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Abstract. The transactional memory programming paradigm is gain-
ing momentum as the approach of choice for replacing locks in concurrent
programming. This paper introduces the transactional locking II (TL2)
algorithm, a software transactional memory (STM) algorithm based on
a combination of commit-time locking and a novel global version-clock
based validation technique. TL2 improves on state-of-the-art STMs in
the following ways: (1) unlike all other STMs it fits seamlessly with any
systems memory life-cycle, including those using malloc/free (2) unlike
all other lock-based STMs it efficiently avoids periods of unsafe execution,
that is, using its novel version-clock validation, user code is guaranteed to
operate only on consistent memory states, and (3) in a sequence of high
performance benchmarks, while providing these new properties, it deliv-
ered overall performance comparable to (and in many cases better than)
that of all former STM algorithms, both lock-based and non-blocking.
Perhaps more importantly, on various benchmarks, TL2 delivers perfor-
mance that is competitive with the best hand-crafted fine-grained con-
current structures. Specifically, it is ten-fold faster than a single lock.
We believe these characteristics make TL2 a viable candidate for deploy-
ment of transactional memory today, long before hardware transactional
support is available.

1 Introduction

A goal of current multiprocessor software design is to introduce parallelism into
software applications by allowing operations that do not conflict in accessing
memory to proceed concurrently. The key tool in designing concurrent data
structures has been the use of locks. Coarse-grained locking is easy to program,
but unfortunately provides very poor performance because of limited parallelism.
Fine-grained lock-based concurrent data structures perform exceptionally well,
but designing them has long been recognized as a difficult task better left to
experts. If concurrent programming is to become ubiquitous, researchers agree
that alternative approaches that simplify code design and verification must be
developed. This paper is interested in “mechanical” methods for transforming
sequential code or coarse-grained lock-based code into concurrent code. By me-
chanical we mean that the transformation, whether done by hand, by a prepro-
cessor, or by a compiler, does not require any program specific information (such



as the programmer’s understanding of the data flow relationships). Moreover, we
wish to focus on techniques that can be deployed to deliver reasonable perfor-
mance across a wide range of systems today, yet combine easily with specialized
hardware support as it becomes available.

1.1 Transactional Programming

The transactional memory programming paradigm of Herlihy and Moss [1] is
gaining momentum as the approach of choice for replacing locks in concurrent
programming. Combining sequences of concurrent operations into atomic trans-
actions seems to promise a great reduction in the complexity of both program-
ming and verification – by making parts of the code appear to be sequential with-
out the need to program fine-grained locks. Transactions will hopefully remove
from the programmer the burden of figuring out the interaction among concur-
rent operations that happen to conflict with each other. Non-conflicting Trans-
actions will run uninterrupted in parallel, and those that do will be aborted and
retried without the programmer having to worry about issues such as deadlock.
There are currently proposals for hardware implementations of transactional
memory (HTM) [1–4], purely software based ones, i.e. software transactional
memories (STM) [5–13], and hybrid schemes (HyTM) that combine hardware
and software [14, 10].3

The dominant trend among transactional memory designs seems to be that
the transactions provided to the programmer, in either hardware or software,
should be “large scale”, that is, unbounded, and dynamic. Unbounded means
that there is no limit on the number of locations accessed by the transaction.
Dynamic (as opposed to static) means that the set of locations accessed by the
transaction is not known in advance and is determined during its execution.

Providing large scale transactions in hardware tends to introduce large de-
grees of complexity into the design [1–4]. Providing them efficiently in software
is a difficult task, and there seem to be numerous design parameters and ap-
proaches in the literature [5–11]. as well as requirements to combine well with
hardware transactions once those become available [14, 10].

1.2 Lock-Based Software Transactional Memory

STM design has come a long way since the first STM algorithm by Shavit and
Touitou [12], which provided a non-blocking implementation of static transac-
tions (see [5–8, 15, 9–13]). A recent paper by Ennals [5] suggested that on modern
operating systems deadlock prevention is the only compelling reason for making
transactions non-blocking, and that there is no reason to provide it for transac-
tions at the user level. We second this claim, noting that mechanisms already
exist whereby threads might yield their quanta to other threads and that So-
laris’ schedctl allows threads to transiently defer preemption while holding locks.

3 A broad survey of prior art can be found in [6, 15, 16].



Ennals [5] proposed an all-software lock-based implementation of software trans-
actional memory using the object-based approach of [17]. His idea was to run
through the transaction possibly operating on an inconsistent memory state, ac-
quiring write locks as locations to be written are encountered, writing the new
values in place and having pointers to an undo set that is not shared with other
threads. The use of locks eliminates the need for indirection and shared trans-
action records as in the non-blocking STMs, it still requires however a closed
memory system. Deadlocks and livelocks are dealt with using timeouts and the
ability of transactions to request other transactions to abort.

Another recent paper by Saha et al. [11], uses a version of Ennals’ lock-
based algorithm within a run-time system. The scheme described by Saha et al.
acquires locks as they are encountered, but also keeps shared undo sets to allow
transactions to actively abort others.

A workshop presentation by two of the authors [18] shows that lock-based
STMs tend to outperform non-blocking ones due to simpler algorithms that
result in lower overheads. However, two limitations remain, limitations that must
be overcome if STMs are to be commercially deployed:

Closed Memory Systems Memory used transactionally must be recyclable
to be used non-transactionally and vice versa. This is relatively easy in
garbage collected languages, but must also be supported in languages like C
with standard malloc() and free() operations. Unfortunately, all non-blocking
STM designs require closed memory systems, and the lock-based STMs [5,
11] either use closed systems or require specialized malloc() and free() oper-
ations.

Specialized Managed Runtime Environments Current efficient STMs [5,
11] require special environments capable of containing irregular effects in
order to avoid unsafe behavior resulting from their operating on inconsistent
states.

The TL2 algorithm presented in this paper is the first STM that overcomes
both of these limitations: it works with an open memory system, essentially with
any type of malloc() and free(), and it runs user code only on consistent states,
eliminating the need for specialized managed runtime environments4.

1.3 Vulnerabilities of STMs

Let us explain the above vulnerabilities in more detail. Current efficient STM
implementations [18, 17, 5, 11] require closed memory systems as well as man-
aged runtime environments capable of containing irregular effects. These closed
systems and managed environments are necessary for efficient execution. Within
these environments, they allow the execution of “zombies”: transactions that
have observed an inconsistent read-set but have yet to abort. The reliance on
an accumulated read-set that is not a valid snapshot [19] of the shared memory

4 The TL algorithm [18], a precursor of TL2, works with an open memory system but
runs on inconsistent states.



locations accessed can cause unexpected behavior such as infinite loops, illegal
memory accesses, and other run-time misbehavior.

The specialized runtime environment absorbs traps, converting them to trans-
action retries. Handling infinite loops in zombies is usually done by validating
transactions while in progress. Validating the read-set on every transactional
load would guarantee safety, but would also significantly impact performance.
Another option is to perform periodic validations, for example, once every num-
ber of transactional loads or when looping in the user code [11]. Ennals [5] at-
tempts to detect infinite loops by having every n-th transactional object “open”
operation validate part of the accumulated read-set. Unfortunately, this pol-
icy admits infinite loops (as it is possible for a transaction to read less than
n inconsistent memory locations and cause the thread to enter an infinite loop
containing no subsequent transactional loads). In general, infinite loop detection
mechanisms require extending the compiler or translator to insert validation
checks into potential loops.

The second issue with existing STM implementations is their need for a closed
memory allocation system. For type-safe garbage collected managed runtime en-
vironments such as that of the Java programming language, the collector assures
that transactionally accessed memory will only be released once no references
remain to the object. However, in C or C++, an object may be freed and depart
the transactional space while concurrently executing threads continue to access
it. The object’s associated lock, if used properly, can offer a way around this
problem, allowing memory to be recycled using standard malloc/free style op-
erations. The recycled locations might still be read by a concurrent transaction,
but will never be written by one.

1.4 Our New Results

This paper introduces the transactional locking II (TL2) algorithm. TL2 over-
comes the drawbacks of all state-of-the-art lock-based algorithms, including our
earlier TL algorithm [18]. The new idea in our new TL2 algorithm is to have,
perhaps counter-intuitively, a global version-clock that is incremented once by
each transaction that writes to memory, and is read by all transactions. We
show how this shared clock can be constructed so that for all but the shortest
transactions, the effects of contention are minimal. We note that the technique
of time-stamping transactions is well known in the database community [20]. A
global-clock based STM is also proposed by Riegel et al. [21]. Our global-clock
based algorithm differs from the database work in that it is tailored to be highly
efficient as required by small STM transactions as opposed to large database
ones. It differs from the “snapshot isolation” algorithm of Riegel et al. as TL2
is lock-based and very simple, while Riegel et al. is non-blocking but costly as it
uses time-stamps to choose between multiple concurrent copies of a transaction
based on their associated execution intervals.

In TL2, all memory locations are augmented with a lock that contains a
version number. Transactions start by reading the global version-clock and val-
idating every location read against this clock. As we prove, this allows us to



guarantee at a very low cost that only consistent memory views are ever read.
Writing transactions need to collect a read-set but read-only ones do not. Once
read- and write-sets are collected, transactions acquire locks on locations to be
written, increment the global version-clock and attempt to commit by validating
the read-set. Once committed, transactions update the memory locations with
the new global version-clock value and release the associated locks.

We believe TL2 is revolutionary in that it overcomes most of the safety
and performance issues that have plagued high-performance lock-based STM
implementations:

– Unlike all former lock-based STMs it efficiently avoids vulnerabilities related
to reading inconsistent memory states, not to mention the fact that former
lock-based STMs must use compiler assist or manual programmer interven-
tion to perform validity tests in user code to try and avoid as many of these
zombie behaviors as possible. The need to overcome these safety vulnerabili-
ties will be a major factor when going from experimental algorithms to actual
production quality STMs. Moreover, as Saha et al. [11] explain, validation
introduced to limit the effects of these safety issues can have a significant
impact on overall STM performance.

– Unlike any former STM, TL2 allows transactional memory to be recycled into
non-transactional memory and back using malloc and free style operations.
This is done seamlessly and with no added complexity.

– As we show in Section 3, rather encouragingly, concurrent red-black trees
derived in a mechanical fashion from sequential code using the TL2 algo-
rithm and providing the above software engineering benefits, tend to per-
form as well as prior algorithms, exhibiting performance comparable to that
of hand-crafted fine-grained lock-based algorithms. Overall TL2 is an order
of magnitude faster than sequential code made concurrent using a single
lock.

In summary, TL2’s superior performance together with the fact that it com-
bines seamlessly with hardware transactions and with any system’s memory
life-cycle, make it an ideal candidate for multi-language deployment today, long
before hardware transactional support becomes commonly available.

2 Transactional Locking II

The TL2 algorithm we describe here is a global version-clock based variant of
the transactional locking algorithm of Dice and Shavit (TL) [18]. As we will
explain, based on this global versioning approach, and in contrast with prior
local versioning approaches, we are able to eliminate several key safety issues
afflicting other lock-based STM systems and simplify the process of mechanical
code transformation. In addition, the use of global versioning will hopefully
improve the performance of read-only transactions.

Our TL2 algorithm is a two-phase locking scheme that employs commit-

time lock acquisition mode like the TL algorithm, differing from encounter-time

algorithms such as those by Ennals [5] and Saha et al. [11].



For each implemented transactional system (i.e. per application or data struc-
ture) we have a shared global version-clock variable. We describe it below using
an implementation in which the counter is incremented using an increment-and-
fetch implemented with a compare-and-swap (CAS) operation. Alternative im-
plementation exist however that offer improved performance. The global version-
clock will be read and incremented by each writing transaction and will be read
by every read-only transaction.

We associate a special versioned write-lock with every transacted memory
location. In its simplest form, the versioned write-lock is a single word spinlock
that uses a CAS operation to acquire the lock and a store to release it. Since
one only needs a single bit to indicate that the lock is taken, we use the rest
of the lock word to hold a version number. This number is advanced by every
successful lock-release. Unlike the TL algorithm or Ennals [5] and Saha et al.
[11], in TL2 the new value written into each versioned write-lock location will
be a property which will provide us with several performance and correctness
benefits.

To implement a given data structure we allocate a collection of versioned

write-locks. We can use various schemes for associating locks with shared data:
per object (PO), where a lock is assigned per shared object, or per stripe (PS),
where we allocate a separate large array of locks and memory is striped (parti-
tioned) using some hash function to map each transactable location to a stripe.
Other mappings between transactional shared variables and locks are possible.
The PO scheme requires either manual or compiler-assisted automatic inser-
tion of lock fields whereas PS can be used with unmodified data structures. PO
might be implemented, for instance, by leveraging the header words of objects
in the Java programming language [22, 23]. A single PS stripe-lock array may be
shared and used for different TL2 data structures within a single address-space.
For instance an application with two distinct TL2 red-black trees and three TL2
hash-tables could use a single PS array for all TL2 locks. As our default mapping
we chose an array of 220 entries of 32-bit lock words with the mapping function
masking the variable address with “0x3FFFFC” and then adding in the base
address of the lock array to derive the lock address.

In the following we describe the PS version of the TL2 algorithm although
most of the details carry through verbatim for PO as well. We maintain thread lo-
cal read- and write-sets as linked lists. Each read-set entries contains the address
of the lock that “covers” the variable being read, and unlike former algorithms,
does not need to contain the observed version number of the lock. The write-set
entries contain the address of the variable, the value to be written to the vari-
able, and the address of its associated lock. In many cases the lock and location
address are related and so we need to keep only one of them in the read-set. The
write-set is kept in chronological order to avoid write-after-write hazards.

2.1 The Basic TL2 Algorithm

We now describe how TL2 executes a sequential code fragment that was placed
within a TL2 transaction. As we explain, TL2 does not require traps or the



insertion of validation tests within user code, and in this mode does not require
type-stable garbage collection, working seamlessly with the memory life-cycle of
languages like C and C++.

Write Transactions The following sequence of operations is performed by a
writing transaction, one that performs writes to the shared memory. We will
assume that a transaction is a writing transaction. If it is a read-only transac-

tion this can be denoted by the programmer, determined at compile time or
heuristically at runtime.

1. Sample global version-clock: Load the current value of the global version

clock and store it in a thread local variable called the read-version number
(rv). This value is later used for detection of recent changes to data fields
by comparing it to the version fields of their versioned write-locks.

2. Run through a speculative execution: Execute the transaction code
(load and store instructions are mechanically augmented and replaced so
that speculative execution does not change the shared memory’s state, hence
the term “speculative”.) Locally maintain a read-set of addresses loaded and
a write-set address/value pairs stored. This logging functionality is imple-
mented by augmenting loads with instructions that record the read address
and replacing stores with code recording the address and value to-be-written.
The transactional load first checks (using a Bloom filter [24]) to see if the
load address already appears in the write-set. If so, the transactional load
returns the last value written to the address. This provides the illusion of
processor consistency and avoids read-after-write hazards.
A load instruction sampling the associated lock is inserted before each orig-
inal load, which is then followed by post-validation code checking that the
location’s versioned write-lock is free and has not changed. Additionally, we
make sure that the lock’s version field is ≤ rv and the lock bit is clear. If it
is greater than rv it suggests that the memory location has been modified
after the current thread performed step 1, and the transaction is aborted.

3. Lock the write-set: Acquire the locks in any convenient order using boun-
ded spinning to avoid indefinite deadlock. In case not all of these locks are
successfully acquired, the transaction fails.

4. Increment global version-clock: Upon successful completion of lock ac-
quisition of all locks in the write-set perform an increment-and-fetch (using
a CAS operation for example) of the global version-clock recording the re-
turned value in a local write-version number variable wv.

5. Validate the read-set: validate for each location in the read-set that the
version number associated with the versioned-write-lock is ≤ rv. We also
verify that these memory locations have not been locked by other threads.
In case the validation fails, the transaction is aborted. By re-validating the
read-set, we guarantee that its memory locations have not been modified
while steps 3 and 4 were being executed. In the special case where rv + 1 =
wv it is not necessary to validate the read-set, as it is guaranteed that no
concurrently executing transaction could have modified it.



6. Commit and release the locks: For each location in the write-set, store
to the location the new value from the write-set and release the locations
lock by setting the version value to the write-version wv and clearing the
write-lock bit (this is done using a simple store).

A few things to note. The write-locks have been held for a brief time when
attempting to commit the transaction. This helps improve performance under
high contention. The Bloom filter allows us to determine if a value is not in the
write-set and need not be searched for by reading the single filter word. Though
locks could have been acquired in ascending address order to avoid deadlock, we
found that sorting the addresses in the write-set was not worth the effort.

Low-Cost Read-Only Transactions One of the goals of the proposed metho-
dology’s design is an efficient execution of read-only transactions, as they domi-
nate usage patterns in many applications. To execute a read-only transaction:

1. Sample the global version-clock: Load the current value of the global

version-clock and store it in a local variable called read-version (rv).

2. Run through a speculative execution: Execute the transaction code.
Each load instruction is post-validated by checking that the location’s ver-
sioned write-lock is free and making sure that the lock’s version field is ≤

rv. If it is greater than rv the transaction is aborted, otherwise commits.

As can be seen, the read-only implementation is highly efficient because it
does not construct or validate a read-set. Detection of read-only behavior can
be done at the level of of each specific transaction site (e.g., method or atomic
block). This can be done at compile time or by simply running all methods first
as read-only, and upon detecting the first transactional write, abort and set a
flag to indicate that this method should henceforth be executed in write mode.

2.2 A Low Contention Global Version-Clock Implementation

There are various ways in which one could implement the global version-clock
used in the algorithm. The key difficulty with the global clock implementation
is that it may introduce increased contention and costly cache coherent sharing.
One approach to reducing this overhead is based on splitting the global version-
clock variable so it includes a version number and a thread id. Based on this
split, a thread will not need to change the version number if it is different than
the version number it used when it last wrote. In such a case all it will need to do
is write its own version number in any given memory location. This can lead to
an overall reduction by a factor of n in the number of version clock increments.

1. Each version number will include the thread id of the thread that last mod-
ified it.



2. Each thread, when performing the load/CAS to increment the global version-
clock, checks after the load to see if the global version-clock differs from
the thread’s previous wv (note that if it fails on the CAS and retries the
load/CAS then it knows the number was changed). If it differs, then the
thread does not perform the CAS, and writes the version number it loaded
and its id into all locations it modifies. If the global version number has not
changed, the thread must CAS a new global version number greater by one
and its id into the global version and use this in each location.

3. To read, a thread loads the global version-clock, and any location with a
version number > rv or = rv and having an id different than that of the
transaction who last changed the global version will cause a transaction
failure.

This has the potential to cut the number of CAS operations on the global
version-clock by a linear factor. It does however introduce the possibility of “false
positive” failures. In the simple global version-clock which is always incremented,
a read of some location that saw, say, value v + n, would not fail on things
less than v + n, but with the new scheme, it could be that threads 1..n-1 all
perform non-modifying increments by changing only the id part of a version-
clock, leaving the value unchanged at v, and the reader also reads v for the
version-clock (instead of v + n as he would have in the regular scheme). It can
thus fail on account of each of the writes even though in the regular scheme it
would have seen most of them with values v...v + n − 1.

2.3 Mixed Transactional and Non-Transactional Memory
Management

The current implementation of TL2 views memory as being clearly divided into
transactional and non-transactional (heap) space where mixed-mode transac-
tional and non-transactional accesses are proscribed. As long as a memory lo-
cation can be accessed by transactional load or store operations it must not be
accessible to non-transactional load and store operations and vice versa. We do
however wish to allow memory recycled from one space to be reusable in the
other. For type-safe garbage collected managed runtime environments such as
that of the Java programming language, any of the TL2 lock-mapping policies
(PS or PO) provide this property as the GC assures that memory will only be
released once no references remain to an object. However, in languages such as C
or C++ that provide the programmer with explicit memory management opera-
tions such as malloc and free, we must take care never to free objects while they
are accessible. The pitfalls of finding a solution for such languages are explained
in detail in [18].

There is a simple solution for the per-stripe (PS) variation of TL2 (and in
the the earlier TL [18] scheme) that works with any malloc/free or similar style
pair of operations. In the transactional space, a thread executing a transaction
can only reach an object by following a sequence of references that are included
in the transaction’s read-set. By validating the transaction before writing the



locations we can make sure that the read set is consistent, guaranteeing that the
object is accessible and has not been reclaimed. Transacted memory locations
are modified after the transaction is validated and before their associated locks
are released. This leaves a short period in which the objects in the transaction’s
write-set must not be freed. To prevent objects from being freed in that period,
threads let objects quiesce before freeing them. By quiescing we mean letting
any activity on the transactional locations complete by making sure that all
locks on an object’s associated memory locations are released by their owners
before. Once an object is quiesced it can be freed. This scheme works because
any transaction that may acquire the lock and reach the disconnected location
will fail its read-set validation.

Unfortunately, we have not found an efficient scheme for using the PO mode
of TL2 in C or C++ because locks reside inside the object header, and the act
of acquiring a lock cannot guaranteed to take place while the object is alive. As
can be seen in the performance section, on the benchmarks/machine we tested
there is a penalty, though not an unbearable one, for using PS mode instead of
PO.

In STMs that use encounter-time lock acquisition and undo-logs [5, 11] it
is significantly harder to protect objects from being modified after they are
reclaimed, as memory locations are modified one at a time, replacing old values
with the new values written by the transaction. Even with quiescing, to protect
from illegal memory modifications, one would have to repeatedly validate the
entire transaction before updating each location in the write-set. This repeated

validation is inefficient in its simplest form and complex (if at all possible) if one
attempts to use the compiler to eliminate unnecessary validations.

2.4 Mechanical Transformation of Sequential Code

As we discussed earlier, the algorithm we describe can be added to code in
a mechanical fashion, that is, without understanding anything about how the
code works or what the program itself does. In our benchmarks, we performed
the transformation by hand. We do however believe that it may be feasible to
automate this process and allow a compiler to perform the transformation given
a few rather simple limitations on the code structure within a transaction.

We note that hand-crafted data structures can always have an advantage
over TL2, as TL2 has no way of knowing that prior loads executed within a
transaction might no longer have any bearing on results produced by transaction.

2.5 Software-Hardware Interoperability

Though we have described TL2 as a software based scheme, it can be made
inter-operable with HTM systems. On a machine supporting dynamic hardware
transactions, transactions need only verify for each location read or written that
the associated versioned write-lock is free. There is no need for the hardware
transaction to store an intermediate locked state into the lock word(s). For ev-
ery write they also need to update the version number of the associated lock



upon completion. This suffices to provide interoperability between hardware and
software transactions. Any software read will detect concurrent modifications of
locations by a hardware writes because the version number of the associated
lock will have changed. Any hardware transaction will fail if a concurrent soft-
ware transaction is holding the lock to write. Software transactions attempting
to write will also fail in acquiring a lock on a location since lock acquisition is
done using an atomic hardware synchronization operation (such as CAS or a
single location transaction) which will fail if the version number of the location
was modified by the hardware transaction.

3 Empirical Performance Evaluation

We present here a set of microbenchmarks that have become standard in the
community [25], comparing a sequential red-black tree made concurrent using
various algorithms representing state-of-the-art non-blocking [6] and lock-based
[5, 18] STMs. For lack of space we can only present the red-black tree data
structure and only four performance graphs.

The sequential red-black tree made concurrent using our transactional locking
algorithm was derived from the java.util.TreeMap implementation found in
the Java programming language JDK 6.0. That implementation was written by
Doug Lea and Josh Bloch. In turn, parts of the Java TreeMap were derived
from the Cormen et al. [26]. We would have preferred to use the exact Fraser-
Harris red-black tree [6] but that code was written to their specific transactional
interface and could not readily be converted to a simple form.

The sequential red-black tree implementation exposes a key-value pair inter-
face of put, delete, and get operations. The put operation installs a key-value
pair. If the key is not present in the data structure put will insert a new el-
ement describing the key-value pair. If the key is already present in the data
structure put will simply update the value associated with the existing key. The
get operation queries the value for a given key, returning an indication if the
key was present in the data structure. Finally, delete removes a key from the
data structure, returning an indication if the key was found to be present in the
data structure. The benchmark harness calls put, get and delete to operate on
the underlying data structure. The harness allows for the proportion of put, get
and delete operations to be varied by way of command line arguments, as well
as the number of threads, trial duration, initial number of key-value pairs to be
installed in the data structure, and the key-range. The key range describes the
maximum possible size (capacity) of the data structure.

For our experiments we used a 16-processor Sun FireTM V890 which is a
cache coherent multiprocessor with 1.35Ghz UltraSPARC-IV R© processors run-
ning SolarisTM 10. As claimed in the introduction, modern operating systems
handle locking well, even when the number of threads is larger than the number
of CPUs. In our benchmarks, our of STMs used the Solaris schedctl mecha-
nism to allow threads to request short-term preemption deferral by storing to a
thread-specific location which is read by the kernel-level scheduler. Preemption



deferral is advisory - the kernel will try to avoid preempting a thread that has
requested deferral. We note that unfortunately we could not introduce the use
of schedctl-based preemption deferral into the hand crafted lock-based hanke

code, the lock-based stm ennals code described below, or stm fraser. This af-
fected their relative performance beyond 16 threads but not in the range below
16 threads.

Our benchmarked algorithms included:

Mutex We used the Solaris POSIX threads library mutex as a coarse-grained
locking mechanism.

stm fraser This is the state-of-the-art non-blocking STM of Harris and Fraser
[6]. We use the name originally given to the program by its authors. It
has a special record per object with a pointer to a transaction record. The
transformation of sequential to transactional code is not mechanical: the
programmer specifies when objects are transactionally opened and closed to
improve performance.

stm ennals This is the lock-based encounter-time object-based STM algorithm
of Ennals taken from [5] and provided in LibLTX [6]. Note that LibLTX
includes the original Fraser and Harris lockfree-lib package. It uses a lock
per object and a non-mechanical object-based interface of [6]. Though we
did not have access to code for the Saha et al. algorithm [11], we believe
the Ennals algorithm to be a good representative this class of algorithms,
with the possible benefit that the Ennals structures were written using the
non-mechanical object-based interface of [6] and because unlike Saha et al.,
Ennals write-set is not shared among threads.

TL/PO A version of our algorithm [18] which does not use a global version
clock, instead it collects read and write-sets and validates the read-set after
acquiring the locks on the memory locations. Unlike TL2, it thus requires a
safe running environment. We bring here the per-object locking variation of
the TL algorithm.

hanke This is the hand-crafted lock-based concurrent relaxed red-black tree
implementation of Hanke [27] as coded by Fraser [6]. The idea of relaxed
balancing is to uncouple the re-balancing from the updating in order to
speed up the update operations and to allow a high degree of concurrency.

TL2 Our new transactional locking algorithm. We use the notation TL2/PO
and TL2/PS to denote the per-object and per-stripe variations. The PO
variation consistently performed better than PS, but PS is compatible with
open memory systems.

In Figure 1 we present four red-black tree benchmarks performed using
two different key ranges and two set operation distributions. The key range
of [100, 200] generates a small size tree while the range [10000, 20000] creates a
larger tree, imposing larger transaction size for the set operations. The different
operation distributions represent two type of workloads, one dominated by reads
(5% puts, 5% deletes, and 90% gets) and the other (30% puts, 30% deletes, and
40% gets) dominated by writes.
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(b) Small Red-Black Tree 30%/30%/40% on 16x V890
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(c) Large Red-Black Tree 5%/5%/90% on 16x V890
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(d) Large Red-Black Tree 30%/30%/40% on 16x V890
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Fig. 1. Throughput of Red-Black Tree with 5% puts and 5% deletes and 30% puts,
30% deletes

In all four graphs, all algorithms scale quite well to 16 processors, with the
exception of the mutual exclusion based one. Ennals’s algorithm performs badly
on the contended write-dominated benchmark, apparently suffering from fre-
quent transaction collisions, which are more likely to occur in encounter-time
locking based solutions. Beyond 16 threads, the Hanke and Ennals algorithms
deteriorate because we could not introduce the schedctl mechanism to allow
threads to request short-term preemption deferral. It is interesting to note that
the Fraser-Harris STM continues to perform well beyond 16 threads even without
this mechanism because it is non-blocking. As expected, object based algorithms
(PO) do better than stripe-based (PS) ones because of the improved locality in
accessing the locks and the data.

The performance of all the STM implementations usually differs by a constant
factor, most of which we associate with the overheads of the algorithmic mech-
anisms employed (as seen in the single thread performance). The hand-crafted
algorithm of Hanke provides the highest throughput in most cases because its
single thread performance (a measure of overhead) is superior to all STM al-
gorithms. On the smaller data structures TL/PO (or TL/PS) performs better
than TL2/PO (respectively TL2/PS) because of lower overheads, part of which
can be associated with invalidation traffic caused by updates of the version clock
(this is not traffic caused by CAS operations on the shared location. It is due to
the fact that the location is being updated). This is reversed and TL2 becomes



superior when the data structure is large because the read-set is larger and read-
only transactions incur less overhead in TL2. The TL and TL2 algorithms are
in most cases superior to Ennals’s STM and Fraser and Harris’s STM. In all
benchmarks they are an order of magnitude faster than the single lock Mutex
implementation.

4 Conclusion

The TL2 algorithm presented in this paper provides a safe and easy to integrate
STM implementation with reasonable performance, providing a programming
environment similar to that attained using global locks, but with a ten-fold im-
provement in performance. TL2 will easily combine with hardware transactional
mechanisms once these become available. It provides a strong indication that we
should continue to devise lock-based STMs.

There is however still much work to be done to improve TL2’s performance.
A lot of these improvements may require hardware support, for example, in
implementing the global version clock and in speeding up the collection of the
read-set. The full TL2 code will be publicly available shortly.
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