Chapter 9

Clock Synchronization

9.1 Slide 9/32

Theorem 9.1. No matter what clock synchronization algorithm we run, the
skew between two neighboring clocks may always be Q(alogs—o D), where D is
the diameter of the network, hardware clocks have a rate between 1 —¢ and 1+¢
(worst case), message delay is between 0 and 1 (worst case), and logical clocks
must run at least at rate o, and at most at rate 3. (On the slides we assumed
that « =1.)

Proof. (Sketch) The proof is on a chain of D + 1 nodes vy,vs,...,vp11; we set
lo :== D.! Assume that the nodes run their algorithm for time Tj := 12: lp < é—%,

all nodes have a hardware clock rate of 1, and all messages are delayed for 1/2
time. This situation is indistinguishable for the nodes from a situation where
the nodes vy, vs,...,vp11 have hardware clock rates 1 +¢,1+¢ —¢/ly,1 +¢ —
2e/ly, ..., 1 if we adapt message delays accordingly, i.e., “down” messages are
slower than “up” messages. Since the difference between the hardware clock

rates between neighbors is exactly % and Ty < é—“g, we need to modify the
message delays by at most i . ;—‘; = 1/2, i.e., all message delays are still in the

valid range of [0, 1].2

Since the fastest node is running 1 + ¢ times faster than in the original
execution, and the executions are indistinguishable, it reaches the logical clock
value that it reached at time Ty already at time T} := i—g. Since the slowest
node still runs at rate 1, it reaches the same logical clock value at time Tj in
both executions. As the fastest node increased its logical clock at least at rate «
in the interval To — Tj) = ZZ“, the clock skew between the fastest and the slowest
node increased by at least §lo until time T,

Now, in a second phase, we give the nodes time to adapt again, starting
at time T). Assume that the nodes continue to run their algorithm for T :=

1%8;2) lh < 8(%_'&)[0 time, all nodes have a hardware clock rate of 1, and
messages again take time 1/2. Since the lagging bottom node can run at most

at rate 8, and the top node must run at least at rate «, the clock skew between

IThe proof also works on general graphs.
2In this short summary we will not prove this formally, but we encourage the reader to
verify it with an example.

11

12 CHAPTER 9. CLOCK SYNCHRONIZATION

these nodes reduces by at most (—) - ﬁlo = glo, i.e., the clock skew
is still at least $lp. Because of the pigeonhole principle there is a sub-chain of

length 1; := ﬁlo with at clock skew of at least §l; between the top and

the bottom node of the sub-chain. Note that T} = %ll < é—la We can again
change the execution indistinguishably by setting the hardware clock rates along
this subchain to 1 +¢,1+¢e —¢/l;,1+¢e —2¢/ly,...,1 and adapt the message
delays (which again lie in the interval [0, 1]). Again, the topmost node reaches
the same logical clock value at time T} := i—le that it reached before at time 7.
Due to the fact that it increased its logical clock value at least at rate « in the
interval Th — T} = %, the clock skew between the fastest and the slowest node
in this sub-chain increased by ast least ¢l1, i.e., the clock skew is now at least
%ll + %ll = %ll.

Now we repeat this process recursively for sub-chains of lengths [o, 3, etc.
Since ;41 is a factor of 4(,3“7% smaller than /;, we can only do this logys_a) /(ae) D
often. However, in each of these log4(ﬁ_a)/(a€)D phases, the average clock
skew between the top and the bottom node of a sub-chain will grow by g.
In other words, the skew between some neighboring nodes will be at least

Qalogs—o D). O

