function Φ( ti−b2σ ) is concave when t < b,
and convex after that the optimum solution will in-
volve all ti-s to be either 0 or k

√
D for some small

constant k. (There is no closed form for k but it is
easily calculated numerically; see Appendix A.)

Therefore the lemon cost is maximized by choos-
ing some m derivatives and letting each of them have
at least d = k

√
D edges from the set of junk as-

sets. In the bipartite graph representation, this corre-
sponds to a dense subgraph, which is a set of deriva-
tives (the manipulated derivatives) and a set of as-
sets (the junk assets) that have more edges between
them than expected. This precisely corresponds to
the pooling graph containing an (m,n, d) subgraph -
that is a dense subgraph (we sometimes call such a
subgraph a “booby trap”). When the parameters m,
n, d are chosen carefully, there will be no such dense
subgraphs in random graphs with high probability,
and so the buyer will be able to verify that this is the
case. On the other hand, assuming the intractabil-
ity of this problem, the seller will be able to embed a
significant dense subgraph in the pooling, thus signifi-
cantly raising the lemon cost. We call the distribution
of derivatives with planted dense subgraph D2.

Note that even random graphs have dense sub-
graphs. For example, when md = n, any graph has
an (m,n, d) subgraph— just take any m top vertices
and their n = md neighbors. But these are more
or less the densest subgraphs in random graphs, as
is shown by the following proposition, that is proven
via a standard combination of Chernoff bound and
the union bound:
Proposition 3.1. If m(d− 1) > n+ω(1), and dNDn >
(N +M)ε for some constant ε, then there is no dense
subgraph (m,n, d) in a random (M,N,D) graph with
high probability.

The above discussion allows us to quantify pre-
cisely the effect of an (m,n, d)-subgraph on the lemon
cost. Let p ∼ Φ(−b/2σ) be the probability of de-
fault. The mere addition of n lemons (regardless
of dense subgraphs) will reduce the value by about
Φ′(−b/2σ)nD2N

1
σ ·N/2 = O(e−(b/2σ)2/2n

√
D) which can

be made o(n) by setting b to be some constant time√
D logD. The effect of an (m,n, d) subgraph on the

lemon cost is captured by the following theorem:
Theorem 4. When d − b > 3

√
D, n/N � d/D, an

(m,n, d) subgraph will generate an extra lemon cost
of at least (1− 2p− o(1))mV .

Proof. For each manipulated derivatives, let Y be the
number of defaulted assets, since there are d assets
that come from junk asset set, these d assets will al-
ways default, and the expectation of Y is E[Y ] = D+d

2 .
Since D is large enough so that the Gaussian approx-
imation holds, Pr[Y ≥ D+b

2 ] = 1− p.
For non-manipulated derivatives, assume the ex-

pected number of defaulted assets is x, then x satisfy
the equation:

m · D + d
2

+ (M −m) · x = N + n
2N

· MD
N
,

because the LHS and RHS are all expected num-
ber of defaulted mini-assets. x ≥ D2 + n

2N − md
2M−2m .

The probability that the number of defaulted assets
is more than D+b

2 is at least Φ(−3 − md
2(M−m)D ) =

p − Φ′(−3) md
2(M−m)D = p − O( md

2(M−m)D ). The ex-
pected number of non-manipulated derivatives that
gives no return is at least p(M − m) − O(md2D ) =
p(M −m)− o(m).

In conclusion, the expected number of derivatives
that gives no return is at least pM+(1−2p)m−o(m).
which is (1− 2p− o(1)) smaller than the expectation
without dense subgraphs. Thus the extra lemon cost
is (1− 2p− o(1))mV .

Since in D1 (random graph) there’s no large dense
subgraph, while in D2 there is a planted dense sub-
graph, using this quantification of the effect of dense
subgraph, we show a lower bound on the cost of com-
plexity for binary CDO’s:

Theorem 5. Assuming the densest subgraph assump-
tion, then there is some ε > 0 such that for every
δ > 0 if N = M1+δ then the cost of complexity for n
(n = ω(

√
NM δ) lemons and the family of portfolios

of M binary first order binary CDO’s over N inputs
is at least Ω̃(n

√
N/M).

Proof. Let D = M2δ, d = Θ̃(
√
D), m = Θ̃(n/M δ),

then the parameters satisfy the requirements of dens-
est subgraph assumption, the distributions D1 (ran-
dom graph) and D2 (random graph with planted
(m,n, d)-graph) is computationally indistinguishable.

For distribution D1, by Proposition 3.1 there is no
(N εn/d, n, d) dense subgraph for any ε. Therefore by
Theorem 4, the extra lemon cost is at mostN εn/dV =
O(n
√
DM/N1−ε).

For distribution D2, by Theorem 4, the extra
lemon cost is at least Ω(mV ) = Ω̃(n

√
N/M) �

O(n
√
DM/N1−ε)

Therefore,
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| E
D1

[∆(n)] − E
D2

[∆(n)]| = Ω̃(n
√
N/M),

and by definition, CoC = Ω̃(n
√
N/M).

5.1 Ex-Post Detection: Lemon Laws May
not Help

Our construction above was such that it is difficult
to detect the presence of dense subgraphs (i.e., booby
traps) at the time of sale of the derivative, before it
is known which assets pay off and which ones default
(i.e., ex ante). This leads to the question whether
buyers could try to enforce honest construction of the
derivative by including a clause in the contract that
says for example that that the derivative designer pays
a huge fine if a dense subgraph (denser than should
exist in a random construction) is found in the deriva-
tives vs. assets bipartite graphs. Since the buyer can
wait to detect this subgraph after all assets results
are known we call this ex post detection of dense sub-
graphs5. Alternatively, the government may pass a
“lemon law” for derivatives that protects buyers. In
this section we will show that these actions may not
help much.

First, note that Ex-Post detection is potentially
easier than Ex-Ante detection, because the buyer has
more information after the result has been revealed:
the junk assets must be assets in the set of the de-
faulted assets, and most of the manipulated deriva-
tives are in the set of derivatives with no return.
One simple use of this observation is: when the ex-
pected number of derivatives with no return in ran-
dom graphs is extremely small (e.g. o(m)), then al-
most all derivatives with no return are in the dense
subgraph, and hence one can find it easily. But the
number of derivatives with no return is large (e.g.
Ω(M)) then it still seems hard to find the dense sub-
graph even ex-post. We do not have a proof that this
is the case, but can show a relation between finding

5We remark that this is not the only, nor necessarily the
best, way to mitigate these problems. Another could be for the
designer to use random coins that were generated by some pub-
lic trusted authority. The problem in both these approaches is
that sometimes the graph is constructed by the seller subject
to a variety of constraints, and hence the seller himself may
not know for sure if a dense subgraph exist. Now if a dense
subgraph exists without the sellers knowledge, this opens the
possibility that the buyer will find it, either by luck or by in-
vesting significant computational effort, and hence use a clause
such as above to extract the fine from the seller. Note that
making the fine equal to the derivative’s value is not a solution
as well, since that allows the party that knows the existence
of the dense subgraph to decide based on its knowledge of the
past to decide if it wants to “roll back the deal”.

the planted subgraph in the ex-post and ex-ante set-
ting in a slightly differe nt model of random graphs.

Fixing parameters N,M,D, n,m, d as usual we de-
fine the added dense subgraph search problem to be
the following problem: one is given a bipartite graph
G on M +N vertices that is constructed by (a) hav-
ing each vertex vi of the M top vertices of G choose
a number Di using a geometric random variable with
expectationD, and then chooseDi random neighbors,
and (b) adding to G the edges of a random bipartite
graph H on m + n vertices and degree d, where we
place H onm random top vertices and n random bot-
tom vertices. The goal in ex poste detection is to re-
cover the vertices of H or any other induced subgraph
of G on m+ n vertices that has ω(n) edges.

Since we’ll be interested in d = Ω(
√
D) and m =

Ω(
√
M), it will be in fact easy to use the degree dis-

tribution of such a graph G to distinguish it from a
random graph in which step (b) is not applied. But
the point is that it might still be hard to actually find
the dense subgraph. If this is hard, then we show it’s
still hard even in the ex-post setting.
Theorem 6. Suppose that the added dense subgraph
search problem is hard for parameters N,M,D, n,m, d
then the search problem is still hard for parameters
2N,M, 2D,n,m, d given a random assignment x ∈
{0, 1}N conditioned on xi = 0 for all i in the planted
graph.
Proof sketch. Given an instance G of the dense sub-
graph we’ll convert it into an instance (G′, x) of the
ex-pose problem, where G′ is a graph onM +2N ver-
tices and degree parameter roughly 2D, and x is an
assignment to the 2N bottom vertices of G′ on which
all vertices in the planted graph are zero.

The graph G will contain the M +N vertices of G
but we add to it N/2 new bottom nodes, and let x be
an assignment that gives 0 to all old nodes and 1 to all
new ones. (We’ll later permute the nodes randomly;
also in this proof sketch we assume that the assign-
ment is balanced, but in fact we’ll need to choose the
number of nodes to add in a way that the number of
0’s of the resulting assignment is distributed accord-
ing to the binomial distribution.)

Given such a balanced assignment x to the bottom
vertices, adding edges to a top vertex v in this model
to a graph can be thought of as the following process:
one tosses a 3-way coin that with probability 1/D
outputs “halt”, with probability (1− 1/D)/2 outputs
0 and with probability (1− 1/D)/2 outputs 1. If the
coin outputs 0 we add to v a random neighbor with 0
assignment, if it outputs 1 we add a random neighbor
with a 1 assignment, and continue until the coin says
“halt”.
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We now imitate this process but starting with the
edges already in G: for each top vertex v in G′, we
conceptually toss such a three way coin, but add an
edge only if it outputs 1: for the 0 or “halt” possibili-
ties we defer to the coin tosses made in the generation
of G. More concretely, we set ε ∼ 1/(2D) to satisfy
the equation 1/2 − ε = (1/2 + ε)(1 − 1/D). We now
toss a 1/2− ε biased coin and if it comes out “heads”
we add to v a random 1 neighbor (e.g. one of the new
N vertices we added), if it comes out “tails” we do
nothing. We continue to do so until the coin comes
out “tails” Di + 1 times, where Di is the degree of v
in G.

Because this model does not fit with our standard
model of planted graphs (and indeed cannot, since
we need a model where not only the search but also
the detection problem can be hard), we do not have
any formal results for this model. However, many
of our results hold even when the threshold is set to
a constant number of standard deviations. In this
case it seems plausible to conjecture that the ex-post
search problem still remains hard as well.

6 Design of Derivatives Resistant to
Tampering

The results of this paper show how the usual meth-
ods of CDO design are susceptible to manipulation
by sellers who have hidden information. This raises
the question whether some other way of CDO design
is less susceptible to this manipulation. This section
contains a positive result, showing more exotic deriva-
tives that are not susceptible to the same kind of ma-
nipulation. Note that this positive result is in the
simplified setup used in the rest of the paper and it
remains to be seen how to adapt these ideas to more
realistic scenarios with more complicated input corre-
lations, timing assumptions, etc.

The reason current constructions (e.g., the one in
our illustrative example) allow tampering is that the
financial product is defined using the sum of D in-
puts. If these inputs are iid variables then the sum is
approximately gaussian with standard deviation

√
D,

and thus to shift the distribution it suffices to fix only
about

√
D variables. This is too small for buyers

(specifically, the best algorithms known) to detect.
The more exotic derivatives proposed here will use

different functions, which cannot be shifted without
fixing a lot of variables. This means that denser
graphs will be needed to influence them, and such
graphs could be dense enough for the best algorithms
to find them.

6.1 XOR instead of Threshold
As a warmup we give the more exotic of the two

constructions, since its correctness is easier to show.
Instead of simple sum of the variables, we use XOR
or sum modulo 2.

Theorem 7. Suppose in our illustrative example we
use XOR instead of simple sum, so that the product
produces a payoff iff the XOR of the underlying vari-
ables is 1. When D � logM + log 1/ε, a dense sub-
graph that can change the expectation of even a single
particular output (derivative) by ε can be detected Ex-
Post.

Proof. According to the construction, all assets out-
side the dense subgraph are independent and have
probability ρ of being 1. (In our illustrative exam-
ple, ρ = 1/2 but any other constant will work be-
low as well.) If the degree of the dense subgraph
d = D− t, then by property of XOR function, the ex-
pectation of the XOR function lies in 1/2± ct where
c is a constant smaller than 1 that only depends on
ρ. When t = c′ log 1/ε, ct is smaller than ε. Therefore
d > D − O(log 1/ε). The probability that d of the
inputs are all 0 is exponentially small in D, and thus
is smaller than 1/M . That is, the expected number of
derivative with at least d inputs are 0 is less than 1.
But all derivatives in the dense subgraph satisfy this
property. These derivatives are easily detected in the
Ex-Post setting.

The XOR function is even effective in preventing
dense subgraphs against a more powerful adversary
and Ex-Ante setting, where the adversary does not
only know that there are n junk assets, he can actually
control the value of these n assets.

Theorem 8. When D � log 1/ε, dense subgraphs are
Ex-Ante detectable if the ratio of manipulated output
(m/M) is larger than the ratio of manipulated input
n/N .

Proof. Similarly, we have d > D − O(log 1/ε) = D −
o(D). If m/M > n/N , and MD ≥ N , then

m4d8

n4 ≥ M
4d8

N4 = Θ(
M4D8

N4 )� M
3D7

N4

so whether there is a dense subgraph can be detected
by cycle counting algorithm (see Section 7.2)

6.2 Tree of Majorities
The XOR function is not too natural in real life.

One particular disadvantage is that XOR function is
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not monotone. Buyers would probably insist upon
the property that the derivative should be rise and
fall with the number of assets that default, which is
not true of XOR. Now we give a different function
that is monotone but which still deters manipulation.

Let us think through the criteria that such a func-
tion must satisfy. Of course we would want the func-
tion to be more resistant to fixing a small portion of
its inputs. And, the function needs to have symme-
try, so that each input is treated the same as all other
inputs. (We suspect that if the function is not sym-
metric then it makes manipulation easier.) Finally,
we want the function to be securitizable and give a
large payoff, that is, when the value of the function is
1, the sum of inputs should exceeds a certain (large)
threshold, so the seller can use the payoffs of the in-
puts to pay for the derivative. A standard function
that is monotone, symmetric and not sensitive to fix-
ing a small portion of input is the tree of majorities
(appeared in [4], [1] gave a function that is more resis-
tant but is randomly constructed and not as “natural”
as tree of majorities in economics):

Definition 1 (Tree of Majority). The function TMk
on 3k inputs is defined recursively:

TM0(x) = x

TMk(x1, x2, ..., x3k ) =MAJ(TMk−1(x1, x2, ..., x3k−1 ),

TMk−1(x3k−1+1, ..., x2·3k−1 ),

TM
k−1(x2·3k−1+1, ..., x3k ))

In this section we assume all “normal” assets are in-
dependent and will default with probability 1/2. It’s
clear that TMk is 1 with probability 1/2, is monotone
and has some symmetry properties. This function is
also resistant to fixing o(2k) inputs, as is shown in the
following theorem:

Theorem 9. Fixing any t inputs to 0, while other
inputs are independent 0/1 variable with probability
1/2 of being 1, the probability that TMk is 0 is at
most (1 + t/2k)/2.

Proof. By induction.
When k = 0 the theorem is trivial.
Assume the theorem is true for k = n, when
k = n + 1, since t inputs are fixed, let the number
of fixed inputs in the 3 instances of TMn be t1, t2, t3
respectively. Then t1 + t2 + t3 = t. When t ≥ 2n+1

the theorem is trivially true. When any of t1, t2,
t3 is more than 2n, then it’s possible to reduce it to
2n while still make sure that instance of TMn is al-
ways 1. Now, the i-th instances of TMn have at most
(1+ti/2n)/2 probability of being 0, so the probability

that TMn+1 is 0 is at most

1 + t1
2n

2
1 + t2

2n

2
1 + t3

2n

2
+

1− t1
2n

2
1 + t2

2n

2
1 + t3

2n

2

+
1 + t1

2n

2
1− t2

2n

2
1 + t3

2n

2
+

1 + t1
2n

2
1 + t2

2n

2
1 − t3

2n

2

=
1
2

+
1
4

(
t1

2n
+
t2

2n
+
t3

2n

)
− 1

4
t1

2n
t2

2n
t3

2n

≤
1 + t

2n+1

2

Theorem 10. Suppose in the illustrative example the
financial products pay 1 iff the tree function TMk
(where D = 3k) of the D underlying mini-assets eval-
uates to 1. If D � log3M then any manipulation that
significantly changes the expectation of even a single
financial product is ex-post detectable.

Proof. By the above analysis, to control the out-
put value of TM function, the dense subgraph pa-
rameter needs to satisfy d = Ω(D2/3). Thus when
D � log3M this is ex-post detectable because the
likelihood of d inputs being 0 in some financial prod-
uct is so small that every such product must come
from the dense subgraph.

The function TMk itself is not securitizable, be-
cause when the value of the function is 1, we are only
guaranteed that 2k of the inputs are 1, and will be
able to pay 2k, while the total value can be as large
as O(3k). An easy way to fix this is to take F =
TMk ∧ Threshold(0.4 · 3k), since Threshold(0.4 · 3k)
is almost always 1 in the given distribution, the func-
tion F acts the same as TMk, but when F = 1, the
number of ones in the input is at least 0.4 ·3k, and we
would be able to pay using the value of these assets.

7 Detecting Dense Subgraphs: Survey
Since designers of financial derivatives can use

dense subgraphs in their products to benefit from hid-
den information, it would be useful for buyers and
rating agencies to actually search for such anomalies
in financial products. Currently rating agencies seem
to use simple agorithms based upon monte carlo sim-
ulation [20]. There is some literature on how to de-
sign derivatives, specifically, using ideas such as com-
binatorial designs [13]. However, these design criteria
seem too weak.

Now we survey some other algorithms for detecting
dense subgraphs, which are more or less straightfor-
ward using known algorithm design techniques. The
goal is to quantify the range of dense subgraph param-
eters that will make the dense subgraph are detectable
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using efficient algorithms. The dense subgraph pa-
rameters used in our constructions fall outside this
range.

Note that the efficient algorithms given in this sec-
tion require full access to the entire set of financial
products sold by the seller, and thus assumes a level of
transparency that currently does not exist (or would
be exist only in a law enforcement setting). Absent
such transparency the detection of dense subgraphs
is much harder and the seller’s profit from planting
dense subgraphs would increase.

In this section we’ll first describe several algorithms
that can be used to detect dense subgraphs; then we
introduce the notion of Ex-Post detection; finally we
discuss the constraints the booby trap needs to satisfy.

7.1 Co-Degree Distribution
We can expect that some statistical features may

have a large difference that allow us to detect this
dense subgraph. The simplest statistical features are
degree and co-degree of vertices. The degree of a ver-
tex d(v) is the number of edges that are adjacent
to that vertex. However, in our example, we make
sure that each asset is related to the same number of
derivatives and each derivative is related to the same
number of assets. Therefore in both the random graph
and random graph with planted dense subgraph, the
degrees of vertices appear the same. The co-degree of
two vertices u and v, cod(u, v) is the number of com-
mon neighbors of u and v. When D

2

N � 1, by the law
of large numbers, the co-degree of any two derivatives
is approximately a Gaussian distribution with mean
D2/N and standard deviation

√
D2/N . In the dense

subgraph, two derivatives are expected to have d2/n
more common neighbors than a pair of vertices out-
side the dense subgraph. When

d2

n
>

√
D2 logN
N

,

by property of Gaussian distribution we know that
with high probability, the pairs with highest co-degree
will all be the pairs of vertices from the dense sub-
graph. Therefore by computing the co-degree of every
pair of derivatives and take the largest ones we can
find the dense subgraph.

7.2 Cycle Counting
Besides degree and co-degree, one of the features

we can use is the number of appearance of certain
“structure” in the graph. For example, the number
of length 2k cycles, where k is a constant, can be
used in distinguishing graph with dense subgraph. In
particular, counting the number of length 4 cycles can

distinguish between graphs with dense subgraph or
truly random graphs in some parameters.

For simplicity we assume the following distributions
for random graphs. The distribution R̂ is a random
bipartite graph with M top vertices and N bottom
vertices and each edge is chosen independently with
probability D/N . The distribution D̂ is a random
bipartite graph with M top vertices and N bottom
vertices, there is a random subset S of bottom ver-
tices and a random subset T of top vertices, |S| = n
and |T | = m. Edges incident with vertices outside
T are chosen independently with probability D/N .
Edges between S and T are chosen with probability
d/n. Edges incident to T but not S are chosen with
probability D − d/(N − n).

Let α be a length 4 cycle, then Xα is the indicator
variable for this cycle (that is, Xα = 1 if the cycle
exists and 0 otherwise). Throughout the computation
we will use the approximation M − c ∼ M where c
is a small constant. Let R be the number of length 4
cycles in R̂, then R =

∑
αXα.

E[R] =
∑
α

E[Xα] = M
2

2
N2

2

(
D

N

)4
= M

2D4

4N2

The variance of R is

Var[R] = E[R2]− E[R]2 =
∑
α,β

(E[XαXβ]− (D/N)8)

Since each E[XαXβ] is at least (D/N)8, this is lower
bounded by

∑
(α,β)∈H(E[XαXβ]−(D/N)8) for any set

H . It’s easy to check that the dominating term comes
from the set H where α and β shares a single edge.
|H | =M3N3/4, and for each (α, β) ∈ H , E[XαXβ ] =
(D/N)7. Therefore Var[R] = Ω(M3D7/N4). By con-
sidering cycles that share more edges we can see that
the terms they introduce to Var[R] are all smaller, so
Var[R] = Θ(M3D7/N4).

For D̂, when the two top vertices of α are all outside
T E[Xα] = (D/N)4; when one of the vertices is inside
T the average value for E[Xα] is still (D/N)4 (this can
be checked by enumerating the two bottom vertices);
when two top vertices are all in T the average value
for E[Xα] is roughly d4/n2N2. Let Y be the number
of 4-cycles in D̂, then

E[Y ]− E[R] ≈ m
2

2
N2

2
d4

n2N2 =
m2d4

4n2

That is, whenm4d8/n4 � Var[R] = Θ(M3D7/N4),
by counting length 4 cycles the two distributions R̂
and D̂ can be distinguished.
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7.3 Semi-definite Programming
Semi-definite programming (SDP) is a powerful

tool to approximate quantities we do not know how
to compute. Consider the densest bipartite subgraph
problem: given a bipartite graph with N vertices on
the left side and M vertices on the right side, find
a set of n vertices from left side and m vertices on
the right side, such that the number of edges between
them is maximized. Clearly if we can solve this prob-
lem we would be able to see whether there’s a dense
subgraph in the graph. Because the dense subgraph
is much denser than average, we can distinguish a
random graph with one with dense subgraph even if
we can approximate the densest subgraph problem to
some ratio.

Using SDP, we can compute a value vSDP that is
no smaller than the number of edges in the densest
subgraph. Using a simple extension of the SDP from
[6], for random graph, vSDP is of order Θ(

√
Dmn).

If the number of edges in the dense subgraph (md) is
larger than this (which means m� n), then since the
SDP value of the graph with dense subgraph is at least
md, the SDP algorithm can be used to distinguish the
two situations.

7.4 Log Density
In [6] Charikar et al. purposed a new algorithm

to detect dense subgraphs. A central concept in
their algorithm is log-density. The log-density of a
graph is the ratio between logarithm of average degree
and the logarithm of number of vertices. When the
planted dense subgraph has higher log-density than
the whole graph, their algorithm can detect the dense
subgraph in polynomial time. Although their algo-
rithm does not directly extend to the bipartite case,
for safety we assume that log d/ logm < logD/ logM
and log d/ logn < logD/ logN .

8 Conclusions
This paper has argued that computational complex-

ity has a role to play in understanding finance, be-
cause (a) sheer number of assets, financial products
etc. makes asymptotic analysis relevant (b) economic
actors have an incentive to make use of this sheer
amount of information to hide their self-interested ac-
tions.

Most analysis of the current financial crisis blames
the use of “faulty models” in pricing derivatives rather
than computational complexity and we do not dispute
that effect. Coval et al. [8] give a readable account of
this “modelling error”, and point out that buyer prac-
tices (and in particular the algorithms used by rating
agencies [20]) do not involve bounding the lemon cost

or doing any kind of sensitivity analysis of the deriva-
tive other than running Monte-Carlo simulations on a
few industry-standard distributions such as the Gaus-
sian copula. (See also [7].)

However, this raises the question whether a more
precise model would insulate the market from future
problems. Our results can be seen as some cause of
concern, even though they are clearly only a first step
(simple model, asymptotic analysis, etc.). The lemon
problem clearly exists in real life (e.g., “no documen-
tation mortgages”), and there will always be a dis-
crepancy between the buyer’s “model” of the assets
and the true valuation. Since we exhibit the compu-
tational intractability of pricing even when the input
model is known (N−n independent assets and n junk
assets), one fears that such pricing problems will not
go away even with better models. If anything, the
pricing problem should only get harder for more com-
plicated models. (Our few positive results in Section 6
raise the hope that it may be possible to circumvent
at least the tampering problem with better design.)
In any case, we feel that from now on computational
complexity should be explicitly accounted for in the
design and trade of derivatives.

Several questions suggest themselves.
1. Is it possible to prove even stronger negative re-

sults, either in terms of the underlying hard prob-
lem, or the quantitative estimate of the lemon
cost? In our model, solving some version of dens-
est subgraph is necessary and sufficient for de-
tecting tampering. But possibly by considering
more lifelike features such as timing conditions
on mortgage payments, or more complex input
distributions, one can embed an even more well-
known hard problem. Similarly, it is possible that
the lemon costs for say tranched CDOs are higher
than we have estimated.

2. Is it possible to give classes of derivatives (say, by
identifying suitable parameter choices) where the
cost of complexity goes away, including in more
lifelike scenarios? This would probably involve
a full characterization of all possible tamperings
of the derivative, and showing that they can be
detected.

3. If the previous quest proves difficult, try to prove
that it is impossible. This would involve an ax-
iomatic characterization of the goals of securitiza-
tion, and showing that no derivative meets those
goals in a way that is tamper-proof.
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A Maximizing Profit in Binary CDO
Setting

We provide a more complete analysis than the
one in Section 5 of the full optimization problem
for the seller. Recall that his profit is given by
V ′ ·∑Mi=1 Φ( ti−b2δ ), yet at the same time he is not al-
lowed to put too many edges into the cluster (other-
wise this dense subgraph can be detected). We ab-
stract this as an optimization problem (let b

2δ = a,
xi = ti/2δ):

max
M∑
i=1

Φ(xi − a)

subject to
M∑
i=1
xi = C

xi ≥ 0

As argued in Section 5, each xi should either be 0 or
greater than a, so it’s safe to subtract MΦ(−a) from
the objective function. Now the sum of xi’s are fixed,
and we want to maximize the sum of Φ(xi − a) −
Φ(−a), clearly the best thing to do is to maximize
the ratio between Φ(xi − a) − Φ(−a) and xi. Let
y = Φ(x−a)−Φ(−a), the x that maximize y/x is the
point that satisfies y = x · y′(x), that is

Φ(x− a)− Φ(−a) = xe
− (x−a)2

2√
2π
,

when x ≥ a + 3 +
√

4 log a, LHS ≈ 1, RHS < 1
(when a is large this is bounded by

√
4 log a term,

when a is small this is bounded by 3, the constants
are not carefully chosen but they are large enough), so
the solution cannot be in this range. When a is a con-
stant, the solution x lies between a and a+3+

√
4 log a.

Therefore, when a us a constant, the best thing to do
is to set all non-zero xi’s to a value not much larger
than a, in the bipartite graph representation this is
just planting a dense subgraph where each derivatives
have O(

√
D) edges.

B Constraints for Parameters
In order to avoid detection and satisfy the require-

ment of making profit, the parameters for dense sub-
graph need to be carefully chosen. Here we give a list
of constraints that need to be satisfied by the param-
eters in different models.
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1. MD ≥ N .
This is a trivial constraint saying that each asset
should be related to at least one derivative.

2. d− b > 3
√
D.

This constraint makes sure that the derivatives
in the dense subgraph behaves differently from
the derivatives outside. When d − b > √D, by
Gaussian approximation, the probability that the
number of defaulted assets is more than D+b

2 is
at least Φ(3) = 99.8%. When d−b is smaller, say
d−b =

√
D, the probability of the same event will

be much smaller. Especially when d−b = o(
√
D)

such event will have a subconstant probability.
3. d/D � n/N .

This constraint says that the dense subgraph is
much denser than average. If it is not satisfied,
then any derivative is expected to contain D ·
n/N > d assets in the junk asset set, even simple
monte-carlo simulation will be able to see that
the expected payoff value of the derivatives has
changed because of the junk assets.

4. n� md.
This constraint is essential in the proof that a
random graph will not have dense subgraphs. See
Proposition 3.1. If it is not satisfied then a ran-
dom graph is expected to have a graph as dense
as the dense subgraph.

5. MD
2

N � (md
2

n )2.
When this condition is satisfied, the dense sub-
graph is hard to detect for both cycle counting
(Section 7.2) and SDP (Section 7.3).

6. d < 2
√
D logM

This is only needed for Ex-Post detection. If this
is not satisfied, d ≥ 2

√
D logM , then for each

derivative, the number of defaulted assets exceeds
D+d

2 with probability at most 1/M , while the
derivatives in the dense subgraph has probability
1/2 of exceeding the threshold. In an ex post
setting, the buyer will see almost all derivatives
that exceeds the limit will be derivatives in the
dense subgraph, and half of the derivatives in the
dense subgraph will exceed the limit. This makes
the dense subgraph ex post detectable.

7. M
√
D � N

When this constraint is satisfied, and b ≥
2δ
√

log MDN , the lemon cost for exponential time
buyers of binary CDOs will be smaller than n,
while the lemon cost for polynomial time buyers
is always larger than n. See Section 5

8. log d/ logm < logD/ logM and log d/ logn <
logD/ logN
When these conditions are satisfied, no algorithm
based on log-density (such as the algorithm in [6])

can detect the dense subgraph.
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