Clock Synchronization

Clock Synchronization in Networks

Clock Synchronization in Networks

Problem: Physical Reality

message delay

Clock Synchronization in Theory?

Given a communication network

- 1. Each node equipped with hardware clock with drift
- 2. Message delays with jitter

worst-case (but constant)

Goal: Synchronize Clocks ("Logical Clocks")

• Both global and local synchronization!

Time Must Behave!

• Time (logical clocks) should **not** be allowed to **stand still** or **jump**

Time Must Behave!

• Time (logical clocks) should not be allowed to stand still or jump

- Let's be more careful (and ambitious):
- Logical clocks should always move forward
 - Sometimes faster, sometimes slower is OK.
 - But there should be a minimum and a maximum speed.
 - As close to correct time as possible!

Local Skew

Tree-based Algorithms e.g. FTSP Neighborhood Algorithms e.g. GTSP

Synchronization Algorithms: An Example ("A^{max}")

- Question: How to update the logical clock based on the messages from the neighbors?
- Idea: Minimizing the skew to the fastest neighbor
 - Set clock to maximum clock value you know, forward new values immediately
- First all messages are slow (1), then suddenly all messages are fast (0)!

Local Skew: Overview of Results

Experimental Results for Global Skew

[Lenzen, Sommer, W, SenSys 2009]

Experimental Results for Global Skew

Clock Synchronization vs. Car Coordination

• In the future cars may travel at high speed despite a tiny safety distance, thanks to advanced sensors and communication

Clock Synchronization vs. Car Coordination

• In the future cars may travel at high speed despite a tiny safety distance, thanks to advanced sensors and communication

- How fast & close can you drive?
- Answer possibly related to clock synchronization
 - clock drift \leftrightarrow cars cannot control speed perfectly
 - message jitter ↔ sensors or communication between cars not perfect