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Abstract

In this paper, we show that any n point metric space can be embedded into a distribution over
dominating tree metrics such that the expected stretch of any edge is Oðlog nÞ: This improves upon the
result of Bartal who gave a bound of Oðlog n log log nÞ: Moreover, our result is existentially tight; there
exist metric spaces where any tree embedding must have distortion Oðlog nÞ-distortion. This problem lies at
the heart of numerous approximation and online algorithms including ones for group Steiner tree, metric
labeling, buy-at-bulk network design and metrical task system. Our result improves the performance
guarantees for all of these problems.
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Metric approximations

The problem of approximating a given graph metric by a ‘‘simpler’’ metric has been a subject of
extensive research, motivated from several different perspectives. A particularly simple metric of
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choice, also favored from the algorithmic point of view, is a tree metric, i.e. a metric arising from
shortest path distance on a tree containing the given points. Ideally we would like that distances in
the tree metric are no smaller than those in the original metric and we would like to bound the
distortion or the maximum increase. However, there are simple graphs (e.g. the n-cycle) for which
the distortion must be OðnÞ [45,7,26].
To circumvent this, Karp [33] considered approximating the cycle by a probability distribution

over paths, and showed a simple distribution such that the expected length of each edge is no more
than twice its original length. This gave a competitive ratio of 2 for the k-server problem (on a
cycle) that had motivated this approach. Alon et al. [1] looked at approximating arbitrary graph

metrics by (a distribution over) spanning trees, and showed an upper bound of 2Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n log log n

p
Þ on

the distortion.
Bartal [7] formally defined probabilistic embeddings and improved on the previous result by

showing how to probabilistically approximate metrics by tree metrics with distortion Oðlog2 nÞ:
Unlike the result of Alon et al. [1], Bartal’s trees were not spanning trees of the original graph. He
showed that this probabilistic approximation leads to approximation algorithms for several
problems, as well as the first polylogarithmic competitive ratios for a number of on-line problems.
We should note that the trees that Bartal used have a special structure which he termed
hierarchically well separated. This meant that weights on successive levels of the tree differed by a
constant factor. This was important for several of his applications.
Konjevod et al. [37] showed how Bartal’s result improves to Oðlog nÞ for planar graphs, and

Charikar et al. [17] showed similar bounds for low-dimensional normed spaces. Inspired by ideas
from Seymour’s work on feedback arc set [49], Bartal [8] improved his earlier result to
Oðlog n log log nÞ: This of course led to improved bounds on the performance ratios of several
applications. Bartal also observed that any probabilistic embedding of an expander graph into a
tree has distortion at least Oðlog nÞ:
In this paper, we show that an arbitrary metic space can be approximated by a distribution over

dominating tree metrics with distortion Oðlog nÞ; thus closing the gap between the lower and the
upper bounds. Our result is constructive and we give a simple algorithm to sample a tree from this
distribution. Our trees are also heirarchically well separated, like Bartal’s. This gives improved
approximation algorithms for various problems including group Steiner tree [24], metric labeling
[19,35], buy-at-bulk network design [4], and vehicle routing [16]. We give a more comprehensive
list in Section 4.
Moreover, our techniques improve the spreading metrics-based divide-and-conquer algorithms

of Even et al. [20] from Oðlog n log log nÞ to Oðlog nÞ:

1.2. Related work

Divide-and-conquer methods have been used to provide polylogarithmic-factor approximation
algorithms for numerous graph problems since the discovery of an Oðlog nÞ approximation
algorithm for finding a graph separator [40]. The algorithms proceeded by recursively dividing a
problem using the above-approximation algorithm, and then using the decomposition to find a

solution. Typically, the approximation factor was Oðlog2 nÞ: a logarithmic factor came from the
Oðlog nÞ separator approximation, another Oðlog nÞ factor came from the recursion. Using this
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framework, polynomial-time approximation algorithms for many problems are given in [40], for
example: crossing number, VLSI layout, minimum feedback arc set, and search number.
Independently, Seymour [49] gave an Oðlog n log log nÞ bound on the integrality gap for a linear

programming relaxation of the feedback arc set problem (for which the above techniques had

given an Oðlog2 nÞ bound). In doing so, he developed a technique that balanced the
approximation factor of his separator-based procedure against the cost of the recursion to
significantly improve the bounds.
Even et al. [20] introduced linear programming relaxations for a number of other problems and

combined them with the afore-mentioned techniques of Seymour to give Oðlog n log log nÞ-
approximation algorithms for many of the problems that previously had Oðlog2 nÞ approximation
algorithms, e.g., linear arrangement, embedding a graph in d-dimensional mesh, interval graph
completion, minimizing storage-time product, and (subset) feedback sets in directed graphs.
Bartal’s results [8] implied Oðlog n log log nÞ-approximations for still more problems. Moreover, he

used probabilistic techniques to bound the expected stretch of each edge, not just the average. This led
to polylogarithmic competitive ratio algorithms for a number of online problems (against oblivious
adversaries) such as metrical task system [10]. Charikar et al. [16,17] showed how to derandomize the
approximation algorithms that follow from Bartal’s embeddings. Moreover, they explicitly showed a
correspondence between probabilistic embedding and hierarchical decomposition.
This work also follows the line of research on embeddings, with low distortion, graphs into

other ‘‘nice’’ metric spaces which have good structural properties such as Euclidean and c1 spaces
[41,27,18,47,23].
The work of Bourgain [14] showed that any finite metric on n nodes can be embedded into c2 with

logarithmic distortion with the number of dimensions exponential in n: Linial et al. [41] modified

Bourgain’s result to apply for c1 metrics and to use Oðlog2 nÞ dimensions. Aumann and Rabani [3]
and Linial et al. [41] gave several applications, including a proof of a logarithmic bound on max-
flow min-cut gap for multicommodity flow problems. They also gave a lower bound on the
distortion of any embeddings of general graphs into c1: For more details, we point the reader to the
survey by Matousek [42] and the more recent survey by Indyk and Matousek [31].
Embeddings of special graphs have also been considered by many researchers. Gupta et al. [27]

considered embeddings or series-parallel graphs and outerplanar graphs into c1 with constant
distortion; Chekuri et al. [18] show a constant-distortion embedding for k-outerplanar graphs.

For planar graphs, Rao [47] gave an Oð
ffiffiffiffiffiffiffiffiffiffi
log n

p
Þ-distortion embedding into c2; which matched the

lower bound given by Newman and Rabinovich [43]. Related questions have been addressed by
Krauthgamer et al. [39].
Graph decomposition techniques for many interesting classes of graphs have also been

extensively studied. For example, Klein et al. [34] result provided a constant factor approximation
for graphs that exclude fixed sized minors (which includes planar graphs). Similar results were
given by Charikar et al. [17] for geometric graphs.

1.3. Our techniques

The algorithm relies on techniques from the algorithm for 0-extension given by Calinescu et al. [15],
and improved by Fakcharoenphol et al. [21]. The CKR procedure implies a randomized algorithm
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that outputs clusters of diameter about D such that the probability of an edge e being cut is de

D log n;

where de is the length of the edge e: The analysis can in fact be improved to replace the log n by the
logarithm of the ratio of number of vertices within distance D of e to the number of vertices within
distance D=2; i.e. the number of times the size of a neighborhood of e doubles between D=2 and D:
Our algorithm runs a CKR-like procedure for diameters 2i; i ¼ 0; 1; 2;y to get a hierarchical de-
composition of the graph (which can then be converted to a tree). Since, the total number of doublings
over all these levels is bounded by log n; we get an upper bound of Oðlog nÞ on the distortion.

2. The algorithm

In this section, we outline the algorithm for probabilistically embedding an n point metric into a
tree, and show that the expected distortion of any distance is Oðlog nÞ: Like previous algorithms, we
first decompose the graph hierarchically and then convert the resulting laminar family to a tree.

2.1. Preliminaries

We define some notation first. Let the input metric be ðV ; dÞ:We shall refer to the elements of V

as vertices or points. We shall refer to a pair of vertices ðu; vÞ as an edge. Without loss of
generality, the smallest distance is strictly more than 1. Let D denote the diameter of the metric

ðV ; dÞ: Without loss of generality, D ¼ 2d:
A metric ðV 0; d 0Þ is said to dominate ðV ; dÞ if for all u; vAV ; d 0ðu; vÞXdðu; vÞ: We shall be

looking for tree metrics that dominate the given metric. Let S be a family of metrics over V ; and
let D be a distribution over S: We say that ðS;DÞ a-probabilistically approximates a metric ðV ; dÞ
if every metric in S dominates d and for every pair of vertices ðu; vÞAV ; Ed 0AðS;DÞ½d 0ðu; vÞ
pa �
dðu; vÞ: We shall be interested in a-probabilistically approximating an arbitrary metric ðV ; dÞ by a
distribution over tree metrics.
For a parameter r; an r-cut decomposition of ðV ; dÞ is a partitioning of V into clusters, each

centered around a vertex and having radius at most r: Thus, each cluster has diameter at most 2r:
A hierarchical cut decomposition of ðV ; dÞ is a sequence of dþ 1 nested cut decompositions
D0;D1;y;Dd such that

* Dd ¼ fVg; i.e. the trivial partition (that puts all vertices in a single cluster).
* Di is a 2i-cut decomposition, and a refinement of Diþ1 (i.e., each cluster in Di is contained

within some cluster in Diþ1).

Note that each cluster in D0 has radius at most 1 and hence must be a singleton vertex.

2.2. Decompositions to trees

A hierarchical cut decomposition defines a laminar family,4 and naturally corresponds to a
rooted tree as follows. Each set in the laminar family corresponds to a node in the tree and the
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children of a node corresponding to a set S are the nodes corresponding to maximal subsets of S
in the family. Thus the node corresponding to V is the root and the singletons are the leaves. Also
note that the children of a set in Diþ1 are sets in Di (see Fig. 1).
We define a distance function on this tree as follows. The links from a node S in Di to each of its

children in the tree have length equal to the 2i (which is an upper bound on the radius of S). This

induces a distance function dTð�; �Þ on V where dTðu; vÞ is equal to the length of the shortest path

distance in T from node fug to node fvg: Since each cluster in Di has diameter at most 2iþ1; any
pair of vertices ðu; vÞ must be separated in the partition Di; when i ¼ ðIlog2 dðu; vÞm� 1Þ: Thus,
dTðu; vÞ is at least 2� 2i

Xdðu; vÞ and so dT dominates d:

We shall also like to place upper bounds on dTðu; vÞ: We say an edge ðu; vÞ is at level i if u and v

are first separated in the decomposition Di: Note that if ðu; vÞ is at level i; then dTðu; vÞ ¼
2
Pi

j¼02
jp2iþ2:

2.3. Decomposing the graph

We shall describe a random process to define a hierarchical cut decomposition of ðV ; dÞ; such
that the probability that an edge ðu; vÞ is at level i decreases geometrically with i:
We first pick a random permutation p of fv1; v2;y; vng; which will be used throughout the

process. We also pick a b randomly in the interval ½1; 2
 from the distribution given by the

probability density function pðxÞ ¼ 1
x ln 2

: We start with the trivial partition Dd ¼ fVg: For each i;

we compute Di from Diþ1 as follows. First, set bi to be 2i�1b: Let S be a cluster in Diþ1: We assign
a vertex uAS to the first (according to p) vertex vAV within distance bi of u: Each child cluster of
S in Di then consists of the set of vertices in S assigned to a single center v: Note that the center v

itself need not be in S: Thus one center v may correspond to more than one cluster, each inside a

different level ði þ 1Þ cluster (see for example, the center pð8Þ in Fig. 2). Note that since bip2i; the

radius of each cluster is at most 2i and thus we indeed get a 2i-cut decomposition. More formally,

Algorithm.Partition(V,d)
1: Choose a random permutation p of v1; v2;y; vn:

2: Choose b in ½1; 2
 randomly from the distribution pðxÞ ¼ 1
x ln 2

:
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Fig. 1. Converting a laminar family into a tree. The lengths we put on the links ensure that the embedding is an
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3: Dd’V ; i’d� 1:
4: while Diþ1 has non-singleton clusters do
4.1 bi’2i�1b:
4.2 For l ¼ 1; 2;y; n do
4.2.1 For every cluster S in Diþ1:
4.2.1.1 Create a new cluster consisting of all unassigned

vertices in S closer than bi to pðlÞ:
4.3 i’i21:

It is easy to see that the algorithm can be implemented in time Oðn3Þ: A more careful

implementation can actually be made to run in time Oðn2Þ (i.e. linear in the size of the input).
First, note that our choice of the distribution implies that

Observation 1. For any xX1; Pr[some bi lies in ½x;x þ dxÞ
 ¼ 1
x ln 2

dx:

We now fix an arbitrary edge ðu; vÞ; and show that the expected value of dTðu; vÞ is bounded by
Oðlog nÞ � dðu; vÞ: We make no attempts to optimize the constants in this analysis.
Consider the clustering step at some level i: In each iteration, all unassigned vertices v such that

dðv; pðlÞÞpbi assign themselves to pðlÞ: For some initial iterations of this procedure, both u and v
remain unassigned. Then at some step l; at least one of u and v gets assigned to the center pðlÞ:We
say that center w settles the edge ðu; vÞ at level i if it is the first center to which at least one of u and
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v get assigned. Note that exactly one center settles any edge ðu; vÞ at any particular level. Further,
we say that center w cuts the edge e ¼ ðu; vÞ at level i if it settles e at this level, but exactly one of u
and v is assigned to w at level i: Whenever w cuts edge ðu; vÞ at level i; the tree length of the edge

ðu; vÞ is about 2iþ2: We blame this length to vertex w and define dT
w ðu; vÞ to be

P
i1ðw cuts ðu; vÞ at

level iÞ � 2iþ2; where 1ð�Þ denotes an indicator function. Clearly, dTðu; vÞp
P

wdT
w ðu; vÞ:

We now arrange the vertices in V in order of increasing distance from the edge ðu; vÞ (breaking
ties arbitrarily). Consider the sth vertex ws in this sequence. We now upper bound the expected

value of dT
ws
ðu; vÞ for an arbitrary ws:

Without loss of generality, assume dðws; uÞpdðws; vÞ: For a center ws to cut ðu; vÞ; it must be the
case that (see Fig. 3)

(a) dðws; uÞpbiodðws; vÞ for some i:
(b) ws settles e at level i:

Moreover, the contribution to dT
ws
ðu; vÞ when this happens is at most 2iþ2p8bi: Now consider a

particular xA½dðws; uÞ; dðws; vÞÞ: The probability that some bi falls in ½x; x þ dxÞ; from

observation 1, is at most 1
x ln 2

� dx: Conditioned on bi taking this value x; any of w1;w2;y;ws

can settle ðu; vÞ at level i: The first one amongst these in the permutation p will then settle ðu; vÞ;
and thus the probability of the event (b), conditioned on (a), is at most 1

s
: Thus, the expected cost

of dT
ws
ðu; vÞ is

E½dT
ws
ðu; vÞ
p

Z dðws;vÞ

dðws;uÞ

1

x ln 2
� 8x � 1

s
dx

¼ 8

s ln 2
ðdðws; vÞ � dðws; uÞÞ

p
8dðu; vÞ

s ln 2
;

where the last step follows by triangle inequality.

Using linearity of expectation, we get E½dTðu; vÞ
p
P

s
8dðu;vÞ
s ln 2 ¼ 8dðu;vÞ

ln 2 � Hnp8 ln n
ln 2 � dðu; vÞ ¼

8 log n � dðu; vÞ:
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Thus, we have shown that for any edge ðu; vÞ; the expected value of dTðu; vÞ is Oðlog nÞ � dðu; vÞ:
Hence

Theorem 2. The distribution over tree metrics resulting from our algorithm Oðlog nÞ-probabil-
istically approximates the metric d.

2.4. HSTs

A tree T is said to be k-hierarchically well separated if on any root to leaf path the edge lengths
decrease by a factor of k in each step. Bartal [7,8] constructed distributions over trees which were
hierarchically well separated, and such trees are more conducive to design of divide-and-conquer-
type algorithms. The fact that the trees are well separated has been used in applications such as
metrical task system [10] and metric labeling [35]. We note that the trees we construct are 2-HSTs.
Bartal [8] also observed that a 2-HST can be converted to a k-HST with distortion OðkÞ; later
improved to Oðk=log kÞ [11]. This combined with our result implies a probabilistic embedding into
k-HSTs with distortion Oðk log n=log kÞ: In fact, a slight modification of our technique (details

omitted) can be used to directly get k-HSTs for any k; with distortion Oðk log n
log k

Þ:

3. Derandomization

The problem of probabilistic approximation by tree metrics asks for a distribution over tree
metrics such that the expected stretch of each edge is small. A dual problem is to find a single tree
such that the (weighted) average stretch of the edges is small. More precisely, given weights cuv on

edges, find a tree metric dT such that,

* 8u; vAV ; dTðu; vÞXdðu; vÞ:
*

P
u;vAV cuv � dTðu; vÞpa

P
u;vAV cuv � dðu; vÞ:

Charikar et al. [17] showed that solving this problem is enough for most applications, and
moreover leads to a probabilistic embedding into a distribution over at most Oðn log nÞ tree
metrics. This also implies deterministic algorithms for applications. The algorithm of the previous
section can easily be derandomized by the method of pessimistic estimators [46] along the lines of
[15,21], leading to an algorithm for the above problem with a ¼ Oðlog nÞ:
Here, we give another deterministic algorithm that uses a modified region growing technique

along the lines of [40,25]. We first give the modified region growing algorithm, and then outline
how to use it to solve the above problem.

3.1. Region growing lemma

Without loss of generality, we assume that the smallest edge length is at least 1 and the smallest
non-zero edge weight ce is at least 1. Given an edge e ¼ ðu; vÞ of length de and weight ce; we define
the volume of the edge as ce � de: Let W ¼

P
ecede: We assume that W is polynomial in n (so that
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log W ¼ Oðlog nÞ); we shall show how to relax this at the end of this section. We imagine placing
vertices arbitrary close to each other along the edges, and call them volume elements. We consider
neighborhoods Bðt; rÞ around volume elements, and define the volume Wðt; rÞ of this
neighborhood as follows. An edge e ¼ ðu; vÞ with both end points in Bðt; rÞ contributes ce � de

to Wðt; rÞ: An edge e ¼ ðu; vÞ with exactly one end point, say u; in Bðt; rÞ contributes ce � ðr �
dðt; uÞÞ to Wðt; rÞ: Let cðt; rÞ be the total weight of edges cut by Bðt; rÞ; i.e. cðt; rÞ ¼P

uABðt;rÞ;veBðt;rÞcuv: From the definitions, it follows that for all r;

dWðt; rÞ
dr

¼ cðt; rÞ: ð1Þ

The region growing argument of Garg et al. [25] (also implicit in Leighton and Rao [40]) shows

that given any d40 and t; there is an rpd; such that cðt;rÞ
Wðt;rÞ � dpOðlog nÞ:

We now show how to find several cuts of geometrically increasing radii, with total overhead at

most Oðlog nÞ: More precisely, we show that there are radii ri : 2
i�1prio2i such that

P
i

cðt;riÞ
Wðt;riÞ �

2ipOðlog nÞ:
Let Wi ¼ Wðt; 2iÞ: We grow regions around t: We claim that there exists an ri : 2

i�1prio2i

such that
cðt;riÞ

Wðt;riÞp2�ði�1Þ ln Wi

Wi�1
: Suppose not. Then cðt; rÞ4gi � 2�ði�1ÞW ðt; rÞ for all 2i�1pro2i;

where gi ¼ ln Wi

Wi�1
: Then, using (1), we get

ln
W ðt; 2iÞ

Wðt; 2i�1Þ ¼
Z 2i

2i�1

1

Wðt; rÞ
dW ðt; rÞ

dr
dr

¼
Z 2i

2i�1

cðt; rÞ
Wðt; rÞ dr

4
Z 2i

2i�1

gi � 2�ði�1Þ dr

¼ gi;

which contradicts the definition of gi: Hence, we can find an ri : 2
i�1prio2i such that cðt;riÞ

Wðt;riÞ �
2i�1pgi:

Adding such equations over all i; we get
P

i
cðt;riÞ

Wðt;riÞ � 2
ip2 ln WN=W0: Noting that W0 is at least

1, and that WN is at most W ; we get the desired bound.
We now sketch how to relax the assumption on W : Using standard techniques, we can assume

that the largest edge length is at most OðnÞ: We smear an additional volume of W uniformly over

each unit of length (irrespective of the edge weight), i.e. we set w0
e ¼ we þ WP

e
le
for each edge e:

This increases the volume of the system by a factor of two. Moreover, this ensures that for every
volume element t (assuming without loss of generality that the graph is connected), W0 ¼ Wðt; 1Þ
is at least W=n2: Thus the ratio WN=W0 is at most Oðn2Þ; and result follows.
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3.2. Algorithm

In this section, we shall use the region growing technique of the previous section to construct a

cut decomposition of G: Let D ¼ 2iþ2 be an upper bound on the diameter of G:

The algorithm is as follows. Let t be the volume element that maximizes Wðt; 2iÞ: We cut out
Bðt; riÞ (where ri is defined with respect to t), and recurse on the two subpieces. We shall get the
tree from the resulting laminar family as before; thus each edge in this cut has a tree length

roughly 2iþ2: We charge the cost of this cut, i.e. cðt; riÞ � 2iþ2 to the volume in Bðt; riÞ: Thus a unit

of volume t0 in Bðt; riÞ gets charged
cðt;riÞ

Wðt;riÞ � 2
iþ2p4 ln W

W ðt;2iÞp4 ln
Wðt0;2iþ2Þ
Wðt0;2iÞ (by choice of t).

Moreover, note that t0 now lies in a cluster of diameter at most 2iþ1; thus we have made progress.

The total charge to t0 can thus be bounded by
P

i4 ln
Wðt0;2iþ2Þ
Wðt0;2iÞ p8 ln W

Wðt0;1Þ ¼ Oðlog nÞ: Thus

Theorem 3. The algorithm described above returns a 2-hierarchically well separated tree metric dT

such that

* 8u; vAV ; dTðu; vÞXdðu; vÞ
*

P
u;v cuvdTðu; vÞpOðlog nÞ

P
u;vcuvdðu; vÞ

4. Applications

Many problems are easy on trees. The partitioning algorithm we give produces a tree such that
the expected stretch of each edge is at most Oðlog nÞ: By using our result, the approximation ratios
of various problems can be improved. The following is a list of some of our favorite applications.

The metric labeling problem: The previous result of Kleinberg and Tardos [35] gives an
Oðlog k log log kÞ-approximation algorithm based on a constant factor approximation for the
case that the terminal metric is an HST. Our result improves this to Oðlog kÞ:
We also note that Archer et al. [2] show that the earthmover linear program of Chekuri et al.

[19] is integral when the input graph is a tree. Using this result, the approximation ratio can be
improved to Oðminðlog k; log nÞÞ:

Buy-at-bulk network design: Awerbuch and Azar [4] give a Oð1Þ-approximation algorithm on
trees. Thus, we can get an Oðlog nÞ-approximation algorithm.

Minimum cost communication network problem: This problem [30,44,50] is essentially the dual
problem defined in Section 3 and hence we get an Oðlog nÞ approximation.

The group Steiner tree problem: Garg et al. [24] give an Oðlog k log nÞ-approximation algorithm

for trees; thus we get an Oðlog2 n log kÞ-approximation algorithm, improving on the
Oðl log n log kÞ result by Bartal and Mendel [12], where l ¼ Oðminflog n log log log n;
logD log logDgÞ:

Metrical Task system: Improving on the result of Bartal et al. [10], Fiat and Mendel [22] gave an
Oðlog n log log nÞ-competitive algorithms on HSTs. Bartal and Mendel’s [12] multiembedding
result thus gives an Oðl log n log log nÞ-competitive ratio, where l is as defined above. Our result

improves this to an Oðlog2 n log log nÞ-competitive ratio against oblivious adversaries.
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The result also improves the performance guarantees of several other problems such as vehicle
routing [16], min sum clustering [11,9], covering steiner tree [36,28], hierarchical placement [38],
topology aggregation [6,48], mirror placement [32], distributed K-server [13], distributed queueing
[29] and mobile user [5]. We refer the reader to [8] and [17] for more detailed descriptions of these
problems.
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