Lower Bound Example: Minimum Dominating Set (MDS)

- Input: Given a graph (network), nodes with unique IDs.
- Output: Find a Minimum Dominating Set (MDS)
- Set of nodes, each node is either in the set itself, or has neighbor in set

- Differences between MIS and MDS
- Central (non-local) algorithms: MIS is trivial, whereas MDS is NP-hard
- Instead: Find an MDS that is "close" to minimum (approximation)
- Trade-off between time complexity and approximation ratio

Lower Bound for MDS: Intuition

- Two graphs ($\mathrm{m} \ll \mathrm{n}$). Optimal dominating sets are marked red.

$\left|D S_{\text {OPT }}\right|=2$.

$\left|D S_{\text {OPT }}\right|=m+1$.

Lower Bound for MDS: Intuition (2)

- In local algorithms, nodes must decide only using local knowledge.
- In the example green nodes see exactly the same neighborhood.

- So these green nodes must decide the same way!

Lower Bound for MDS: Intuition (3)

- But however they decide, one way will be devastating (with $n=m^{2}$)!

$\left|\mathrm{DS}_{\text {OPT without green }}\right| \geq \mathrm{m}$.

$\left|D S_{\text {OPT }}\right|=m+1$.
$\mid \mathrm{DS}_{\text {OPT }}$ with green $\mid>n$

Graph Used in the Lower Bound

- The example is for $t=3$.
- All edges are in fact special bipartite graphs with large enough girth.

Lower Bounds

- Results: Many "local looking" problems need non-trivial t.
- E.g., a polylogarithmic dominating set approximation (or a maximal independent set, etc.) needs at least $\Omega(\log \Delta)$ and $\Omega\left(\log ^{1 / 2} n\right)$ time.

[Kuhn, Moscibroda, W, 2004, 2006, 2010]

Local Algorithms ("Tight" Lower \& Upper Bounds)

