
The Lovász Local Lemma and Satisfiability�

Heidi Gebauer, Robin A. Moser, Dominik Scheder, and Emo Welzl

Institute of Theoretical Computer Science, ETH Zürich
CH-8092 Zürich, Switzerland

Abstract. We consider boolean formulas in conjunctive normal form
(CNF). If all clauses are large, it needs many clauses to obtain an un-
satisfiable formula; moreover, these clauses have to interleave. We re-
view quantitative results for the amount of interleaving required, many
of which rely on the Lovász Local Lemma, a probabilistic lemma with
many applications in combinatorics.

In positive terms, we are interested in simple combinatorial condi-
tions which guarantee for a CNF formula to be satisfiable. The criteria
obtained are nontrivial in the sense that even though they are easy to
check, it is by far not obvious how to compute a satisfying assignment
efficiently in case the conditions are fulfilled; until recently, it was not
known how to do so. It is also remarkable that while deciding satisfiabil-
ity is trivial for formulas that satisfy the conditions, a slightest relaxation
of the conditions leads us into the territory of NP-completeness.

Several open problems remain, some of which we mention in the con-
cluding section.

1 Introduction

SAT, the problem of deciding whether a boolean formula in conjunctive normal
form (CNF) is satisfiable by a truth assignment, is the classical NP-complete
problem. Such a CNF formula is obtained as a conjunction of clauses, where a
clause is the disjunction of literals, with a literal either a boolean variable or
its negation; we require that variables in a clause do not repeat (neither with
the same nor complementary signs). A CNF formula is satisfiable if there is a
true-false assignment to the variables so that every clause has at least one literal
that evaluates to true. Consider e.g.

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ,

a 3-CNF formula with 5 clauses over the variables {x1, x2, x3, x4} (for k a
nonnegative integer, a k-CNF formula is a CNF formula where every clause
contains exactly k literals). This formula is satisfiable, e.g. by the assignment
(x1, x2, x3, x4) �→ (true, true, false, true). But, actually, it can be recognised as
satisfiable even without any close inspection, simply because 5, the number of
clauses, is less than 23. This is because a simple probabilistic argument for
instance demonstrates that
� Research is supported by SNF Grant 200021-118001/1.

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 30–54, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Lovász Local Lemma and Satisfiability 31

it needs at least 2k clauses to construct an unsatisfiable k-CNF formula.

For, suppose that some k-CNF formula has fewer than 2k clauses, then an as-
signment sampled uniformly at random violates each clause with probability 2−k

and, by linearity of expectation, the expected total number of violated clauses is
then smaller than 1, implying that some of the assignments have to satisfy the
whole formula. While this result may reveal some of the beauty of probabilistic
reasoning (cf. [1]), it is not very striking in its own. But let us discover that it
can be extended to yield something much more powerful.

The statement becomes miraculous as soon as we observe that the constraint
on the formula size need not only be satisfied globally but even locally. What
do we mean by global and local? Suppose you have a formula of arbitrary size.
Now pick any of its clauses, say C. We will say that the neighbourhood of C,
denoted by Γ (C), is the set of clauses that share variables with C. These are,
in a sense, those clauses that relate to C, since, if we have C violated by some
given assignment and change some values of variables within it to remedy that
problem, then the clauses in Γ (C) are exactly the ones we might harm. Now our
intuition suggests the following: if we can change values in a clause C without
causing too much damage in its surroundings and if this local property holds
everywhere, then most probably we can find a globally satisfying assignment
by just moving around violation issues until they disappear. And this intuition
proves to be absolutely correct. In order to construct an unsatisfiable k-CNF
formula, not only do we need at least 2k clauses in total, but those clauses need
to be, at least somewhere in the formula, concentrated densely around some
clause. For one can prove the following:

If every clause in a k-CNF formula, k ≥ 1, has a neighbourhood of size at most
2k/e − 1, then the whole formula admits a satisfying assignment.

This statement is known as the Lovász Local Lemma from 1975 ([2], cf. [1]),
formulated in terms of satisfiability. Before we present two proofs in the next
section, let us discuss other variants of the theme

“In an unsatisfiable CNF formula clauses have to interleave –
the larger the clauses, the more interleaving is required.”

First, it is clear that clauses sharing variables of the same sign will not get us in
major trouble in a search for a satisfying assignment. To reflect this, we define
the conflict-neighbourhood of a clause C in a CNF formula as the set of clauses
which share variables with C, at least one with opposite sign. The so-called
lopsided Local Lemma shows that the above mentioned condition for neighbour-
hoods holds actually for conflict-neigbourhoods. As an aside we cannot resist
mentioning the fact that if each pair of clauses in a CNF formula either has no
conflict or a conflict along at least two variables, then this formula is satisfiable,
unless it contains the empty clause. For a reader familiar with resolution, the
mystery can be resolved instantaneously: Try resolution!

Second, it is easily seen that a clause with a large neighbourhood requires
some variable to occur often in a formula. To make this precise, we call the

32 H. Gebauer et al.

number of occurrences of a variable x (with either sign) in a CNF formula the
degree of x. Then we have:

If every variable in a k-CNF formula, k ≥ 1, has degree at most 2k/(ek),
then the formula is satisfiable.

Is 2k/(ek) tight? While we do not believe this to be true, one can show that
it cannot be increased by more than a constant factor. This holds also for the
previously mentioned bounds for the (conflict-)neighbourhood size, but while
this is certified by the simple example of a k-CNF formula that contains all
possible 2k clauses over a given set of k variables, the degree bound requires a
more elaborate construction and therefore this had been open for some time.

Third, what can be said if we constrain the quality of interleaving rather than
the quantity? For this we consider linear1 CNF formulas, i.e. CNF formulas
where any two clauses share at most one variable. Here is an example of a linear
2-CNF formula:

(y1 ∨ y2) ∧ (y1 ∨ x) ∧ (y2 ∨ x) ∧ (z1 ∨ x) ∧ (z2 ∨ x) ∧ (z1 ∨ z2) .

Since the first half of the formula forces x to be true in a satisfying assignment
and the second forces it to be false, the formula is not satisfiable; it is the smallest
unsatisfiable linear 2-CNF formula. Unsatisfiable linear k-CNF formulas can be
constructed for all k, although their size needs to grow faster than 2k, again a
fact whose proof falls back on the Local Lemma.

Any linear k-CNF formula with at most 4k/(4e2k3) clauses is satisfiable.

We will see that the bound in the condition is tight up to a polynomial factor. Via
a probabilistic argument 8k34k clauses can be shown to suffice for unsatisfiability;
the best explicit construction we know, however, delivers formulas of tower-like
size (2 to the 2 to the 2 . . . k times).

Algorithms, finally: Whenever the easily checkable conditions formulated
above are satisfied, then the algorithmic problem of deciding satisfiability be-
comes trivial. However, whenever the Local Lemma is invoked, it is by no means
obvious how to actually construct a satisfying assignment. This tantalising fact
was resolved only recently via a randomised local repair algorithm as indicated
above. We will present and analyse this method in the next section.

We return to deciding satisfiability. For k a positive integer, let us define
f(k) as the largest integer, so that every k-CNF formula with no variable of
degree exceeding f(k) is satisfiable; we know that f(k) = Θ(2k/k). Clearly,
satisfiability of k-CNF formulas with maximum variable degree at most f(k) is
trivially decidable in polynomial time. We might hope that slight violation of
the bound may still allow for an efficient decision procedure. However, one can
show that, provided k ≥ 3, even for k-CNF formulas with max-degree at most
f(k) + 1 the satisfiability problem becomes already NP-complete. This sudden
1 The term “linear” is borrowed from hypergraph theory, where this must have been

inspired by the behaviour of lines.

The Lovász Local Lemma and Satisfiability 33

jump behaviour in complexity at f(k) can be shown, although f(k) is not known
for k exceeding 4 (it is not even known whether the function f is computable).
A similar immediate transition from trivial to NP-complete can be observed for
the related problem for the conflict-neighbourhood size.

The remainder of this paper will treat the topic outlined above in more detail,
mostly with proofs. We will also supply references and more of the historical
background of the developments to today’s state of knowledge.

Notation. We will assume (and have assumed) some familiarity with basic no-
tions for boolean formulas in propositional logic and in discrete mathematics.
Still, for the remaining more technical treatment, we want to clarify some no-
tation and terminology. We like to regard clauses as sets of literals, formulas as
sets of clauses. Let us actually go through a succinct recapitulation of our set-up:
Given a set V of boolean variables, we set V := {x |x ∈ V } and call the elements
of V ∪ V literals over V with V the positive literals and V the negative literals.
A clause C over V is a set of literals over V with no pair x and x appearing
simultaneously. A CNF formula F over V is a set of clauses; if all clauses in F
have the same cardinality k, we call F a k-CNF formula. Although we regard
formulas and clauses as sets, we sometimes return to the logic notation, writing
F ∧ C (instead of F ∪ {C}) or even F ∧ ¬C or similar.

An assignment α over variable set V is a mapping α : V → {0, 1} that extends
to V via α(x) := 1 − α(x) for x ∈ V (1 for “true,” 0 for “false”). α satisfies a
clause if at least one of its literals evaluates to 1 under α. And α satisfies a CNF
formula if it satisfies all of its clauses. A CNF formula is satisfiable if a satisfying
assignment exists.

We denote the set of variables that occur in a clause C by vbl(C); for a
CNF formula F , vbl(F) :=

⋃
C∈F vbl(C). For a clause C = {u1, u2, . . . , uk}, we

write C := {u1, u2, . . . , uk} (note C 	= ¬C, unless k = 1). The neighbourhood
of a clause C in a CNF formula F is defined by Γ (C) = ΓF (C) := {D ∈
F | vbl(D)∩vbl(C) 	= ∅}. Analogously, the conflict-neighbourhood of C is Γ ′(C) =
Γ ′

F (C) := {D ∈ F |C ∩D 	= ∅}. The degree of a variable x in a CNF formula F
is set to deg(x) = degF (x) := |{C ∈ F |x ∈ vbl(C)}|.

We have already encountered f(k), which we defined to be the largest integer
d such that every k-CNF formula with maximum variable degree at most d is
satisfiable. Similarly, let l(k) be the largest integer d such that every k-CNF
formula F for which |ΓF (C)| ≤ d, for all C ∈ F , is satisfiable. Let lc(k) be
defined analogously, but with |Γ ′

F (C)| ≤ d, for all C ∈ F , instead.
A hypergraph H is a pair (V, E) with V a finite set and E ⊆ 2V ; it is k-

uniform if |e| = k for all e ∈ E. H is called 2-colourable (or has property B) if
there is a colouring of the vertices in V by red and blue so that no hyperedge in
E is monochromatic. Extremal problems for 2-colourable hypergraphs have been
considered since Erdős’ papers [3, 4] in 1963. They relate to satisfiability of CNF
formulas in that H = (V, E) is 2-colourable iff the CNF formula E ∪ {e | e ∈ E},
with V now considered as set of boolean variables, is satisfiable. And, therefore,
they will make their appearance during this presentation.

34 H. Gebauer et al.

2 Local Lemma in Terms of SAT – Proof and Algorithm

Theorem 1. Let k ∈ N and let F be a k-CNF formula. If |Γ (C)| ≤ 2k/e − 1
for all C ∈ F , then F is satisfiable.

The statement was first formulated in the famous paper [2] by Erdős and Lovász,
in terms of its application to the hypergraph 2-colouring problem. Its wide appli-
cability to combinatorial questions soon became apparent. Nowadays it is usually
formulated in general probabilistic terms in the following fashion.

Theorem 2 (Lovász Local Lemma, symmetric form)
Let A = {A1, A2, . . . , Am} be any collection of events in a probability space, each
one having probability at most p and such that each event is mutually independent
of all but at most d of the other events. If ep(d + 1) ≤ 1, then with positive
probability, none of the events in A occur.

The SAT formulation, Theorem 1, follows as an immediate corollary. Considering
the random experiment of sampling truth assignments to the CNF formula F at
random and defining Ai to be the event that clause number i becomes violated,
each event has probability 2−k and the desired bound follows. This way, it is a
natural extension of the simple probabilistic argument bounding from below the
total number of clauses in an unsatisfiable formula.

Theorem 1 is asymptotically tight. This is most simple to see as the CNF
formula consisting of all 2k clauses of size k over k variables is clearly unsatisfiable
and has neighbourhoods of size 2k − 1 at each clause. In Section 3, we indicate
how an unsatisfiable k-CNF formula having neighbourhoods of size 2k−1 each
can be constructed, tightening even further the constant gap between the known
lower and upper bounds. Note that in the general probability space setting as
in Theorem 2 the constant e is known to be tight [5].

In the sequel, we give two proofs for Theorem 1. The first “existential” proof
(from [2]) is beautifully short and astounding, but suffers from the mentioned
shortcoming that it is non-constructive and so does not reveal how a satisfying
assignment should be efficiently found. Whether this is in any way possible used
to be a long-standing open problem until in 1991, Beck achieved a breakthrough
by proving in [6] that a polynomial-time algorithm exists which finds a satisfying
assignment to every k-CNF formula in which each clause has a neighbourhood
of at most 2k/48 other clauses. His approach was deterministic and used the non-
constructive version of the Local Lemma as a key ingredient, basically proving
that even after truncating clauses to a 48th of their size (a step used to simplify
the formula and make it fall apart into small components), a solution remains
guaranteed that can then be looked for by exhaustive enumeration. Alon sim-
plified Beck’s algorithm and analysis by introducing randomness and presented
an algorithm that works up to neighbourhoods of 2k/8 in size [7]. Czumaj and
Scheideler later demonstrated that a variant of the method can be made to work
for the non-uniform case where clause sizes vary [8]. In 2008, Srinivasan im-
proved the bound of what was polynomial-time feasible to essentially 2k/4 by a
more accurate analysis [9]. Later that year, Moser published a polynomial-time

The Lovász Local Lemma and Satisfiability 35

algorithm that can cope with neighbourhood sizes up to O(2k/2) [10], and some-
what later an improved variant that allows for 2k−5 neighbours [11], which is
asymptotically optimal with a constant gap.

The second proof we present here, finally, is a fully constructive version pub-
lished by Moser and Tardos [12] which does not suffer from any gap to the
existential version anymore. While it is general enough so as to apply to many
applications of the Local Lemma, we will formulate it in terms of satisfiabili-
ty here. The proof formalises the intuitive idea mentioned in the introduction:
that the simplest possible method starting at a random point and then applying
some corrections, thereby moving around violated clauses in the formula, always
converges to a solution.

2.1 First Proof of Local Lemma – Existence

Let F be our k-CNF formula and let us require that each clause has a neighbour-
hood of at most d := 2k/e − 1 other clauses. Suppose we select an assignment
α of truth values to the variables uniformly at random. What is the probability
that α satisfies F? If we can prove that probability to be positive, then F has
to be satisfiable. Let us try to do so.

Let F ′ ⊂ F be any subformula that arises from F by removing at least one
clause. Let C ∈ F\F ′ be one of the clauses removed. α has a certain probability
Pr(F ′) of satisfying F ′. We are interested to compute the drop in probability
if we add back C as an additional constraint and we claim that this drop be
bounded by a factor of (1 − e2−k), that is Pr(F ′ ∧ C) ≥ (1 − e2−k)Pr(F ′) (or,
equivalently, Pr(F ′∧¬C) ≤ e2−kPr(F ′)). No matter what the factor exactly is,
as long as it is positive, this readily gives what we have claimed, since the empty
formula is satisfied with probability 1 and then successively adding back all of
F ’s clauses diminishes that probability by a positive factor each step, leaving a
positive probability in the very end.

So let us prove the auxiliary claim. We proceed inductively. Suppose the aux-
iliary claim has been proved for all subformulas F ′ up to a given size and now
we would like to establish it for larger subformulas. First of all, there is a trivial
special case. If the constraint C that we join back to F ′ is independent, that
is, does not have any variables in common with F ′, then the events that F ′ or
C are satisfied, respectively, are independent from one another and the proba-
bility decreases by a factor of exactly (1 − 2−k). We have to understand now
why lowering that factor to (1−e2−k) is sufficient to account for the (restricted)
amount of possible dependencies that we might encounter. So, given the more
problematic case that C shares some variables with F ′, let us get rid of those
dependencies by removing, additionally, all clauses from F ′ that neighbour C;
let F ′′ := F ′\Γ (C). Now F ′′ and C are independent. Clearly, in this case

Pr(F ′′ ∧ ¬C) = 2−kPr(F ′′).

Note that we have removed from F ′ at most d clauses (due to the global hy-
pothesis). By induction, we can add back all of these clauses one by one to F ′′

to get F ′ and thereby obtain

36 H. Gebauer et al.

Pr(F ′) ≥ (1 − e2−k)dPr(F ′′) ≥ e−1Pr(F ′′).

On the other hand, since every assignment satisfying F ′ satisfies F ′′, we have

Pr(F ′ ∧ ¬C) ≤ Pr(F ′′ ∧ ¬C) = 2−kPr(F ′′).

The two results yield Pr(F ′ ∧ ¬C)/Pr(F ′) ≤ 2−k/e−1, as claimed. ��

2.2 Second Proof of Local Lemma – Algorithm

Recall our intuitive understanding of the problem setting. If we start with a
randomly chosen assignment, then a 2k-th of the clauses are, on average, vi-
olated. Now suppose that we continue in the most naive fashion: repeatedly
select any of the violated clauses and just select new uniformly random values
for each of the variables occurring in that clause until a satisfying assignment is
reached. Such a strategy of successive local corrections might fail if correcting a
violated clause causes lots of new clauses to be violated. But since the influence
of a clause correction is restricted to the neighbourhood of that clause, then if
such neighbourhoods are always sufficiently small, the strategy sounds intuitively
promising. We will demonstrate that under the hypothesis of the Local Lemma,
it converges to a satisfying assignment in an expected polynomial number of
steps. The existence of such an assignment then follows with the correctness of
the procedure.

Let us execute the algorithm and observe what it does, recording a log of what
corrections are being applied, that is a mapping L : N0 → F with the meaning
that in step t, the algorithm selects clause L(t) for correction. We hope for the
algorithm to terminate quickly, in particular after a finite number of steps, but
in order to be rigorous, we have, for the moment, to allow for an infinite log and
then prove that we will not ever encounter one. Moreover, let N : F → N0∪{∞}
be random variables that count the number of times a given clause occurs in the
log, that is for C ∈ F , we define N(C) := |{t ∈ N0|L(t) = C}|. Again, we a-priori
have to allow for such a counter to take infinity as a value, but we will show
that it never does. In fact, what we prove now is that for each clause C ∈ F ,
the expected value E[N(C)] is upper bounded by a constant. Note that this
implies everything we claim: Since in the expected case, each clause is corrected
at most a constant number of times, the total number of clauses corrected is, in
the expected case, bounded by O(|F |). So not only does the algorithm always
terminate after a finite number of steps (implying the existence of a solution),
it even returns after a polynomial number of operations.

Bounding the expected value E[N(C)] is strikingly simple once we introduce
a concept that goes back to Beck and Alon [6, 7]. The concept we are talking
about is the one of witness trees. A witness tree is an unordered, rooted tree T
along with a labelling σ : V (T) → F of its vertices V (T) by clauses from F .
Given a specific run of the algorithm and thus a log L, a witness tree can serve
as a justification for the necessity of any of the executed correction steps. What
do we mean? Let t be any time index such that L(t) is defined. Now let us build

The Lovász Local Lemma and Satisfiability 37

a witness tree in the following sense. Start with a root vertex r and label that
vertex σ(r) := L(t), that is by the clause corrected in step t. Now traverse the
log backwards and for each time step s = t − 1, t − 2, ..., 0, check if the clause
L(s) has any variables that it shares with any of the labels in the tree built so
far. If L(s) is independent from all clauses currently serving as labels, discard
it. If there are nodes in the tree that have variables in common with L(s), then
select any deepest of those nodes and create a new child node of it, labelling
that new child L(s). Once arriving at s = 0 we have built a witness tree T (t)
that justifies correction step t. In the following sense.

If we look at a witness tree T (t), thereby forgetting everything else we have
seen while the algorithm was running, we can reconstruct a significant portion of
the execution history. Traversing the tree T (t) in a bottom-up and level-by-level
fashion (as in a reverse breadth-first-search that starts at the root), we obtain a
sequence of clauses that is essentially a subsegment of the execution log. Each
node we encounter during such a traversal represents some correction step in
L with the label of the node being the clause corrected in that step. And the
way we defined the witness T (t) immediately assures us of two things: firstly,
the ordering in which the corrections have taken place is similar to the ordering
in which we traverse the nodes. It isn’t identical, but it preserves what we will
be interested in: Whenever two nodes v1 and v2 are labelled with clauses that
depend on each other, i.e. that have common variables, then v1 occurs before v2

in the traversal if and only if v1 represents a correction step occurring before v2.
Secondly, when we traverse some node v representing correction step t, then all
correction steps t′ < t that relate to step t in the sense that L(t) and L(t′) share
common variables do occur in the tree and have therefore been traversed before.

What these two properties imply is the following: If we traverse our tree in the
described way and we count the number of times some variable x has occurred
so far in labelling clauses, then that number corresponds to the number of times
x has been reassigned new values before the corresponding correction step. So
if we have seen variable x already 10 times before we traverse a node v labelled
σ(v) = C, then this means that at the time the correction v represents took
place, x had its 10th new random value and was then assigned its 11th one.
This in turn means that we can reconstruct, by just looking at the tree, all the
10 values x had been assigned before. This is because node v represents a time
step where clause C was selected for correction, that is a time step when C was
violated and thus the 10th value of x has to have been the one that dissatisfies
the corresponding literal we find in C. The same holds for all other variables in
the clause and for all other nodes we traverse.

Now suppose you are given a fixed witness tree T . What is the probability that
exactly this tree can occur as witness for some correction step? As we have seen
before, if we traverse T bottom-up we can reconstruct for each node the values
the k variables in the corresponding clause were assigned before the correction
step represented, that is we can reconstruct k of the random bits the algorithm
has used. If the tree has n vertices, we can reconstruct nk bits in total, just
looking at the tree. Since those bits are uniformly random, the probability that

38 H. Gebauer et al.

all of them sample such that T can be constructed (we will say that T is valid if
they evaluate as needed) is exactly 2−nk. On the other hand, let us count how
many witness trees there exist in total. Let us fix some clause C ∈ F and some
number n and let us count the number of witness trees of order n which have C
as the label of their root vertex. What restricts that number is the way in which
witness trees were defined, which requires that if u is a child node of v, then
the label σ(u) must be a neighbour of the clause σ(v). This allows us to embed
each witness tree rooted at label C into an infinite tree that just enumerates
neighbouring nodes: Consider an infinite tree with its root labelled C and such
that each node v labelled σ(v) has |Γ (σ(v))| children labelled Γ (σ(v)). Such a
tree is at most d-ary and each witness tree is clearly a subtree of it. A two-line
counting exercise shows that an infinite rooted (≤ d)-ary tree has at most (ed)n

subtrees of size n. Therefore there are at most (ed)n witness trees of order n that
have C as their root label. Since each of them may occur with a probability of
at most 2−nk, the expected number of witness trees of size n that can occur is
bounded by (ed2−k)n. Plugging in d and summing over all possible sizes n ≥ 1,
this becomes a geometric series that converges to a constant. Hence, there is at
most a constant expected number of valid witness trees rooted at C.

What does this mean? Clause C occurs N(C) times t1, t2, . . . , tN(C) in the exe-
cution log. For each of those times we can ask for a witness tree T (t1), T (t2), . . . ,
T (tN(C)) to justify that correction step. All of those trees have to be valid, and
they are distinct since T (ti+1) needs to have basically the same vertices as T (ti)
(though maybe arranged differently) and at least one more (to represent step
ti+1). So N(C) is at most as large as the number of valid witness trees rooted at
C. Since the latter number is bounded by a constant in expectation, the former
is so, too. And this concludes the argument. ��

2.3 A Stronger Variant – Conflicts

There is a slightly stronger version of the Lovász Local Lemma, referred to as
the lopsided Local Lemma ([13, 1, 14]), which does not only distinguish between
dependent and independent events but also discriminates between positive and
negative correlations. In terms of satisfiability, this means that the bound on the
maximum neighbourhood size is replaced by a bound on conflict neighbourhoods.

Theorem 3. Let k ∈ N and let F be a k-CNF formula. If |Γ ′(C)| ≤ 2k/e − 1
for all C ∈ F , then F is satisfiable.

Both the purely existential and the constructive proof we detailed above can be
adapted so as to demonstrate this statement. For the latter, the same algorithm
will work and for the analysis it suffices to observe that witness trees built by
attaching only lopsided neighbours during backward traversal of the log equally
allow to reconstruct k bits of the randomness used per vertex, irrespective of the
fact that a smaller amount of information might be encoded by the tree.

The lopsided Local Lemma has successfully been used to establish better
bounds for the number of dependencies or the number of occurrences per variable

The Lovász Local Lemma and Satisfiability 39

that we can allow, still being guaranteed that all formulas within that class are
satisfiable. Berman, Karpinski and Scott, e.g., have demonstrated in [15], using
the lopsided Local Lemma, that every 6-, 7-, 8- or 9-CNF formula in which every
variable occurs at most 7, 13, 23 or 41 times, respectively, is satisfiable. Their
argument can be used to obtain bounds for other values of k as well and it can
be made constructive by the methods we presented in the previous section. Let
us now have a closer look at bounded occurrence instances of satisfiability.

3 Bounded Variable Degree

Let us call a k-CNF formula in which no variable occurs in more than d clauses
a (k, d)-CNF formula. Recall f(k) which we can now equivalently define as the
unique integer so that all (k, f(k))-CNF formulas are satisfiable and an unsatis-
fiable (k, f(k) + 1)-CNF formula exists. For k ≥ 1, a (k, 0)-CNF formula has to
be empty and thus satisfiable. The CNF formula of all 2k k-clauses over a given
set of k variables constitutes an unsatisfiable (k, 2k)-CNF formula, so f(k) exists
with 0 ≤ f(k) ≤ 2k.

The first to consider f(k) was Tovey [16] in 1984 (with Christos Papadimitriou
raising the question). He showed f(k) ≥ k (by an argument based on Hall’s
Theorem which we will provide later in Lemma 3); he suspected his bound
to be weak and actually conjectured that all (k, 2k−1 − 1)-CNF formulas are
satisfiable [16, Conjecture 2.5].

A clearer picture of f(k) has evolved since then. For, if every variable occurs
at most d times in a k-CNF formula, no clause can collect more than k(d − 1)
neighbours. Thus, with the Local Lemma (as in Theorem 1), the inequality
k(d − 1) ≤ 2k/e − 1 implies that every (k, d)-CNF formula is satisfiable. This
connection and the implied bound of f(k) ≥ �2k/(ek)� was first established by
Kratochvíl, Savický, and Tuza [17] – still the best lower bound known for k large.

They supplied also an upper bound of 2k−1−2k−4−1. Significant progress on
the upper end was made when Savický and Sgall [18] showed f(k) = O(k−0.262k).
This was further improved to f(k) = O((2k log k)/k) by Hoory and Szeider [19],
now only a log-factor shy of the lower bound. Recently, the gap has been closed
up to a constant factor by Gebauer [20] and f(k) = Θ(2k/k) is settled. (A brief
discussion of the situation for small k is postponed to the end of this section.)

Theorem 4. For k a large enough integer,
⌊

2k

ek

⌋
≤ f(k) < 2k+1

k .

If k is a sufficiently large power of 2 we have f(k) < 2k/k.

SAT connects to many (sometimes seemingly unrelated) problems. The proof
of the upper bound in Theorem 4 is another example for this fact: The actual
construction was originally developed for refuting a conjecture of Beck on Com-
binatorial games [21]. In such a game Maker and Breaker take turns in choosing

40 H. Gebauer et al.

vertices from a given hypergraph. Maker wants to completely occupy a hyper-
edge and Breaker tries to prevent this. The problem is to find the minimum
d = d(k) such that there is a k-uniform hypergraph of maximum vertex degree
d where Maker has a winning strategy.

One possible strategy Maker can use is to partition all but at most one of the
vertices into pairs and whenever Breaker claims one vertex of a pair, Maker takes
the other one. If Maker uses such a pairing strategy, this game on hypergraphs
is in some sense equivalent to unsatisfiability. Indeed, given a hypergraph H
together with a pairing P we can interpret this as a CNF formula F where the
hyperedges of H are understood as clauses and the two vertices of a pair of P are
considered as complementary literals. It is easily seen that Maker wins the game
on H using the pairing strategy according to P if and only if F is unsatisfiable.

If there is a k-uniform hypergraph of maximum vertex degree d with a winning
pairing strategy for Maker, then there is an unsatisfiable (k, 2d)-CNF formula.

This clearly shows the relation between the two problems. For the proof a third
player enters the picture: binary trees. In this presentation we will proceed
directly from binary trees to CNF formulas.

3.1 Trees with All Leaves Deep, But Few Leaves Close Below Any
Node

We consider binary trees where every node has either two or no children. In such
a binary tree we say that a leaf v is �-close to a node w if w is an ancestor of
v, at distance at most � from v. For k and d positive integers, we call a binary
tree T a (k, d)-tree if (i) every leaf has depth2 at least k − 1 and (ii) for every
node u of T there are at most d leaves (k−1)-close to u; (from (i) it follows that
every leaf is (k−1)-close to exactly k nodes). A moment of reflection shows that
every binary tree with all leaves at depth at least k − 1 is a (k, 2k−1)-tree. The
following lemma motivates a search for (k, d)-trees with d smaller than 2k−1.

Lemma 1. Let T be a (k, d)-tree, k and d positive integers. Then there is a
k-CNF formula F = F (T) with the following properties.

(a) For m, the number of leaves of T , we have |F | = 2m. (b) Every literal
occurs in at most d clauses of F . (c) If vbl(C) ∩ vbl(D) 	= ∅ for two distinct
clauses C and D in F , then these clauses are conflict-neighbours with a unique
variable that appears in C and D with opposite signs. (d) F is unsatisfiable. (e)
If, for every node u in T , there is at least one leaf that is (k−1)-close to u, then
|F | = |vbl(F)| + 1 and F is minimal unsatisfiable.

(1) F is an unsatisfiable (k, 2d)-CNF formula; thus, f(k) ≤ 2d − 1.

(2) F is an unsatisfiable k-CNF formula with |Γ (C)| ≤ kd for all clauses C ∈ F ;
hence, l(k) ≤ kd − 1.

2 The root has depth 0, its children have depth 1, . . .

The Lovász Local Lemma and Satisfiability 41

Proof. We move to a binary tree T̂ by attaching the roots of two copies of T
as the two children of a new root r. This yields a (k, d)-tree (actually, with all
nodes of depth at least k). Obviously, it has 2m leaves and, as it goes with binary
trees, 4m − 1 nodes altogether. Two nodes are called siblings, if they share the
same parent. Leaving aside the root, the remaining 4m − 2 nodes of T̂ can be
partitioned into 2m − 1 sibling pairs.

For V some set of 2m − 1 boolean variables, we label the nodes of T̂ other
than the root by literals in V ∪ V so that every literal appears exactly once and
siblings get complementary literals. With every leaf v we associate a clause Cv

by walking along a path of length k − 1 from v towards the root and collecting
all labels encountered on this path (i.e. the labels of all nodes to which v is
(k − 1)-close). The set of clauses Cv, over all leaves v of T̂ , constitutes F .

The fact that every leaf of T̂ has depth at least k guarantees that paths of
length k − 1 starting at leaves will never reach the root. So there are indeed
always k literals to collect and F is a k-CNF formula. Also |F | = 2m is obvious
(therefore (a)). The defining property of (k, d)-trees guarantees that no label is
collected more than d times (hence (b)). F is unsatisfiable (as claimed in (d)),
for if an assignment α over V is given, it defines a path from the root to a leaf,
say v, by always proceeding to the unique child whose label is mapped to 0 by
α; Cv’s fate of being violated by α is determined.

Let us settle the claimed neighbour property in (c). Suppose that vbl(Cu) ∩
vbl(Cv) 	= ∅ for leaves u and v, u 	= v. If x ∈ Cu and x ∈ Cv, then the parent w
of the siblings labelled by x and x, respectively, is the lowest common ancestor
of u and v (i.e. the node of maximum depth that appears on both paths from
u and v, respectively, to the root); therefore x is unique. For the existence of
a complementary pair in Cu and Cv, consider the lowest common ancestor w
of u and v; w cannot be a leaf since u 	= v. The literals occurring in the two
subtrees rooted at the children of w do not share any common variable other
than the complementary pair placed at the children of w. Hence, the literals
associated with these two children must appear in the clauses, one literal in Cu

the other complementary literal in Cv, since otherwise their variable sets are
disjoint. Assertion (c) is shown.

Next we prove (e). With the assumption given, all 2(2m − 1) literals appear
in some clause, so |vbl(F)| + 1 = 2m = |F |. It remains to show satisfiability of
Fv := F \{Cv} for all leaves v. For v a leaf of T̂ , consider the following procedure,
in the course of which, besides defining an assignment, we make nodes responsible
for clauses in Fv.

First, set the literals of all nodes on the path from v to root r (excluding r)
to 0 and initialise S as the set of all siblings of these nodes. Now, while S is
nonempty, (i) remove some u ∈ S from S, (ii) set its literal to 1, (iii) choose a
leaf vu (maybe u itself) that is (k − 1)-close to u, (iv) set all literals of nodes on
the path from vu to u (excluding u) to 0, (v) add all siblings of these nodes to
S, and, finally, (vi) make u responsible for Cvu .

In this proceeding we see an invariant maintained: The subtrees rooted at the
nodes in S are disjoint and they comprise exactly the nodes with their literals

42 H. Gebauer et al.

undefined. Thus the value of a literal is set at most once and, actually, at least
once, since the node of minimal depth with its literal undefined would have to
be in S (and therefore the procedure couldn’t possibly have stopped already).
Now it is easily seen that this procedure gives a valuation of the literals that is
indeed an assignment of V . Whenever a node u is responsible for a clause, then
this clause is satisfied due to u’s literal. Also, a clause cannot have two nodes
responsible for it, while every node with its literal set to 1 is responsible for some
clause. It becomes obvious that the responsibility map is a bijection between the
2m− 1 nodes with their literal set to 1 and the 2m− 1 clauses in Fv. Hence, Fv

is satisfied. And so are we.
Implication (1) follows from (b) and (d). (2) follows from (b-d): In particular,

if we define occ(u) := |{C ∈ F |u ∈ C}, then (c) allows us to write |Γ (C)| as∑
u∈C occ(u) – hence, at most kd – for every clause C ∈ F . ��

In a similar fashion, one can show that a (k, d)-tree yields a k-uniform hypergraph
of maximum vertex degree d where Maker has a winning pairing strategy. We
are left with the task of constructing (k, d)-trees with sufficiently small d.

Lemma 2. (i) A (k, �2k/k�)-tree exists for every sufficiently large k. (ii) If k is
a sufficiently large power of 2 then a (k, 2k−1/k)-tree exists.

Lemmas 1(1) and 2 imply the upper bounds in Theorem 4. Also Lemmas 1(2)
and 2(ii) give us an upper bound of l(k) < 2k−1 for large enough powers of 2.
So let us now summarise also our findings for l(k) and lc(k).

Theorem 5. We have
⌊
2k/e

⌋ − 1 ≤ lc(k) ≤ l(k) < 2k−1

where the upper bound holds for k any sufficiently large power of 2 but can be
replaced by 2k − 1 for all positive integers k.

Moreover, the relation to l(k) tells us that we will not be able to find (k, d)-trees
with d < (l(k)+1)/k and, therefore, – along the lower bounds of l(k) in Section 2
– the range d < 2k/(ek) − 1 is inaccessible.

The proof of Lemma 2 is tedious and too long for this presentation. However,
a weaker statement, still settling the asymptotics of f(k), can be shown with
less effort.

Proof of existence of (k, 2k+1/k)-trees for k a power of 2. We have 2k+1/k ≥ 2k−1

for k ≤ 4, so we can assume that k ≥ 8 in our proof. Let T ′ be a full binary tree
of height k − 1 (i.e. a binary tree where all leaves have the same depth k − 1).
We subdivide its leaves into intervals of length k/2. For {v0, . . . , vk/2−1} such
an interval, we attach a full binary subtree of height i to vi. Let T denote the
resulting tree and let the leaf-range r(v) of a node v denote the number of leaves
(k − 1)-close to v.

It suffices to show that r(v) ≤ 2k+1

k for all nodes of T . We apply induction on
the depth i of v. For i = 0 the claim holds. Indeed, note that out of each of the

The Lovász Local Lemma and Satisfiability 43

2k−1

k/2 intervals, exactly one vertex (v0, respectively) is (k − 1)-close to the root

and, hence, the leaf-range of the root is 1
2

2k+1

k . Now suppose that v has depth
i ∈ {1, . . . , k/2 − 1}. Note that the set of descendants of v at depth k − 1 can
be subdivided into 2k−1−i

k/2 intervals, i.e. at least one interval for the values of k

we consider. Let v′ denote the parent of v. By construction the number of leaf
descendants which have distance at most k− 2 from v equals r(v′)/2. Moreover,
every interval {v0, . . . , vk/2−1} gives rise to 2i leaves on level k − 1 + i, implying
that the number of leaf descendants of v which have distance exactly k−1 from v

equals 2k−1−i

k/2 · 2i = 1
2

2k+1

k . So altogether r(v) ≤ r(v′)
2 + 1

2
2k+1

k ≤ 2k+1

k . It remains
to consider the case where v has depth at least k/2. By construction no leaf of
T has depth larger than k/2+ k− 2, implying that the leaf-range of v is at most
the leaf-range of its parent. ��

3.2 Small Values

Although the lower bounds on f(k), l(k) and lc(k) we can derive via the Local
Lemma grow exponentially, they are weak for small values of k. Here another
classic from combinatorics enters the picture: Hall’s marriage theorem.

Lemma 3. (1) f(k) ≥ k for k ≥ 1 [16] and (2) l(k) ≥ lc(k) ≥ k for k ≥ 2.

Proof. (1) For k ≥ 1, let F be a k-CNF formula over a variable set V with no
variable occurring in more than k clauses of F . Consider the incidence graph
between clauses and variables, i.e. the bipartite graph with vertex set F ∪ V ,
where {C, x} is an edge iff x ∈ vbl(C). In this graph, clause-vertices have degree
exactly k and by assumption variable-vertices have degree at most k. Therefore,
Hall’s condition for a matching covering all clause-vertices holds. An assignment
is now defined by letting every variable x that is matched to a clause C map
to the value so that it satisfies C. The matching property prevents conflicts in
doing so. No matter how we complete the assignment for unmatched variables,
it will satisfy all clauses.
(2) Let k ≥ 2. We will actually prove a bound of lc(k) ≥ �(f(k) + 1)/2�+ k − 2;
with the bound on f(k) from (1) this yields a lower bound of �(3k − 3)/2� ≥ k.

So we have to show that every unsatisfiable k-CNF formula F contains a clause
C with |Γ ′

F (C)| ≥ �(f(k)+1)/2�+k−1. First we pass to a minimal unsatisfiable
k-CNF formula G ⊆ F . G has a variable x with degG(x) ≥ f(k) + 1; w.l.o.g. we
assume that literal x occurs at least �(f(k) + 1)/2� times. Now choose a clause
C ∈ G with literal x. Γ ′

G(C) contains all clauses with x. In addition, according
to Lemma 4, for all variables z ∈ C \ {x} there has to be a clause Dz ∈ G
with the property that z is the unique variable that appears in C and Dz with
opposite signs. It follows that |Γ ′

G(C)| ≥ �(f(k) + 1)/2�+ k − 1. This concludes
the argument, since Γ ′

F (C) ⊇ Γ ′
G(C). ��

In fact, f(k) = k is known for k ≤ 4 ([16] for 3 and [22] for 4). The best known
bounds for k = 5 are 5 ≤ f(5) ≤ 7, [23]. k = 6 is the first value for which the
bound in Lemma 3(1) is known not to be tight, [15]: 7 ≤ f(6) ≤ 11. See [23] for

44 H. Gebauer et al.

a further discussion of f(k) for small k with currently best bounds known (and
also Section 3.3 below). The bound for lc(k) suffices our needs in the proof of
Theorem 9 below, but perhaps even the lower bound of 3 for lc(3) is not tight;
we have not followed up this matter further.

We conclude with the missing lemma employed in the proof of Lemma 3(2) (in
the spirit of the properties of so-called blocked clauses introduced by Kullmann
[24, Definition 3.1]).

Lemma 4. Let F be a minimal unsatisfiable CNF formula. Consider x and
C ∈ F with x ∈ vbl(C). Then there is a clause D with the property that x is the
unique variable that appears in C and D with opposite signs.

Proof. Since F is minimal, F \{C} has a satisfying assignment α. By assumption
of unsatisfiability of F , α cannot satisfy C. Now switch the value of x in the
assignment, thereby satisfying C and thus violating some other clause D ∈ F .
Now, as easily seen, D serves the purpose. ��

3.3 A Special Class of Unsatisfiable CNF Formulas – MU(1)

MU(1) is defined as the set of all minimal unsatisfiable CNF formulas F with
|F | = |vbl(F)|+1. This definition may appear somewhat arbitrary, so why care?
First, when searching for extremal unsatisfiable CNF formulas with the prop-
erties we are interested in, we can confine ourselves to minimal unsatisfiable
CNF formulas. Second, as observed by A. Tarsi (cf. [25]), |F | − |vbl(F)|, called
deficiency, is positive for every minimal unsatisfiable CNF formula F ; hence,
CNF formulas in MU(1) are minimal w.r.t. to deficiency. Formulas in MU(1)
can be recognised efficiently [26, 27, 28] and they have been shown to be uni-
versal in the sense that every unsatisfiable CNF formula F has a G ∈ MU(1)
with a homomorphism from G to F [29]. We do not define homomorphisms for
CNF formulas here. They preserve unsatisfiability but alter other properties,
e.g. due to “clause collapses” they can decrease neighbourhood sizes and variable
degrees. Still, many extremal unsatisfiable CNF formulas can be drawn from
MU(1).

With this in mind and, returning to our problem, given that we do not even
know whether f(k) is computable, Hoory and Szeider [23] headed for the more
modest goal of investigating f1(k), the largest integer such that every (k, f1(k))-
CNF formula in MU(1) is satisfiable. They show that f1 is computable, in fact,
reasonably efficiently. With f(k) ≤ f1(k), this allows them to derive the best
known upper bounds for f(k) for small k: f(5) ≤ 7, f(6) ≤ 11, f(7) ≤ 17, f(8) ≤
29, f(9) ≤ 51.

While the previous bound of f(k) = O((2k log k)/k) in [19] was not established
through formulas in MU(1), the constructions in [20] reside in MU(1); indeed,
Lemma 1(e) provides this fact, since it is not too hard to see that if a (k, d)-
tree exists, then we can modify it so that the assumption of Lemma 1(e) holds.
Therefore, we can conclude that f(k) and f1(k) are within a constant factor of
each other. Whether f(k) = f1(k) for all k is an interesting open question.

The Lovász Local Lemma and Satisfiability 45

4 Linear Formulas

We call a CNF formula F linear if |vbl(C) ∩ vbl(D)| ≤ 1 for any two distinct
clauses C and D in F . For example, the formula {{x, y}, {ȳ, z}, {x̄, z̄}} is linear,
whereas the formula {{x, y, z}, {x̄, y, u}} is not. This class of formulas has been
introduced in [30]. It is a natural analogue of the notion of linear hypergraphs: A
hypergraph H = (V, E) is linear if |e∩f | ≤ 1 for any two distinct edges e, f ∈ E.
In this section we investigate the following questions: Are there unsatisfiable
linear k-CNF formulas, for each k? If yes, how large do they have to be? There
is the analogous question asking for k-uniform linear hypergraphs that are not
2-colourable (see last paragraph of introduction). Existence of those has been
shown by Abbott [31], and Erdős and Lovász [2] give lower bounds on their size
(in terms of number of vertices and hyperedges). Bounds for chromatic numbers
exceeding 2 can be found in [32]. Given a k-uniform non-2-colourable hypergraph
H with m hyperedges, we immediately obtain an unsatisfiable k-CNF formula
F (H) with 2m clauses (as described at the end of the introduction). However,
for k ≥ 2, even if H is linear, F (H) is certainly not. Therefore, it is not clear
(but true, as we will see) that bounds on the size of unsatisfiable linear k-CNF
formulas are similar to those of non-2-colourable linear k-uniform hypergraphs.

Let flin(k) be the largest integer so that every linear (k, flin(k))-CNF formula
is satisfiable. Note flin(k) ≥ f(k) ≥ �2k/(ek)�.
Theorem 6 ([33]). Any unsatisfiable linear k-CNF formula has at least

1
k (1 + flin(k − 1))2 > 4k

4e2k3

clauses. There exists an unsatisfiable linear k-CNF formula with at most 8k34k

clauses.

Remark. 1
k (1 + flin(k − 1))2 ≤ 8k34k follows; thus flin(k − 1) ∈ O(k2 2k).

Proof. The proof of the lower bound is similar to the one for the size of
non-2-colourable linear k-uniform hypergraphs in [2]. The following lemma is
instrumental.

Lemma 5. Let F be a linear k-CNF formula. If there are at most flin(k − 1)
variables of degree exceeding flin(k − 1), then F is satisfiable.

First we show how the lemma implies the lower bound. Let X be the set of
variables x with degF (x) > flin(k − 1). If F is unsatisfiable, then by the lemma,
|X | > flin(k − 1). Therefore, the lower bound follows from

|F | = 1
k

∑
x∈vbl(F) degF (x) ≥ 1

k (1 + flin(k − 1))|X | ≥ 1
k (1 + flin(k − 1))2

Proof (of the lemma). For a literal u, let degF (u) denote the degree of the
variable underlying u in F . First we construct a linear (k − 1)-CNF formula
F ′ as follows: For every clause C ∈ F , let uC be a literal of C that maximises
degF (uC) and write C′ := C \ {uC}; F ′ is obtained as F ′ := {C′ |C ∈ F}. We

46 H. Gebauer et al.

claim that degF ′(x) ≤ flin(k − 1) for all variables x; thus, F ′ is satisfiable and
therefore F is satisfiable.

Consider a variable x. Clearly, degF ′(x) ≤ degF (x) and so if degF (x) ≤
flin(k−1), we are done. Otherwise, let C′

1, . . . , C
′
t, t = degF ′(x), be the clauses in

F ′ containing x or x̄. There are clauses C1, . . . , Ct in F such that C′
i = Ci\{uCi},

1 ≤ i ≤ t. By choice of uCi , degF (uCi) ≥ degF (x) > flin(k−1). Since F is linear,
the uCi’s have to be distinct, thus by assumption, t ≤ flin(k − 1). ��
We now prove the upper bound. Take a linear k-uniform hypergraph H = (V, E)
with n vertices and m edges, to be determined later. By interpreting the vertices
of H as variables and the hyperedges as clauses, this is a (satisfiable) linear
k-CNF formula. We now replace each literal in each clause by its complement
with probability 1

2 , independently in each clause. Let F denote the resulting
(random) formula. Any fixed assignment α has a 1 − 2−k chance of satisfying a
given clause of F , and thus

Pr[[]α satisfies F] = (1 − 2−k)m < e−m2−k

.

There are 2n distinct assignments, hence by the union bound

Pr[[]some α satisfies F] < 2ne−m2−k

= eln(2)n−m2−k

.

If m/n ≥ ln(2)2k, the above expression is at most 1, and hence with positive
probability, no assignment satisfies F . In other words, at least one F obtained
in the above fashion is not satisfiable.

We construct a linear k-uniform hypergraph with few hyperedges, but with
a large hyperedge-vertex ratio. Let q ∈ {k, . . . , 2k} be a prime power. Choose
d ∈ N such that q2 ln(2)2k ≤ qd < q3 ln(2)2k and set n := qd. Consider the
d-dimensional vector space F

d
q over the field Fq. It has n elements, called points.

In a vector space, there is a line through any pair of points, and a line has q

elements. Hence there are exactly
(
n
2

)
/
(
q
2

) ≥ n2

q2 lines in F
d
q . By choice of d, we

have n ln(2)2k ≤ n2

q2 , hence we can choose m := n ln(2)2k distinct lines in F
d
q .

From each such line arbitrarily select k points and form a hyperedge. Let E
be the set of all m hyperedges formed this way. (The reader may easily check
that two distinct lines cannot yield the same hyperedge.) Thus, H = (Fd

q , E)
is a k-uniform hypergraph. It is a linear hypergraph, since any pair of distinct
lines intersect in at most one point. By construction, m

n = ln(2)2k, and m =
n ln(2)2k ≤ q3 ln(2)24k ≤ ln(2)28k34k, which proves the upper bound. ��
This proof is simpler than the probabilistic construction of a non-2-colourable
k-uniform linear hypergraph in [32]. This has a good reason: In our case, we
inject randomness by choosing the signs of literals, whereas in the hypergraph
case, there are no signs, and randomness comes only in the form of selecting
hyperedges from some large set. This cannot be done independently for every
hyperedge, since one has to guarantee linearity.

A question that might have formed in the reader’s mind is what happens
when one relaxes linearity to require that two clauses share at most one literal,

The Lovász Local Lemma and Satisfiability 47

i.e. |C∩D| ≤ 1, as opposed to the stricter requirement that |vbl(C)∩vbl(D)| ≤ 1.
The answer is that little changes. We can prove almost the same lower bound
as in Theorem 6, sacrificing only a constant factor. However, if we require that
any two distinct clauses C, D have at most one conflict, i.e. |C ∩ D| ≤ 1, things
change dramatically, see Section 4.2 below.

What happens if we require that |vbl(C) ∩ vbl(D)| ≤ �, for some � ≥ 2?
Here our bounds also change significantly, and the exponential function in upper
and lower bound will no longer be 4k, but 2

�+1
� k. If � is a constant (i.e. does

not grow with k), upper and lower bounds are still only a polynomial factor
apart. The proof goes along similar lines as for Theorem 6 and the details can
be found in [33]. The bounds comply nicely with those in [32] for 2-colourability
of hypergraphs in which two hyperedges can intersect in at most � vertices.

4.1 Why Are Small Explicit Constructions So Hard to Come Up
with?

It is often surprisingly easy to obtain rather tight bounds through a probabilis-
tic construction – and frustratingly difficult to come up with an explicit one. In
the case of linear formulas, explicit constructions have been given in [34, 35].
However, the size of the constructed formulas is terrifying: For an unsatisfiable

linear k-CNF formula, it takes 22
. . .

2

clauses, where the size of the tower is k.
Actually, we can provide some evidence for why small explicit constructions may
be difficult. Loosely speaking, there are three ways to come up with unsatisfi-
able CNF formula: First, one can build formulas where unsatisfiability follows
immediately from construction, by local considerations. This is the case for the
“complete formula” mentioned in Section 2, and also for the formula constructed
in the proof of Theorem 4. Second, unsatisfiability can follow from a probabilis-
tic or counting argument, as in the proof of Theorem 6. Third, unsatisfiability
can follow from some more global combinatorial principle (e.g. the pigeon hole
principle or the fact that in a graph, the number of vertices having odd degree
must be even). This is typically the case for formulas with provably large resolu-
tion complexity (see Ben-Sasson and Wigderson [36] for several beautiful proofs
on resolution complexity). Normally, formulas obtained the first way have small
resolution complexity, even short treelike resolution proofs. Therefore, it seems
unlikely to obtain unsatisfiable linear k-CNF formulas of reasonable size going
the first way, for one can prove the following:

Theorem 7 ([33]). Any resolution tree of any unsatisfiable linear k-CNF for-
mula has at least 22(k−1)/2−1 nodes.

Let us recall the class MU(1) from Section 3.3. The extremal examples for most
parameters considered so far are in MU(1): for f , l and lc via the tree derived
formulas from Section 3; also an unsatisfiable k-CNF formula with 2k clauses can
be found in MU(1) (see argument for Proposition 1 below). For linear CNF for-
mulas, the explicit constructions in [34, 35] can be adapted to result in formulas

48 H. Gebauer et al.

in MU(1), but they exhibit the tremendous size as mentioned. This is inherently
so for linear CNF formulas in MU(1).

Theorem 8 ([33]). For every ε > 0 there exists some c ∈ N such that every

linear k-CNF formula in MU(1) has at least aa
. . .

a

clauses, where a = 2− ε and
the size of the tower is k − c.

4.2 1-Conflicts

Clauses C and D are called 1-conflict neighbours, if exactly one variable occurs
in C and D with opposite signs,3 i.e. |C ∩ D| = 1. We know already from the
introduction (see also Lemma 4) that 1-conflicts have to occur in unsatisfiable
CNF formulas (unless there is an empty clause); hence, they are crucial and
deserve special attention. In the presence of linear formulas, it seems natural to
consider CNF formulas where all conflicts are restricted to 1-conflicts, so let us
call a CNF formula conflict-linear if each pair of clauses either has no conflict
or has a 1-conflict. Here the typical questions we ask can be easily resolved.

Proposition 1. For every nonnegative integer k, there is an unsatisfiable
conflict-linear k-CNF formula with 2k clauses.

This is tight, since all k-CNF formulas with less than 2k clauses are satisfiable.

Proof. Follow the construction of an unsatisfiable k-CNF formula F (T) as in
Lemma 1 starting from a full binary tree T of height k − 1 (with 2k−1 leaves).
This readily delivers a CNF formula as required. ��
We define lc1(k) as the largest integer so that all k-CNF formulas with all
1-conflict neighbourhoods of size at most lc1(k) are satisfiable. Note that if
we take all 2k k-clauses over a given set of k variables, then in the resulting
unsatisfiable k-CNF formula all 1-conflict neighbourhoods have size k. There-
fore, lc1(k) ≤ k − 1. This bound is already tight: Given an unsatisfiable k-CNF
formula F , consider a minimal unsatisfiable subset G of F . By Lemma 4, for
all clauses in G the number of 1-conflict neighbours in G has to be at least k
and 1-conflict neighbourhoods in F can only be larger. We have not only deter-
mined lc1(k) ≥ k−1 in this way; in fact, we have shown that every unsatisfiable
k-CNF formula has at least 2k clauses with 1-conflict neighbourhoods of size at
least k.

Proposition 2. lc1(k) = k − 1.

5 A Sudden Jump in Complexity

Satisfiability of (k, f(k))-CNF formulas is trivially decidable in polynomial time.
If the degree bound is relaxed, we agree that some inspection of instances is
required, but we would hope that the problem does not immediately develop the
3 Equivalently, C and D are 1-conflict neighbours iff their resolvent exists.

The Lovász Local Lemma and Satisfiability 49

full computational complexity of SAT. Tovey [16], however, proved that for 3-
CNF formulas with maximum variable degree f(3)+1 = 4 satisfiability is already
NP-complete. Kratochvíl, Savický, and Tuza [17] generalised this sudden jump
behaviour to general k: For every fixed k ≥ 3, satisfiability of (k, f(k) + 1)-CNF
formulas is NP-complete. It may be somewhat intriguing that one can prove
such a result, given that we do not even know the values of f(k) for k ≥ 5; but
we will see. Berman, Karpinski, and Scott [15] obtained similar results, showing
that for (k, f(k)+1)-CNF formulas it is even hard to approximate the maximum
number of clauses that can be simultaneously satisfied.

We will also approach the related problems for the size of neighbourhoods and
conflict-neigbourhoods. While we can show that the latter performs a similar
sudden jump, we have to leave a slack for the neighbourhood bound.

Theorem 9. Let k ≥ 3. Then,
(1) deciding satisfiability of k-CNF formulas with variable degrees at most f(k)+

1 is NP-complete (cf. [17]),
(2) deciding satisfiability of k-CNF formulas with clause neighbourhoods of size

at most4 max{k + 3, l(k) + 2} is NP-complete, and
(3) deciding satisfiability of k-CNF formulas with clause conflict-neighbourhoods

of size at most lc(k) + 1 is NP-complete.

Before engaging in the proof, we describe a general construction that takes a
k-CNF formula F and produces a CNF formula F̂ which is satisfiable iff F
is satisfiable, so that F̂ is very sparsely interleaved – at the expense of the
appearance of 2-clauses. We will later expand these 2-clauses to k-clauses in a
fashion tailored to which of the three claims we wish to prove.

We first introduce a useful gadget. Given a set of j ≥ 2 variables U =
{x0, x1, . . . , xj−1}, the 2-CNF formula

{{x0, x1}, {x1, x2}, . . . , {xj−2, xj−1}, {xj−1, x0}}

is called an equaliser of U ; the equaliser of a singleton set U is the empty formula.
As it is easily seen, such an equaliser is satisfied by an assignment to U iff all
variables in U are mapped to the same value.

Now let F be a k-CNF formula, k ≥ 3. For each variable x ∈ vbl(F), we
replace every occurrence (as x or x) by a new variable inheriting the sign of x
in this occurrence. This yields a k-CNF formula F ′ with |F | clauses over a set
of k|F | variables. Moreover, for each variable x ∈ vbl(F), we add an equaliser
for the set of variables that have replaced occurrences of x. This gives an extra
set F ′′ of at most5 k|F | 2-clauses. By the property of equalisers, F̂ := F ′ ∪ F ′′

is satisfiable iff F is satisfiable; F̂ can be readily obtained from F in polynomial
time. Interleaving is sparse in that

4 Note that 2k/e − 1 ≥ k + 1 for k ≥ 5. Therefore, max{k + 3, l(k) + 2} = l(k) + 2 in
that range and we actually suspect that this holds for all k ≥ 3.

5 F ′′ contains exactly k|F | clauses unless there are variables in F occurring only once.

50 H. Gebauer et al.

– every variable of vbl(F̂) occurs at most 3 times in F̂ ,
– each k-clause in F ′ does not share variables with any other clause in F ′ and

the number of its neighbouring 2-clauses in F ′′ is at most 2k – however, at
most k of the 2-clauses are in the conflict-neighbourhood –, and

– each 2-clause in F ′′ neighbours two k-clauses in F ′ and at most two 2-clauses
in F ′′ (all four clauses may be in the conflict-neigbourhood).

Proof of (1) (variable degrees). Let k ≥ 3 and fix some minimal (w.r.t. set
inclusion) unsatisfiable (k, f(k) + 1)-CNF formula G. Choose some clause C in
G and replace one of its literals by x for a new variable x. This new formula,
which we denote by G(x), has the property that (i) it is satisfiable (otherwise G
would not be minimal), (ii) every satisfying assignment has to set x to 0 (since
otherwise G would be satisfiable), (iii) all variables have degree at most f(k)+1,
and (iv) the newly introduced variable x has degree 1 in G(x).

A reduction from satisfiability of general k-CNF formulas follows. Given such
a k-CNF formula F we first generate F̂ as described above. Then we augment
each 2-clause in F̂ by k−2 positive literals of new variables so that it becomes a
k-clause. For each of the new variables x we add a copy of G(x) to our formula;
by renaming variables in G these copies are chosen so that their variable sets are
pairwise disjoint. The new formula is k-CNF, it is satisfiable iff F̂ is satisfiable.
Moreover, the maximum variable degree is max{3, f(k) + 1} which is f(k) + 1,
since we assumed k ≥ 3. This constitutes a polynomial reduction of satisfiability
of general k-CNF formulas to satisfiability of k-CNF formulas with maximum
variable degree f(k) + 1. Assertion (1) in Theorem 9 is established. ��

Proof of (2) (neighbourhoods). Again, let k ≥ 3. Fix some minimal unsatisfiable
k-CNF formula G where all neighbourhoods have size at most l(k)+1. We choose
some clause C and replace one of its literals by x for a new variable x, resulting
in a k-CNF formula G(x) that forces x to 0 in every satisfying assignment.

Starting from a 3-CNF formula F (yes, we mean 3-CNF, not k-CNF) we
proceed as before, first producing F̂ consisting of 3- and 2-clauses. Then we
augment all clauses in F̂ to k-clauses along with disjoint copies of G(x) for each
new variable x. What happened to the neighbourhood sizes? A 3-clause in F ′

had 6 neighbours in F̂ and gained k − 3 new neighbours, so there are at most
k + 3. A 2-clause, now extended to a k-clause, had 4 neighbours to begin with
and gets an extra neighbour for each of the k − 2 new literals – which makes
k + 2 neighbours. In a copy G(x) all clauses stay with a neighbourhood of size
at most l(k) + 1 except for the special clause C where we have planted the new
literal x. This clause may now have l(k) + 2 neighbours. Altogether a bound
of max{k + 3, l(k) + 2} for neighbourhoods holds and the polynomial reduction
from satisfiability of general 3-CNF formulas is completed. ��

Why did we miss a reduction to k-CNF formulas with neighbourhoods of size
at most l(k) + 1? We could have succeeded, if we had a minimal unsatisfiable
k-CNF formula G with neighbourhoods of size at most l(k) + 1 at our disposal,
where at least one clause has a neighbourhood of size at most l(k). Even if all

The Lovász Local Lemma and Satisfiability 51

neighbourhoods had size l(k) + 1, we would have been happy with one clause
C in G which links to some other clause D via a single variable (we could then
replace the literal of this variable in C, thereby leaving D as neighbour behind).
Fortunately, this idea actually helps when we deal with conflict-neighbourhoods
in the next proof.

We will also have to employ equalisers more carefully (wastefully, one might
say). Given a variable set U = {x0, x1, . . . , xj−1}, j ≥ 2, of concern, let W =
{z0, z1, . . . , zj−1} be a set of variables disjoint from U . The (U ∪ W)-equaliser

{{x0, z0}, {z0, x1}, {x1, z1}, {z1, x2}, . . . , {zj−2, xj−1}, {xj−1, zj−1}, {zj−1, x0}}

is called a stretched equaliser of U – still serving the purpose of forcing all
variables in U to the same value. If we use such stretched equalisers in the
otherwise identical construction of F̂ , we benefit in that

– the 2-clauses in stretched equalisers have a conflict with two other 2-clauses
but to at most one of the k-clauses in F ′.

Proof of (3) (conflict-neighbourhoods). For k ≥ 3, fix some minimal unsatisfiable
k-CNF formula G where conflict-neighbourhoods have size at most lc(k)+1. As
before, we want to replace a literal in a clause by a new literal, but now we want
to be more careful about where we want to do this. Recall from Lemma 4 that
G must have a pair of clauses, C and D, say, which share a unique variable y
in a conflicting manner, i.e. y ∈ C and y ∈ D (there may be other variables in
vbl(C)∩ vbl(D), but they have to appear with the same sign on either side). So
here we do our little surgery: Choose a new variable x and replace y in C by x.
This gives the building block G(x) forcing x to be 0. Note that the clause C′

containing x (obtained from modifying C) has a conflict-neigbourhood of size at
most lc(k) since it lost the conflict-neighbour D.

A reduction from satisfiability of k-CNF formulas now follows in the manner
customary. Given F , a k-CNF formula, we move on to F̂ – now with stretched
equalisers – and then expand 2-clauses with the help of new variables that are
forced to 0 by disjoint copies of G(x). In the final product of this proceeding
k-clauses in F ′ have at most k conflict-neighbours, k-clauses obtained from aug-
menting 2-clauses have at most 3 + (k − 2) = k + 1 conflict-neighbours, and,
finally, clauses in copies of G(x) do not have conflict-neighbourhoods of size
exceeding lc(k) + 1 due to our careful construction of G(x). That is, the
maximum size of a conflict neighbourhood is max{k + 1, lc(k)+ 1} which equals
lc(k) + 1 due to the lower bound of lc(k) ≥ k in Lemma 3. ��

6 Open Problems

We know f(k), l(k), and lc(k) up to a constant, so one might hope to eventu-
ally determine them exactly. (The upper bounds in Theorems 4 and 5 can be
improved by a factor of 63

64 [20]). Progress on the lower bounds we would find
very interesting.

52 H. Gebauer et al.

Open Problem 1. Is it possible to improve any of the known lower bounds on
f(k), l(k), and lc(k) by a constant factor?

One possible approach would be to better understand how these functions de-
pend on each other. For example, the current lower bound on f(k) follows by a
very simple argument from a lower bound on l(k). Can this relation be improved?

Open Problem 2. Is there a constant c0 > 1 with f(k) ≥ c0l(k)/k for k large
enough?

So far, it seems hard to discriminate between l(k) and lc(k).

Open Problem 3. Is there a constant c1 > 1 such that l(k) ≥ c1lc(k) for k
large enough?

Note also that we have not even settled the computability of these functions.

Open Problem 4. Are the functions f(k), l(k) and lc(k) computable?

While further progress as expressed in the “wish list” above is desirable, one
should not forget about the broader picture. Our goal is to find interesting and
at the same time simple combinatorial conditions on a CNF formula that entail
satisfiability. The bounds on l(k) (and lc(k)) express such conditions as degree
bounds in the graph of dependencies (and graph of conflicts, resp.) of the clauses
of a CNF formula. The consideration of linear CNF formulas imposes a restriction
on the quality of dependencies – we have seen that this can make a significant
difference in how many clauses are needed for an unsatisfiable k-CNF formula.
A possible next step is to combine these two types of criteria.

We conclude with problems that arose in the course of the investigations.
Firstly, the CNF formulas providing the best known upper bound on f(k) for k
large are obtained via the construction of suitable binary trees. Let ftree(k) be
the largest integer d such that no (k, d)-tree exists. A detour to k-CNF formulas
and employment of the Local Lemma shows ftree(k) ≥ 2k/(ek) − 2. A more
“direct approach” may allow improvement of this bound.

Open Problem 5. Is there a constant c2 > 1 such that ftree(k) ≥ c2
2k

ek for
infinitely many k?

The known proof of small unsatisfiable linear k-CNF formulas is probabilistic.
Known explicit constructions give huge formulas – not an unfamiliar situation.

Open Problem 6. Give an explicit construction of an unsatisfiable linear k-
CNF formula of singly exponential size.

Acknowledgement. We thank Andreas Razen, Patrick Traxler, and Philipp Zum-
stein for many helpful discussions on the topic of this survey; Andreas Razen, in
particular, for carefully reading the manuscript and many suggestions.

The Lovász Local Lemma and Satisfiability 53

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. John Wiley & Sons
Inc., Chichester (2008)

2. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Hajnal, A., Rado, R., Sós, V.T. (eds.) Infinite and Finite
Sets (to Paul Erdős on his 60th birthday), vol. II, pp. 609–627. North-Holland,
Amsterdam (1975)

3. Erdős, P.: On a combinatorial problem. Nordisk Mat. Tidskr. 11, 5–10, 40 (1963)
4. Erdős, P.: On a combinatorial problem. II. Acta Math. Acad. Sci. Hungar. 15,

445–447 (1964)
5. Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)
6. Beck, J.: An algorithmic approach to the Lovász Local Lemma. I. Random Struct.

Algorithms 2(4), 343–365 (1991)
7. Alon, N.: A parallel algorithmic version of the local lemma. Random Struct. Algo-

rithms 2(4), 367–378 (1991)
8. Czumaj, A., Scheideler, C.: A new algorithm approach to the general Lovász Local

Lemma with applications to scheduling and satisfiability problems. In: Proc. 32nd
Ann. ACM Symp. on Theory of Computing, pp. 38–47 (2000)

9. Srinivasan, A.: Improved algorithmic versions of the Lovász Local Lemma. In: Proc.
19th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 611–620 (2008)

10. Moser, R.A.: Derandomizing the Lovász Local Lemma more effectively. CoRR
abs/0807.2120 (2008)

11. Moser, R.A.: A constructive proof of the Lovász Local Lemma. CoRR
abs/0810.4812 (2008); Proc. 41st Ann. ACM Symp. on Theory of Computing
(to appear)

12. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász Local Lemma.
CoRR abs/0903.0544 (2009)

13. Erdős, P., Spencer, J.: Lopsided Lovász Local Lemma and Latin transversals. Dis-
crete Appl. Math. 30(2-3), 151–154 (1991)

14. Lu, L., Székely, L.: Using Lovász Local Lemma in the space of random injections.
Electron. J. Combin. 14(1), 13, Research Paper 63 (2007) (electronic)

15. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness and satisfiability
of bounded occurrence instances of SAT. Electronic Colloquium on Computational
Complexity (ECCC) 10(022) (2003)

16. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl.
Math. 8(1), 85–89 (1984)

17. Kratochvíl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes sat-
isfiability jump from trivial to NP-complete. SIAM J. Comput. 22(1), 203–210
(1993)

18. Savický, P., Sgall, J.: DNF tautologies with a limited number of occurrences of
every variable. Theoret. Comput. Sci. 238(1-2), 495–498 (2000)

19. Hoory, S., Szeider, S.: A note on unsatisfiable k-CNF formulas with few occurrences
per variable. SIAM J. Discrete Math. 20(2), 523–528 (2006)

20. Gebauer, H.: Disproof of the neighborhood conjecture with implications to SAT.
CoRR abs/0904.2541 (2009)

21. Beck, J.: Combinatorial Games: Tic Tac Toe Theory, 1st edn. Encyclopedia of
Mathematics and Its Applications, vol. 114. Cambridge University Press, Cam-
bridge (2008)

54 H. Gebauer et al.

22. Stříbrná, J.: Between Combinatorics and Formal Logic, Master’s Thesis. Charles
University, Prague (1994)

23. Hoory, S., Szeider, S.: Computing unsatisfiable k-SAT instances with few oc-
curences per variable. Theoret. Comput. Sci. 337(1-3), 347–359 (2005)

24. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor.
Comput. Sci. 223(1-2), 1–72 (1999)

25. Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal un-
satisfiable formulas. J. Comb. Theory, Ser. A 43(2), 196–204 (1986)

26. Davydov, G., Davydova, I., Kleine Büning, H.: An efficient algorithm for the min-
imal unsatisfiability problem for a subclass of CNF. Ann. Math. Artificial Intelli-
gence 23(3-4), 229–245 (1998)

27. Kleine Büning, H.: An upper bound for minimal resolution refutations. In: Gott-
lob, G., Grandjean, E., Seyr, K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 171–178.
Springer, Heidelberg (1999)

28. Kleine Büning, H.: On subclasses of minimal unsatisfiable formulas. Discrete Appl.
Math. 107(1-3), 83–98 (2000)

29. Szeider, S.: Homomorphisms of conjunctive normal forms. Discrete Appl.
Math. 130(2), 351–365 (2003)

30. Porschen, S., Speckenmeyer, E., Randerath, B.: On linear CNF formulas. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 212–225. Springer, Heidel-
berg (2006)

31. Abbott, H.: An application of Ramsey’s Theorem to a problem of Erdős and Hajnal.
Canad. Math. Bull. 8, 515–517 (1965)

32. Kostochka, A., Mubayi, D., Rödl, V., Tetali, P.: On the chromatic number of set
systems. Random Struct. Algorithms 19(2), 87–98 (2001)

33. Scheder, D.: Unsatisfiable linear CNF formulas are large, and difficult to construct
explicitely. CoRR abs/0905.1587 (2009)

34. Porschen, S., Speckenmeyer, E., Zhao, X.: Linear CNF formulas and satisfiability.
Discrete Appl. Math. 157(5), 1046–1068 (2009)

35. Scheder, D.: Unsatisfiable linear k-CNFs exist, for every k. CoRR abs/0708.2336
(2007)

36. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
J. ACM 48(2), 149–169 (2001)

	The Lovász Local Lemma and Satisfiability
	Introduction
	Local Lemma in Terms of SAT – Proof and Algorithm
	Bounded Variable Degree
	Linear Formulas
	A Sudden Jump in Complexity
	Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

