Chapter 4

Maximal Independent Set

In this chapter we present a first highlight of this course, a fast maximal inde-
pendent set (MIS) algorithm. The algorithm is the first randomized algorithm
that we study in this class. In distributed computing, randomization is a pow-
erful and therefore omnipresent concept, as it allows for relatively simple yet
efficient algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples, matching and vertex coloring (see Chapter
1.1).

4.1 MIS

Definition 4.1 (Independent Set). Given an undirected Graph G = (V, E) an
independent set is a subset of nodes U C V', such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of maximum cardinality is called
maztmum.

Figure 4.1: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).

31

32

CHAPTER 4. MAXIMAL INDEPENDENT SET

Remarks:

e Computing a maximum independent set (MaxIS) is a notoriously difficult

problem. It is equivalent to maximum clique on the complementary graph.
Both problems are NP-hard, in fact not approximable within nz—e.

In this course we concentrate on the maximal independent set (MIS) prob-
lem. Please note that MIS and MaxIS can be quite different, indeed there
are graphs where the MIS is ©(n) smaller than the MaxIS.

Computing a MIS sequentially is trivial: Scan the nodes in arbitrary order.
If a node u does not violate independence, add u to the MIS. If « violates
independence, discard u. So the only question is how to compute a MIS
in a distributed way.

Algorithm 16 Slow MIS

Require: Node IDs

1

2:

o

: Every node v executes the following code
if all neighbors of v with larger identifiers have decided not to join the MIS
then

v decides to join the MIS

end if

Remark:

e Not surprisingly the slow algorithm is not better than the sequential algo-

rithm in the worst case, because there might be one single point of activity
at any time. Formally:

Theorem 4.2 (Analysis of Algorithm 16). Algorithm 16 features a time com-
plezity of O(n) and a message complexity of O(m).

Remark:

e This obviously is not very exciting. ..

e There is a relation between independent sets and node coloring (Chapter

1), since each color class is an independent set, however, not necessarily a
MIS. Still, starting with a coloring, one can easily derive a MIS algorithm:
We first choose all nodes of the first color. Then, for each additional color
we add “in parallel” (without conflict) as many nodes as possible. Thus
the following corollary holds:

Corollary 4.3. Given a coloring algorithm that needs C colors and runs in
time T, we can construct a MIS in time C +T.

Remarks:

e Using Theorem 1.17 and Corollary 4.3 we get a distributed determinis-

tic MIS algorithm for trees (and for bounded degree graphs) with time
complexity O(log™ n).

4.1. MIS 33

e With a lower bound argument one can show that the deterministic MIS
algorithm for rings is asymptotically optimal.

e There have been attempts to extend Algorithm 5 to more general graphs,
however, so far without much success. Below we present a radically dif-
ferent approach that uses randomization. Please note that the algorithm
and the analysis below is not identical with the algorithm in Peleg’s book.

Algorithm 17 Fast MIS
The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Node v marks itself with probability #(U), where d(v) is the current degree
of v.
2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remark:

e Correctness in the sense that the algorithm produces an independent set
is relatively simple: Steps 1 and 2 make sure that if a node v joins the
MIS, then v’s neighbors do not join the MIS at the same time. Step 3
makes sure that v’s neighbors will never join the MIS.

e Likewise the algorithm eventually produces a MIS, because the node with
the highest degree will mark itself at some point in step 1.

e So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.

Lemma 4.4 (Joining MIS). A node v joins the MIS in step 2 with probability

1
P2 ey

Proof: Let M be the set of marked nodes in step 1. Let H(v) be the set of
neighbors of v with higher degree, or same degree and higher identifier. Using
independence of v and H (v) in step 1 we get

Privg¢ MISjv e M] = Pr[3we Hw),w € M|v e M]
= Pr[3we Hw),w € M]

< Z Priwe M| = Z %

weH (v) weH (v)

IN
—

IA
=
<
Il

| =

34 CHAPTER 4. MAXIMAL INDEPENDENT SET

Then

Prlv e MIS] = PrveMIS|v e M]-PrlveM]>

l\')l»—l
]
Y
—
<
S~—

Lemma 4.5 (Good Nodes). A node v is called good if

1 1
2, 2w 5§

weEN (v)

Otherwise we call v a bad node. A good node will be removed in step 8 with
probability p > %

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in step 3 of the algorithm.

If there is a neighbor w € N(v) with degree at most 2 we are done: With
Lemma 4.4 the probability that node w joins the MIS is at least % s, and our
good node will be removed in step 3.

So all we need to worry about is that all neighbors have at least degree 3:
1

1
For any neighbor w of v we have m < %. Since Z — there is a
weN (v)

. 1
subset of neighbors X C N(v) such that 5= Z Sdlw) <

(w)

We can now bound the probability that node v Will be removed. Let therefore

E be the event of v being removed. Again, if a neighbor of v joins the MIS in
step 2, node v will be removed in step 3. We have

2d

W~

PrE] > Pr[3uec X,ue MIS]
> > PrlueMIS|— > PrlucMISand we MIS].
ueX u,wE X ;uFw

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after step
1. Using Pr[u € M| > Pr[u € MIS| we get

Prl(E] > ZPT[uEMIS]— Z Prue M and w € M]
ueX u,we X ;uFw
> ZPr[ueMIS]—ZZPr[ueM]-Pr[weM]
ueX ueX weX
>
. -2 3 s
ueX weX
1 1 1 1
el > (=-2)=2
iex Zd(u)< wex ? >> 6 36

4.1. MIS 35

Remark:

e We would be almost finished if we could proof that many nodes are good
in each phase. Unfortunately this is not the case: In a star-graph, for
instance, only a single node is good! We need to find a work-around.

Lemma 4.6 (Good Edges). An edge e = (u,v) is called bad if both u and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 4.7. A bad node has outdegree at least twice its indegree.

Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then

which means v is good, a contradiction.]

Continuing the proof of Lemma 4.6: According to Lemma 4.7 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 4.8 (Analysis of Algorithm 17). Algorithm 17 terminates in expected
time O(logn).

Proof: With Lemma 4.5 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 4.6) a constant number of edges will be deleted in each phase. After
O(logm) phases all edges are deleted. Since m < n? the Theorem follows. O

Remarks:

e The proof of Theorem 4.8 was a bit hasty. To make the log argument work
one has to show that with high probability one can remove a constant
number of edges in every round. With a bit of more “boring” math the
argument can be made formal, in fact one can even show that Algorithm
17 terminates in time O(logn) “with high probability”.

e The presented algorithm is a simplified version of an algorithm by Michael
Luby, published 1986 in the SIAM Journal of Computing. Around the
same time there have been a number of other papers dealing with the same
or related problems, for instance by Alon, Babai, and Itai, or by Israeli
and Itai. The analysis presented takes elements of these papers, and from
yet other papers on distributed weighted matching. The analysis in the
book by David Peleg is different, and only achieves O(log® n) time.

36

CHAPTER 4. MAXIMAL INDEPENDENT SET

e Surprisingly, much later, there have been half a dozen more papers pub-
lished, with much worse results!! In 2002, for instance, there was a paper
with linear running time, improving on a 1994 paper with cubic running
time, restricted to trees!

e Let’s turn our attention to applications of MIS next.

4.2 Applications

Definition 4.9 (Matching). Given a graph G = (V, E) a matching is a subset
of edges M C E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

Remarks:

e In contrast to MaxIS, a maximum matching can be found in polynomial
time (Blossom algorithm by Jack Edmonds), and is also easy to approxi-
mate (in fact, already any maximal matching is a 2-approximation).

e An independent set algorithm is also a matching algorithm: Let G =
(V,E) be the graph for which we want to construct the matching. The
auxiliary graph G’ is defined as follows: for every edge in G there is a node
in G’; two nodes in G’ are connected by an edge if their respective edges
in G are adjacent. A (maximal) independent set in G’ is a (maximal)
matching in G, and vice versa. Using Algorithm 17 directly produces a
O(logn) bound for maximal matching.

e More importantly, our MIS algorithm can also be used for vertex coloring
(Problem 1.1):

Algorithm 18 General Graph Coloring

1:

Given a graph G = (V, E) we virtually build a graph G’ = (V',E’) as
follows:

: Every node v € V clones itself d(v) +1 times (vo, ..., v4(,) € V'), d(v) being

the degree of v in G.

: The edge set E' of G’ is as follows:
: First all clones are in a clique: (v;,v;) € E', for all v € V and all 0 < i <

j<d(v)

: Second all i*" clones of neighbors in the original graph G are connected:

(us,v;) € E', for all (u,v) € E and all 0 < ¢ < min(d(u), d(v)).

: Now we simply run (simulate) the fast MIS Algorithm 17 on G’.
: If node v; is in the MIS in G’, then node v gets color i.

Theorem 4.10 (Analysis of Algorithm 18). Algorithm 18 (A + 1)-colors an
arbitrary graph in O(logn) time, with high probability, A being the largest degree
in the graph.

4.2. APPLICATIONS 37

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v) + 1 clones of node v every node will get a free color!
The running time remains logarithmic since Graph G’ can be simulated without
overhead.

Remarks:

e This solves our open problem from Chapter 1.1!

e Together with Corollary 4.3 we get quite close ties between (A+1)-coloring
and the MIS problem.

38

CHAPTER 4. MAXIMAL INDEPENDENT SET

