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ABSTRACT
We present improved algorithms for finding approximately
optimal matchings in both weighted and unweighted graphs.
For unweighted graphs, we give an algorithm providing (1−
ε)-approximation in O(log n) time for any constant ε > 0.
This result improves on the classical 1

2
-approximation due

to Israeli and Itai. As a by-product, we also provide an
improved algorithm for unweighted matchings in bipartite
graphs. In the context of weighted graphs, we give another
algorithm which provides ( 1

2
− ε) approximation in general

graphs in O(log n) time. The latter result improves on the
known ( 1

4
− ε)-approximation in O(log n) time.

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Parallelism and concur-
rency; G.2.2 [Graph Theory]: Graph algorithms

General Terms
Algorithms, Theory

Keywords
Matching

1. INTRODUCTION
Computing a set of disjoint links in a graph, also called

a matching, is one of the fundamental tasks in distributed
computing. Matching computation routines are often used
as building blocks in complex distributed algorithms, and
a matching may be the target application in its own right.
In some systems, for example, a node may be engaged in
a “conversation” with only one other node at a time, and
having a large cardinality matching (over all potential con-
versations) increases overall communication throughput of
the system. An important example is internal scheduling
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of a communication switch: The basic task of a switch is
to transfer packets from input-port buffers to output-port
buffers through an internal network called “switch fabric.”
In each cycle, the switch fabric can realize one partial per-
mutation, and an internal scheduling routine decides which
ports will be connected in each cycle. To increase through-
put, the scheduling routine tries to find the largest possible
matching between the input ports and the output ports.
Note that in this important case (as well as numerous other
applications), the underlying graph for the matching prob-
lem is bipartite.

One significant generalization of the matching problem
is the case where edges of the graph have intrinsic posi-
tive “weights,” and matching of the largest possible weight
is sought. For example, in the switch model, packets may
have weights representing their importance (or their utility),
and the goal is to find a set of disjoint edges (packets) whose
sum of weights is as large as possible.

A brief history of distributed matching.
Due to its prominent role, much research has been in-

vested in developing efficient and effective algorithms for
maximum matching, in bipartite and general graphs and
in the weighted and unweighted settings (see below). Re-
garding distributed algorithms, it is easy to see that finding
an optimal solution, even for unweighted graphs, may re-
quire time proportional to the diameter of the graph, and
therefore algorithmic research seeks fast approximations. To
discuss approximations, it is convenient to introduce some
notation first. Let δ-MCM denote a matching that is a δ-
approximation to the maximum cardinality matching (i.e.,
whose size is at least a δ fraction of the optimum for that
graph). Similarly, let δ-MWM denote a weighted match-
ing whose total weight is at least a δ fraction of the best
possible. It is straightforward to observe that the greedy al-
gorithm (that repeatedly adds the heaviest remaining edge
to the matching and removes all its incident edges from the
graph) finds a 1

2
-MCM or 1

2
-MWM. Approximation factor

1
2

can be acheived in linear time in the centralized compu-
tational model [25, 6].

Even such seemingly trivial guarantees are not very easy
to obtain in the distributed setting, where time is dominated
by the distance that information has to travel. In the dis-
tributed model, the basic result is a randomized 1

2
-MCM

algorithm, presented by Israeli and Itai in 1986 [15]. The
expected (and high-probability) running time of the algo-
rithm in [15] is O(log n), where n is the number of nodes
in the graph. Ideas from the algorithm of [15] are the basis



of the PIM algorithm used in the high-speed AN2 switch
of DEC [3]. PIM was later refined to iSLIP [23], which is
the algorithm of choice in many of today’s routers. From
the worst case complexity viewpoint, PIM and iSLIP algo-
rithms are no better than the algorithm of [15]. To date,
the algorithm of [15] has not been completely subsumed.
Building on [9], Czygrinow et al. [5] present a determinis-
tic algorithm that computes a 2

3
-MCM in O(log4 n) time.

Czygrinow and Hańćkowiak [4] have shown that in bipartite
graphs, a (1 − ε)-MCM can be computed deterministically

in (log n)O(1/ε) time.
For weighted graphs, Lotker et al. [18] give a random-

ized algorithm for ( 1
4
− ε)-MWM using O(log n) time (ex-

pected and with high probability), and based the approach
of Wattenhofer and Wattenhofer [26], they explain how to
get ( 1

2
− ε)-MWM in O(log2 n) time. In the special case of

trees, Hoepman et al. [12] showed that a ( 1
2
−ε)-MCM can be

computed in expected constant time [12]. Hoepman [11] has
shown that a 1

2
-MWM can be computed deterministically in

O(n) time.
On the negative side, Kuhn et al. [17] proved that any

distributed algorithm, randomized or deterministic, requires
Ω(
p

log n/ log log n) (expected) time to compute a Θ(1)-
approximate maximum cardinality matching. The lower
bound holds even if messages have unbounded size, so long
as messages may progress only one hop at each time step.

Our results.
In this paper we give substantially improved distributed

algorithms for approximate maximum matchings. Building
on some known techniques [13, 8, 24, 18], and adding a few
new ideas, we obtain the following results. For unweighted
graphs and any constant ε > 0, we present the first (1− ε)-
MCM in O(log n) time using messages of O(log n) bits. (All
our algorithms are randomized, and their stated running
time is with high probability.) Our derivation consists of
three steps. First, we describe a generic algorithm that re-
quires, in the general case, messages of linear size. We then
show how to implement the algorithm in the special case
of bipartite graphs using messages of O(log n) bits. Finally,
we give a randomized reduction from general graphs to bi-
partite graphs. (The running time of the last algorithm is
exponential in 1/ε.) For general weighted graphs, we give
a ( 1

2
− ε)-MWM algorithm whose running time is O(log n)

using O(log n)-bit messages. The idea is to show that if
a δ-MWM can be computed in time T for some constant
δ > 0, then it is possible to compute a ( 1

2
− ε)-MWM in

time O(log 1
ε
· T ). Using the ( 1

4
− ε)-MWM algorithm of

[18], we obtain the result.

More related work.
Maximum matching is a classic optimization problem that

was the target of extensive research for both the bipartite
and general cases (see [19] for a fascinating account). For
the bipartite graph case, let us mention the O(|V |2.5) al-
gorithm by Hopcroft and Karp [13] (see [19] for classical
results and [21, 10] for some recent work on the problem).
There are a few PRAM algorithms for maximum match-
ing. For example, Karp et al. [16] give a randomized NC
algorithm for maximum cardinality matching, and Fischer
et al. [8] give a PRAM algorithm for computing approxi-
mate maximum cardinality matchings. In their algorithm,

nΘ(1/ε) processors produce a (1−ε)-MCM in O(log3 n) time.
Hougardy and Vinkemeier [14] have recently extended the
algorithm from [8] to the weighted case, with similar proces-
sor and time bounds. Drake and Hougardy [7] and Pettie
and Sanders [24] have developed linear time sequential algo-
rithms for ( 2

3
− ε)-MWM.

Organization.
In Section 2 we describe the model and introduce some

notation. In Section 3 we give our (1− ε)-MCM algorithms.
Section 4 covers our ( 1

2
− ε)-MWM algorithm. We conclude

with some open problems in Section 5.

2. PRELIMINARIES AND NOTATION

Execution model.
Throughout the paper we assume the standard synchronous

network model, where in each time step, processors send
(possibly different) messages to neighbors, receive messages
from neighbors, and perform some local computation. We
consider both the model where message size may be un-
bounded, and the model where messages contain O(log n)
bits. See [22] for more details.

Graphs, matchings etc.
The input is an undirected graph G = (V, E), which may

be associated with a weight function w : E → R+. We use
n to denote |V |, and ∆ to denote the maximal node degree
in G. Throughout the paper, M ⊆ E denotes a matching,
and M∗ the matching of maximum cardinality (or weight).
A vertex is free w.r.t. M if it is not incident to any edge in
M . An augmenting path is a simple path whose endpoints
are free and whose edges alternate between E\M and M .

For sets A and B, we denote A⊕B
def
= (A ∪B)\(A ∩B).

3. UNWEIGHTED MATCHINGS
In this section we present a (1−ε)-approximation for max-

imal cardinality matching, which runs in O(log n) time for
any constant ε > 0 and uses messages of O(log n) bits. Our
development consists of three steps: In Section 3.1 we give a
generic algorithm that requires messages of potentially lin-
ear size; in Section 3.2 we show how to reduce the message
size to logarithmic in the case of bipartite graph; and finally,
in Section 3.3, we give a randomized reduction of general
graphs to bipartite graphs. Each of the three algorithms is
of possible independent interest.

3.1 Generic Algorithm
In this subsection we give a generic algorithm we use later,

and prove the following concrete result.

Theorem 3.1. A (1 − ε)-MCM of any undirected graph
can be computed distributively in O(ε−3 log n) communica-
tion rounds, with high probability. The maximum message
length is O(|V |+ |E|).

The algorithm proceeds in phases as follows. In phase `,
we identify a maximal set of augmenting paths of length
2`−1 and apply them to obtain the matching used in phase
` + 1. It is shown that after phase `, our matching M is
a (1− 1

`+1
)-approximation. The only part of the algorithm

which is slightly less standard is how to efficiently identify



a maximal set of non-conflicting augmenting paths. To do
that, we construct a certain“conflict graph,” and run a max-
imal independent set (MIS) algorithm on that graph. (A

similar PRAM algorithm, using nO(1/ε) processors, appears
in [8].)

We now specify the algorithm in detail. First, we formalize
the concept of conflict graphs.

Definition 3.1. Let G = (V, E) be a graph, let M ⊆ E
be a matching, and let ` > 0 be an integer. The `-conflict
graph w.r.t. M in G, denoted CM (`), is defined as follows.
The nodes of CM (`) are all augmenting paths w.r.t. M of
length at most `, and two nodes in CM (`) are connected by
an edge iff their corresponding augmenting paths intersect at
a node of G.

Algorithm 1 contains pseudo-code of an abstract algo-
rithm that uses conflict graphs. The key to its correctness is
that no two augmentations applied in Step 7 are conflicting:
if they were, then their paths intersect, contradicting the
independence of their corresponding nodes in the conflict
graph.

The abstract algorithm is implemented over the physical
graph G as follows. The conflict graph construction (Step 4
of Algorithm 1) is implemented by Algorithm 2. The idea
is to explore G to distance `, and use a deterministic rule
for assigning augmenting paths to nodes. The messages of
Algorithm 2 contain descriptions of portions of the graph,
so message size is bounded by O(|G|) = O(|V |+ |E|). Using
Algorithm 2, we have the following immediate result.

Lemma 3.2. Step 4 of Algorithm 1 can be implemented in
O(`) time using O(|V |+ |E|)-bit messages.

After Step 4, each node P in CM (`) (P is an augment-
ing path) is associated with a physical node leader(P ) =
v ∈ V , and furthermore, each node v ∈ V , knows where
are its “neighbors” in the conflict graph. More formally, if
v = leader(P ), u = leader(P ′), and P, P ′ are neighbors in
CM (`), then u and v know of each other, so that when a
message needs to be sent from P to P ′, say, it can be done
over G. Therefore, Step 5 can be implemented efficiently
by any distributed MIS algorithm, where messages between
CM (`) nodes are routed between their leaders, along their
augmenting paths. More formally, we have the following
result.

Lemma 3.3. Step 5 of Algorithm 1 can be implemented in
O(`2 log n) time (with high probability).

Algorithm 1 Abstract algorithm. The input is a graph
G = (V, E) and ε > 0

1: M ← ∅ . M ranges over sets of edges

2: k ← d1/εe
3: for `← 1, 3, . . . , 2k − 1 do
4: Construct the conflict graph CM (`)
5: Let I be an MIS of CM (`)
6: Let P be the union the of augmenting paths corre-

sponding to I
7: M ←M ⊕ P
8: end for
9: Output M . M is a (1− 1

k+1
)-approximate MCM

Proof: We use either the algorithm of [20] or [1] to do the
MIS computation. The distributed version of these algo-
rithm runs in time O(log N) (w.h.p.), where N is the number
of nodes in the graph. In our case, we apply MIS to CM (`),

and the number of nodes in CM (`) is nO(`). Furthermore,
each step of the MIS computation in CM (`) is implemented
by O(`) routing steps in G.

To prove Theorem 3.1, we use the following two facts from
Hopcroft and Karp [13].

Lemma 3.4. If the shortest augmenting path w.r.t. M has
length ` and P is a maximal set of augmenting paths of length
`, the shortest augmenting path w.r.t. M ⊕ P has length
greater than `.

Lemma 3.5. If the shortest augmenting path w.r.t. M has
length 2k − 1 ≥ 1 then |M | ≥ (1− 1

k
)|M∗|.

Proof of Theorem 3.1: Let us first bound the high-
probability time complexity of Algorithm 1 when Step 4
is implemented by Algorithm 2 and when Step 5 is imple-
mented by the algorithm of [1]. There are O(ε−1) iterations.
Steps 4 and 5 take O(ε−2 log n) time w.h.p. by Lemmas 3.2
and 3.3. (There are only polynomially many MIS invoca-
tions, so we can apply the union bound to conclude that with
high probability, all invocations complete in time.) Step 7
is implemented distributively by letting leader nodes send
messages along the paths chosen to the MIS in Step 5. This
takes additional O(`) time, so the time bound follows.

The correctness of the algorithm is proved as follows. In-
ductive application of Lemma 3.4 shows that after iteration
2k−1 of Algorithm 1, the length of the shortest augmenting
path in G is more than 2k − 1, and therefore, by Lemma
3.5, when the algorithm terminates, the size of M is at least
(1− 1

k
) = (1− ε) times the optimum. The theorem follows.

3.2 Bipartite Graphs
In this section we show how to reduce the message size to

O(poly( 1
ε
) log n) in the case of bipartite graphs. The idea is

to avoid constructing the conflict graph explicitly: In bipar-
tite graphs, MIS computation can be done while construct-
ing the graph “on the fly.”

The key is that it is sufficient for each node know the
number of augmenting paths it is a member of. This is done

Algorithm 2 Implementation of Step 4 of Algorithm 1 for
general graphs at a node v.

1: In time step i = 1, . . . , 2`, v sends to all its neighbors
a description of its neighborhood to distance i − 1 as
obtained from incoming messages in the previous step.
Let Gv(`) and Gv(2`) be the local views to distance `
and 2`, respectively.

2: Let Pv(`) be the set of all augmenting paths in Gv(`),
and similarly Pv(2`) in Gv(2`).

3: For all P ∈ Pv(`): v assigns leader(P ) ← v if v is an
endpoint of P whose ID is smaller than the ID of the
other endpoint of P . Similarly, v computes the identity
of leaders of paths in Pv(2`).

4: v sends out full path description (node identifiers) along
all paths P with v = leader(P ).
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Figure 1: Illustration of Algorithm 3. Hollow and filled

circles represent unmatched and matched vertices, resp.

Dashed and solid arcs represent unmatched and matched

edges, resp. The algorithm starts at the top layer and

progresses one layer at a time. Numbers next to nodes

are the sum of numbers received from the previous level.

as follows (see Figure 1 for an example, and Algorithm 3 for
pseudo-code). Suppose the nodes of the bipartite graph are
X ∪ Y where E ⊆ X × Y . We count the number of aug-
menting paths of length ` by initiating breadth-first search
(BFS) from all unmatched X nodes simultaneously. As the
BFS progresses, each edge records the number of partial
augmenting paths it leads to. A node sends only one mes-
sage, immediately after the first round in which it received
messages. All messages received later are discarded (these
are the back-arrows in Figure 1). The algorithm starts with
each unmatched X-node sending 1 to all neighbors. There-
after, when a node receives messages (i.e., numbers arriving
from edges) for the first time, it records the received mes-
sages, and sums their numbers up. A receiving Y node sends
the sum it obtained only if it is matched, and only to its
mate. (A message arriving before round ` to an unmatched
Y node indicates an augmenting path of length less than `.)
A receiving X node is necessarily matched (the message has
arrived from its mate), sends the received number to all its
unmatched neighbors. Messages arriving to visited Y nodes
indicates an augmenting path that intersects a shorter one.
This forwarding procedure is executed ` rounds. In the last
round is slightly different: X nodes send their value to all
their neighbors as usual, but in this case, only unmatched
Y nodes react to messages by recording their values and
origins.

Call a sequence of edges a half-augmenting path if it starts
with a free X node and alternates between unmatched and
matched edges, with no restrictions on the last edge. Let
d(v) be the length of the shortest half-augmenting path end-
ing at v.

Lemma 3.6. Suppose that G and M are such that there

Algorithm 3 At node v: Counting the number augmenting
paths of length ` in bipartite graphs.

1: cv[i]← 0 for all 1 ≤ i ≤ deg(v)
. cv [i] is the number of paths from edge i at v

2: if v ∈ X and v is not matched then
3: send 1 to all neighbors and halt
4: end if
5: wait until a message is received (at time d(v))
6: cv[i]← the number received on edge i

7: nv ←
Pdeg(v)

i=1 cv[i]
8: if v ∈ X then
9: send nv to all neighbors and halt

10: end if
11: if v ∈ Y and matched then
12: send nv to mate and halt
13: end if

are no augmenting paths shorter than `. Consider a node v
which receives its first messages of Algorithm 3 at time d(v).

Then there are nv
def
=
Pdeg(v)

i=1 cv[i] half-augmenting paths of

length d(v) that end at v, and furthermore, nv ≤ ∆dd(v)/2e.

Proof Sketch: The proof is by induction on the distance
from X. The base case d(v) = 0 (i.e., v is a free X node)
follows from lines 2–3. For the inductive step, let d(v) =
t+1. If t is odd, then at time t, only Y nodes send, and only
along matching edges, and the claim holds by induction and
the definition of half-aumenting paths. If t is even, X nodes
send messages, and again the lemma holds by induction, the
definition of half-aumenting paths, and the assignments of
Line 6. It is not difficult to see that messages arriving after
time t correspond to non-shortest augmenting paths, and
thus need not be counted.

Finally, nv ≤ ∆dd(v)/2e because the maximum number
sent at time t + 2 is at most ∆ times the maximum sent at
time t.

It follows from Lemma 3.6 that, for every unmatched node
y ∈ Y , after ` time steps ny is the number of augmenting
paths ending at y.

Computing a maximal set of augmenting paths.
We use the following MIS algorithm [20]: Let each node

y be the leader of ny paths (as determined by Algorithm 3).
The MIS algorithm works in iterations, where in each iter-
ation each node in the conflict graph (i.e., each augmenting
path of length `) chooses a random number, and it is added
to the MIS iff its number is larger than all numbers chosen
by its neighbors. The numbers are chosen uniformly at ran-
dom from [1, N4], where N is the number of nodes in the

conflict graph, which in our case is bounded by n∆(`+1)/2.
After at most O(log N) iterations of this procedure, an MIS
is found with high probability.

We emulate an iteration distributively as follows. First,
instead of choosing a number for each path, we let each
leader v choose a single number which is the “winner” of all
paths which v leads (this number is chosen according to the
appropriate distribution), and then choose the winning path
by constructing it inductively, working backwards (bottom-
up in Figure 1) as follows. The first node of the path is
the leader node. If we are at a node y ∈ Y , the next edge
is a non-matching edge i, chosen randomly with probability



cy[i]/ny (using the c array computed by Algorithm 3). If we
are at a node x ∈ X, we just follows the unique matching
edge incident with x.

In the algorithm, all leaders y send a token message car-
rying their chosen number wy. The path traversed by the
token is selected stochastically as described above, and the
path is recorded by the nodes. Whenever tokens meet, only
the token carrying the largest number wy continues to con-
struct the path. By the way the paths were constructed,
tokens may arrive at a node only at a single round. Fi-
nally, when the token arrives at the last node of its path, it
traces that path back while augmenting along it, i.e., flip-
ping matching edges to non-matching edges and vice-versa.

We can now prove the following.

Lemma 3.7. In bipartite graphs with no augmenting paths
shorter than `, a maximal independent set of augmenting
paths of length ` can be found (w.h.p.) in O(` log N) =
O(`2 log ∆ + ` log n) time.

Proof: Consider the algorithm described above, where rout-
ing the messages is implemented as follows. By Lemma 3.6,
the numbers wy to be routed are O(` log ∆) ≤ O(` log n)
bits long, and they need to traverse paths of ` hops. To
send a number of j log n bits over an edge, we break it into
j chunks, and send the chunks one by one in a pipelining
fashion as follows. Initially, all incident edges are marked
as qualifying to be a possible source of the largest number.
The chunks are sent in decreasing order of significance. In
each routing step, only chunks from qualifying edges are ex-
amined. Of them, the maximal chunk is transmitted in the
next step, and the sources of other chunks are disqualified.
Once a single qualifying edge remains, it is recorded as the
source of the maximal value token. This way, an iteration
of the MIS algorithm on the conflict graph CM (`) is emu-
lated in O(`) steps in G, and therefore an MIS of the conflict
graph is found (w.h.p.) in O(` log N) = O(`2 log ∆+ ` log n)
time.

Lemma 3.7 suffices for the next step of our development,
as described in Section 3.3. But since bipartite graphs are
an important special case in their own right, we state the
following result explicitly.

Theorem 3.8. In bipartite graphs, a (1− 1
k
)-approximation

to the maximum matching can be found in O(k3 log ∆ +
k2 log n) time using messages of size O(log ∆) bits.

The proof follows from combining Lemma 3.7 within Algo-
rithm 1.

In Algorithm 3 we assumed for simplicity’s sake that the
shortest augmenting path had length `. With relatively mi-
nor modifications the algorithm can find a maximal set of
augmenting paths with length at most `. This fact is used
in the following section.

3.3 Matching in General Graphs Revisited
In this section we give a randomized reduction from gen-

eral graphs to bipartite graphs. The idea is to repeatedly
sample a bipartite subgraph of the original graph and find
a maximal set of short augmenting paths in the bipartite
subgraph. After a constant number of iterations of this pro-
cedure (depending only on k) we will, with high probability,
obtain a (1− 1

k
)-approximation to the maximum cardinality

matching. Here k > 2 is any integer. The analysis must now
handle the fact that instead of choosing shortest augmenta-
tions as before, we now use augmentations that are only“not
too long,” which means that we cannot apply Lemmas 3.4
and 3.5 directly .

Pseudo-code for the algorithm is given below. It uses a
subroutine Aug(H, M, `), where M is a matching in a bi-
partite graph H, which returns a maximal set of disjoint
augmenting paths w.r.t. M , each of length at most `.

Algorithm 4 Given G = (V, E) and k > 2, find w.h.p. a
(1− 1

k
)-MCM.

1: M ← ∅
2: for 22k+1(k + 1) ln k iterations do
3: Each node colors itself red or blue with equal prob.
4: Let Ĝ← (V̂ , Ê), where

V̂ = {u | u ∈ V is free, or (u, v) ∈M is bichromatic},
and
Ê =

n
(u, v) | (u, v) ∈ (E ∩ V̂ × V̂ ) is bichromatic

o
.

5: P ← Aug(Ĝ, M, 2k − 1) . P is a maximal set of

disjoint augmenting paths of length at most 2k − 1

6: M ←M ⊕ P
7: end for
8: return M

We start the analysis with two simple observations.

Observation 3.1. Consider Ĝ = (V̂ , Ê) as defined in

Line 4 of Algorithm 4, and let M̂ = M ∩ Ê. If P is an
augmenting path w.r.t. Ĝ and M̂ , then P is also an aug-
menting path w.r.t. G and M .

Observation 3.2. If P is an augmenting path of length

` w.r.t. G and M , then Pr
h
P ⊆ Ê

i
= 2−`.

Using Observations 3.1 and 3.2 we can now analyze the
overall behavior of the algorithm.

Lemma 3.9. Let α = (1− 1
k+1

)|M∗| − |M |. In Line 5 of

Algorithm 4, Pr
h
|P| ≥ α

(k+1)22k

i
= 1− e−Ω(α).

Proof: The graph M ⊕M∗ consists of a set of paths and
cycles whose edges alternate between M and M ′. Let P∗ be
the set of augmenting paths in M ⊕M∗ with length at most
2k − 1. By Lemma 3.5, |P∗| ≥ α. Let P̂∗ ⊆ P∗ be those

augmenting paths appearing in Ĝ. Since each augmenting
path in P∗ is included in P̂∗ independently with probability
at least 2−2k+1, a standard Chernoff bound [2] implies that

the probability that |P̂∗| < |P∗|/22k (i.e., half its expecta-

tion) is exp(−Ω(α)). The call to Aug(Ĝ, M, 2k − 1) finds

a maximal set P of non-conflicting augmenting paths in Ĝ.
Each augmenting path in P can intersect at most k+1 paths
in P̂∗, which implies |P| ≥ |P̂∗|/(k + 1) and, in turn, that
|P| ≥ |P∗|/(k+1)22k with probability 1− exp(−Ω(α)).

Lemma 3.10. The matching returned by Algorithm 4 is a
(1− 1

k
)-MCM with high probability.

Proof: Let δi be the gap between |M | and (1 − 1
k+1

)|M∗|
after i iterations of Line 2. Thus, δ0 = (1− 1

k+1
)|M∗|. Un-

der the assumption that δi > 1
k(k+1)

|M∗|, i.e., that M is not



already a (1− 1
k
)-approximation, it follows from Lemma 3.9

that δi+1 ≤
“
1− 1

(k+1)22k

”
δi with probability 1−exp(−Ω(|M∗|)).

Thus, after 22k+1(k + 1) ln k iterations we have, with high
probability,

δ22k+1(k+1) ln k ≤ δ0

„
1− 1

(k + 1)22k

«22k+1(k+1) ln k

≤ e−2 ln k

„
1− 1

k + 1

«
|M∗|

=
1

k2

„
k

k + 1

«
|M∗|

=

„
1

k
− 1

k + 1

«
|M∗| .

Thus, the matching M returned by Algorithm 4 is a (1− 1
k
)-

approximation with probability 1− exp(−Ω(|M∗|)).

The complexity of Algorithm 4 is dominated by the call to
Aug(Ĝ, M, 2k − 1), which is implemented by the algorithm
of Section 3.2, and hence, by repeated application of Lemma
3.7, O(k3 log n) time with O(log n)-bits messages suffice. As
a corollary, we arrive at our main result of this section.

Theorem 3.11. For any graph G and integer k > 2, a
(1 − 1

k
)-MCM of G can, with high probability, be computed

distributively in O(22kk4(log k) log n) time using messages
of length O(log n) bits.

4. WEIGHTED MATCHINGS
In this section we present an algorithm for ( 1

2
−ε)-approximation

of weighted matchings running in time O(log 1
ε
log n). The

algorithm is based on a reduction to any δ-MWM algorithm
with δ > 0 and running time O(log n). Plugging in the
algorithm of [18], the result follows.

Preliminaries.
For an edge (u, v) in a matching M , let M(u)

def
= v. For

any edge (r, s) ∈ E \M let wrap(r, s) be the path consisting
of the edges (M(r), r), (r, s), and (s, M(s)). Each of the
edges (M(r), r) and (s, M(s)) may not exist. We emphasize
that wrap(e) is always defined with respect to the matching
M . Given a set P of augmenting paths w.r.t. a matching
M , define

g(P)
def
= w(M ⊕ P)− w(M) ,

i.e., g(P) is the resulting gain in weight if P were applied to
M .

Algorithm.
Our key tool is a derived edge-weight function wM defined

for each edge (u, v) by

wM (u, v) =


g(wrap(u, v)) for (u, v) /∈M
0 otherwise

More intuitively, wM (u, v) is the gain in weight of M if we
modify M by adding (u, v) and deleting edges incident to u
and v (if such edges are in M). See Figure 2 for an example.

The idea of the algorithm (see Algorithm 5 below) is to
apply a set of augmenting paths of length 3. Since different
augmenting paths may conflict with each other, we select
paths using a maximal-weight matching algorithm. In each
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Figure 2: Top: a matching M (bold edges matched,

dashed edges unmatched) with weight 14 under the orig-

inal weight function w. Middle: a matching M ′ with

weight 10 under the weight function wM . Bottom:

the matching M ′′ = M ⊕
S

e∈M′ wrap(e), having weight

w(M ′′) = 26 ≥ w(M) + wM (M ′).

iteration, Algorithm 5 is given a matching M (starting with
the empty matching). The algorithm finds a δ-MWM in
the graph G modified to have edge weights defined by wM ,
obtaining a matching M ′. M is then augmented by all aug-
menting paths of length 3 centered at the edges of M ′, and
the result fed into the next iteration.

Analysis.
We first prove that after each iteration, M is a matching

of increased weight. Formally:

Lemma 4.1. Let M and M ′ be two disjoint matchings,

and let M ′′ def
= M ⊕

[
e∈M′

wrap(e) (note that wrap(e) is w.r.t

M). Then M ′′ is also a matching, and furthermore, w(M ′′) ≥
w(M) + wM (M ′).

Proof: If M ′′ is not a matching then it must contain two



Algorithm 5 Returns a ( 1
2
− ε)-MWM of a weighted graph

G = (V, E, w).

1: M ← ∅
2: for 3

2δ
· ln 2

ε
iterations do

3: G′ ← (V, E, wM )
4: M ′ ← δ-MWM(G′) . a black-box δ-MWM algorithm

5: M ←M ⊕ (
S

e∈M′ wrap(e))
6: end for
7: return M

adjacent edges f ∈ M and e ∈ wrap(e′) for some e′ ∈ M ′,
but then, f ∈ wrap(e′), a contradiction to f ∈M ′′. Turning
to the second part, we have the inequalities:

w(M ′′)− w(M) = g

 [
e∈M′

wrap(e)

!
≥

X
e∈M′

g(wrap(e)) = wM (M ′)

The first and last equality follow immediately from the defi-
nitions. Notice that the short augmenting paths in

S
e∈M′ wrap(e)

could overlap, but only at M edges. Thus, adding the indi-
vidual gains in

P
e∈M′ g(wrap(e)) is, if anything, an under-

estimate of g
`S

e∈M′ wrap(e)
´
. See Figure 2 for an example.

We use the following fact (recall that M∗ denotes an op-
timal matching).

Lemma 4.2. [24] For all k > 0, there exists a collection P
of disjoint augmenting paths and cycles, each having no more
than k unmatched edges, such that w(M ⊕ P) ≥ w(M) +
k+1
2k+1

( k
k+1

w(M∗)− w(M)).

Using Lemma 4.2, we obtain the following.

Lemma 4.3. Let Mi be the matching after i iterations.
Then w(Mi) ≥ 1

2
(1− e−2δi/3) · w(M∗).

Proof: Consider iteration i. By Lemma 4.2, there exists a
set P of vertex-disjoint augmentations (each with one un-
matched edge) such that g(P) ≥ 2

3
( 1
2
w(M∗) − w(Mi−1)).

By the definition of wMi−1 and the disjointness of the aug-
mentations in P, it follows that wMi−1(P\Mi−1) = g(P).
Lemmas 4.2 and 4.1 together imply that

w(Mi) = w

 
Mi−1 ⊕

[
e∈M′

wrap(e)

!

≥ w(Mi−1) +
2δ

3

„
1

2
w(M∗)− w(Mi−1)

«
Applying the argument inductively, we obtain that w(Mi) ≥
1
2
(1− (1− 2δ

3
)i) · w(M∗).

We also recall the following fact.

Lemma 4.4. [18] For any ε > 0, ( 1
4
− ε)-MWM can be

computed in O(ε−1 log ε−1 log n) time (w.h.p.).

Now we conclude with the following theorem.

Theorem 4.5. For any ε > 0, ( 1
2
−ε)-MWM can be com-

puted in O(log ε−1 log n) time (w.h.p.).

Proof: We use the algorithm of [18] in Line 4 with δ = 1/5.
Since in constant time we can find wrap(e) for any edge e
and apply augmentation, it follows from Lemma 4.4 that
each iteration of Algorithm 5 takes O(log n) time. Applying
Lemma 4.3 with i = 3

2δ
· ln 2

ε
yields the result.

Remark: We note that (1 − ε)-MWM can be obtained in
O(ε−4 log2 n) time, using messages of linear size, by adapt-
ing the PRAM algorithm of Hougardy and Vinkemeier [14]
to the distributed setting using Algorithm 2. Details are
omitted from this extended abstract.

5. CONCLUSION
In this paper we have greatly improved the quality of ap-

proximate (weighted and unweighted) matchings that can
be computed by distributed algorithms. There is clearly still
plenty of room for improvement in the weighted case: It may
yet be possible to obtain weighted matchings that are arbi-
trarily close to optimal. For unweighted graphs, it is inter-
esting to see whether there exists a (1−ε)-approximation for
general graphs with logarithmic message size and time com-
plexity O(poly(ε−1) log n). And of course, the long-standing
open questions: can maximal matching and independent set
be computed deterministically in O(log n) time on general
graphs?
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