
Chapter 13

Shared Memory

13.1 Introduction

Throughout this course we have already seen various models of distributed com-
puting. So far, the focus of the course was on loosely-coupled distributed systems
such as the Internet, where nodes asynchronously communicate by exchanging
messages. The “opposite” model is a tightly-coupled parallel computer where
nodes access a common memory totally synchronously—in distributed comput-
ing such a system is called a Parallel Random Access Machine (PRAM).

A third major model is somehow between these two extremes, the shared
memory model. In a shared memory system, asynchronous processors commu-
nicate via a common memory area of shared variables or registers:

Definition 13.1 (Shared Memory). A shared memory system is a system that
consists of asynchronous processors that access a common (shared) memory. A
processor can atomically access a register in the shared memory through a set of
predefined operations. Apart from this shared memory, processors can also have
some local (private) memory.

Remarks:

• Various shared memory systems exist. A main difference is how they allow
processors to access the shared memory. All systems can atomically read
or write a shared register. Most systems do allow for advanced atomic
read-modify-write (RMW) operations on registers r, for example:

– test-and-set(r): t := r; r := 1; return t

– fetch-and-add(r, x): t := r; r := r + x; return t

– compare-and-swap(r, x, y): t := r; if r = x then r := y endif; return t

– load-link/store-conditional: Load-link returns the current value of
the specified register. A subsequent store-conditional to the same
register will store a new value only if no updates have occurred to
that register since the load-link. If any updates have occurred, the
store-conditional is guaranteed to fail, even if the value read by the
load-link has since been restored

109



110 CHAPTER 13. SHARED MEMORY

• Maurice Herlihy suggested that the power of RMW operations can be
measured with the so-called consensus-number : The consensus-number
of a RMW operation defines whether one can solve consensus for k pro-
cessors. Test-and-set for instance has consensus-number 2 (one can solve
consensus with 2 processors, but not 3), whereas the consensus-number of
compare-and-swap is infinite. In his 1991 paper, Maurice Herlihy proved
the “universality of consensus”, i.e., the power of a shared memory sys-
tem is determined by the consensus-number. This insight had a remark-
able theoretical and practical impact. In practice for instance, hardware
designers stopped developing shared memory systems supporting weak
RMW operations. Consequently, Maurice Herlihy was awarded the Dijk-
stra Prize in Distributed Computing in 2003.

• Many of the results derived in the message passing model have an equiva-
lent in the shared memory model. Consensus for instance is traditionally
studied in the shared memory model.

• Whereas programming a message passing system is rather tricky (in partic-
ular if fault-tolerance has to be integrated), programming a shared mem-
ory system is generally considered easier, as programmers are given access
to global variables directly and do not need to care about shared object
support as discussed in Chapter 12. Because of this, even distributed
systems which physically communicate by exchanging messages can of-
ten be programmed through a shared memory middleware, making the
programmer’s life easier.

• We will most likely find the general spirit of shared memory systems in
upcoming multi-core architectures. As for programming style, the multi-
core community seems to favor an accelerated version of shared memory,
transactional memory.

• From a message passing perspective, the shared memory model is like
a bipartite graph: One one side you have the processors (the nodes)
which pretty much behave like nodes in the message passing model (asyn-
chronous, maybe failures). On the other side you have the shared registers,
which just work perfectly (no failures, no delay).

13.2 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion.1 We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time is
allowed to access the resource. More formally:

Definition 13.2 (Mutual Exclusion). We are given a number of processes, each
executing the following code sections:
<Entry> → <Critical Section> → <Exit> → <Remaining Code>

1In message passing systems mutual exclusion can be done by shared objects, see Chapter
12.



13.2. MUTUAL EXCLUSION 111

A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds

• Mutual Exclusion: At all times at most one processor is in the critical
section.

• No deadlock: If some processor manages to get to the entry section, later
some (possibly different) processor will get to the critical section.

Sometimes we in addition ask for

• No lockout: If some processor manages to get to the entry section, later
the same processor will get to the critical section.

• Unobstructed exit: No processor can get stuck in the exit section.

Using RMW primitives one can build mutual exclusion algorithms quite easily.
Algorithm 46 shows an example with the test-and-set primitive.

Algorithm 46 Mutual Exclusion: Test-and-Set

Initialization: Shared register R = 0
<Entry>
1: repeat
2: r := test-and-set(R)
3: until r=0

<Critical Section>
4: . . .

<Exit>
5: R := 0

<Remainder Code>
6: . . .

Theorem 13.3. Algorithm 46 solves the mutual exclusion problem as in Defi-
nition 13.2.

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let pi be the ith processor to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time ti. At time t′i processor pi resets the shared register R to 0. Between ti
and t′i no other processor can successfully test-and-set, hence no other processor
can enter the critical section concurrently.

Proofing no deadlock is similar: One of the processors loitering in the entry
section will successfully test-and-set as soon as the process in the critical section
exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

No lockout, on the other hand, is not given by this algorithm. Even with
only two processors there are asynchronous executions where always the same
processor wins the test-and-set.



112 CHAPTER 13. SHARED MEMORY

Remarks:

• Algorithm 46 can be adapted to guarantee fairness (no lockout), essentially
by ordering the processors in the entry section in a queue.

• A natural question is whether one can achieve mutual exclusion with only
reads and writes, that is without advanced RMW operations. The answer
is yes!

Our read/write mutual exclusion algorithm is for two processors p0 and p1 only.
In the remarks we discuss how it can be extended. The general idea is that
processor pi has to mark its desire to enter the critical section in a “want”
register wi by setting wi := 1. Only if the other processor is not interested
(w1−i = 0) access is granted. This however is too simple since we may run into
a deadlock. This deadlock (and at the same time also lockout) is resolved by
adding a priority variable π. See Algorithm 47.

Algorithm 47 Mutual Exclusion: Petersen’s Algorithm

Initialization: Shared registers w0, w1, π, all = 0.
Code for processor pi , i={0,1}
<Entry>
1: wi := 1
2: π := 1 − i
3: repeat until π = i or w1−i = 0

<Critical Section>
4: . . .

<Exit>
5: wi := 0

<Remainder Code>
6: . . .

Remark:

• Note that line 3 in Algorithm 47 represents a “spinlock” or “busy-wait”,
similarly to the lines 1-3 in Algorithm 46.

Theorem 13.4. Algorithm 47 solves the mutual exclusion problem as in Defi-
nition 13.2.

Proof. The shared variable π elegantly grants priority to the processor that
passes line 2 first. If both processors are competing, only processor pπ can
access the critical section because of π. The other processor p1−π cannot access
the critical section because wπ = 1 (and π 6= 1 − π). The only other reason
to access the critical section is because the other processor is in the remainder
code (that is, not interested). This proves mutual exclusion!

No deadlock comes directly with π: Processor pπ gets direct access to the
critical section, no matter what the other processor does.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Thanks to the shared variable π also no lockout (fairness) is achieved: If a
processor pi loses against its competitor p1−i in line 2, it will have to wait until



13.3. STORE & COLLECT 113

the competitor resets w1−i := 0 in the exit section. If processor pi is unlucky it
will not check w1−i = 0 early enough before processor p1−i sets w1−i := 1 again
in line 1. However, as soon as p1−i hits line 2, processor pi gets the priority
register π, and can enter the critical section.

Remark:

• Extending Petersen’s Algorithm to more than 2 processors can be done
by a tournament tree, like in tennis. With n processors every processor
needs to win log n matches before it can enter the critical section. More
precisely, each processor starts at the bottom level of a binary tree, and
proceeds to the parent level if winning. Once winning the root of the tree
it can enter the critical section. Thanks to the priority variables π at each
node of the binary tree, we inherit all the properties of Definition 13.2.

13.3 Store & Collect

13.3.1 Problem Definition

In this section, we will look at a second shared memory problem that has an
elegant solution. Informally, the problem can be stated as follows. There are
n processors p1, . . . , pn. Every processor pi has a read/write register ri in the
shared memory where it can store some information that is destined for the other
processors. Further, there is an operation by which a processor can collect (i.e.,
read) the values of all the processors that stored some value in their register.

We say that an operation op1 precedes an operation op2 iff op1 terminates
before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 13.5 (Collect). There are two operations: A store(val ) by process
pi sets val to be the latest value of its register ri. A collect operation returns
a view, a partial function V from the set of processors to a set of values, where
V (pi) is the latest value stored by pi, for each processor pi. For a collect

operation cop, the following validity properties must hold for every processor pi:

• If V (pi) = ⊥, then no store operation by pi precedes cop.

• If V (pi) = v 6= ⊥, then v is the value of a store operation sop of pi that
does not follow cop, and there is no store operation by pi that follows
sop and precedes cop.

Hence, a collect operation cop should not read from the future or miss a
preceding store operation sop.

We assume that the read/write register ri of every processor pi is initialized
to ri = ⊥. We define the step complexity of an operation op to be the number
of accesses to registers in the shared memory. There is a trivial solution to the
collect problem as shown by Algorithm 48.

Remarks:

• Algorithm 48 clearly works. The step complexity of every store operation
is 1, the step complexity of a collect operation is n.



114 CHAPTER 13. SHARED MEMORY

Algorithm 48 Collect: Simple (Non-Adaptive) Solution

Operation store(val ) (by processor pi) :
1: ri := val

Operation collect:
2: for i := 1 to n do
3: V (pi) := ri // read register ri

4: end for

Algorithm 49 Splitter Code

Shared Variables: X : {⊥} ∪ {1, . . . , n}; Y : boolean
Initialization: X := ⊥; Y := false

Splitter access by processor pi:
1: X := i;
2: if Y then
3: return right
4: else
5: Y := true
6: if X = i then
7: return stop
8: else
9: return left

10: end if
11: end if

• At first sight, the step complexities of Algorithm 48 seem optimal. Be-
cause there are n processors, there clearly are cases in which a collect

operation needs to read all n registers. However, there are also scenarios
in which the step complexity of the collect operation seems very costly.
Assume that there are only two processors pi and pj that have stored a
value in their registers ri and rj . In this case, a collect in principle only
needs to read the registers ri and rj and can ignore all the other registers.

• Assume that up to a certain time t, k ≤ n processors have finished or
started at least one operation. We call an operation op at time t adap-
tive to contention if the step complexity of op only depends on k and is
independent of n.

• In the following, we will see how to implement adaptive versions of store

and collect.

13.3.2 Splitters

To obtain adaptive collect algorithms, we need a synchronization primitive,
called a splitter.

Definition 13.6 (Splitter). A splitter is a synchronization primitive with the
following characteristic. A processor entering a splitter exits with either stop,
left, or right. If k processors enter a splitter, at most one processor exits with
stop and at most k − 1 processors enter with left and right, respectively.



13.3. STORE & COLLECT 115

k processors

at most 1

left
at most k−1

right
at most k−1

stop

Figure 13.1: A Splitter

Hence, it is guaranteed that if a single processor enters the splitter, then
it obtains stop, and if two or more processors enter the splitter, then there is
at most one processor obtaining stop and there are two processors that obtain
different values (i.e., either there is exactly one stop or there is at least one
left and at least one right). For an illustration, see Figure 13.1. The code
implementing a splitter is given by Algorithm 49.

Lemma 13.7. Algorithm 49 correctly implements a splitter.

Proof. Assume that k processors enter the splitter. It is sufficient to show that
at most 1 returns stop, at most k − 1 return left, and at most k − 1 return
right. Because the first processor that checks whether Y = true in line 2 will
find that Y = false, not all processors return right. Next, assume that i is the
last processor that sets X := i. If i does not return right, it will find X = i in
line 6 and therefore return stop. Hence, there is always a processor that does
not return left. It remains to show that at most 1 processor returns stop. For
the sake of contradiction, assume pi and pj are two processors that return stop
and assume that pi sets X := i before pj sets X := j. Both processors need
to check whether Y is true before one of them sets Y := true. Hence, they
both complete the assignment in line 1 before the first one of them checks the
value of X in line 6. Hence, by the time pi arrives at line 6, X 6= i (pj and
maybe some other processors have overwritten X by then). Therefore, pi does
not return stop and we get a contradiction to the assumption that both pi and
pj return stop.

13.3.3 Binary Splitter Tree

Assume that we are given 2n−1 splitters and that for every splitter S, there is an
additional shared variable ZS : {⊥}∪{1, . . . , n} that is initialized to ZS = ⊥ and
an additional shared variable MS : boolean that is initialized to MS = false.
We call a splitter S marked if MS = true. The 2n − 1 splitters are arranged in
a complete binary tree of height n− 1. Let S(v) be the splitter associated with
a node v of the binary tree. The store and collect operations are given by
Algorithm 50.

Theorem 13.8. Algorithm 50 correctly implements store and collect. Let
k be the number of participating processes. The step complexity of the first
store of a processor pi is O(k), the step complexity of every additional store

of pi is O(1), and the step complexity of collect is O(k).



116 CHAPTER 13. SHARED MEMORY

Algorithm 50 Adaptive Collect: Binary Tree Algorithm

Operation store(val ) (by processor pi) :
1: ri := val
2: if first store operation by pi then
3: v := root node of binary tree
4: α := result of entering splitter S(v);
5: MS(v) := true
6: while α 6= stop do
7: if α = left then
8: v := left child of v
9: else

10: v := right child of v
11: end if
12: α := result of entering splitter S(v);
13: MS(v) := true
14: end while
15: ZS(v) := i
16: end if

Operation collect:
Traverse marked part of binary tree:
17: for all marked splitters S do
18: if ZS 6= ⊥ then
19: i := ZS ; V (pi) := ri // read value of processor pi

20: end if
21: end for // V (pi) = ⊥ for all other processors

Proof. Because at most one processor can stop at a splitter, it is sufficient to
show that every processor stops at some splitter at depth at most k− 1 ≤ n− 1
when invoking the first store operation to prove correctness. We prove that at
most k − i processors enter a subtree at depth i (i.e., a subtree where the root
has distance i to the root of the whole tree). By definition of k, the number of
processors entering the splitter at depth 0 (i.e., at the root of the binary tree)
is k. For i > 1, the claim follows by induction because of the at most k − i
processors entering the splitter at the root of a depth i subtree, at most k− i−1
obtain left and right, respectively. Hence, at the latest when reaching depth
k−1, a processor is the only processor entering a splitter and thus obtains stop.
It thus also follows that the step complexity of the first invocation of store is
O(k).

To show that the step complexity of collect is O(k), we show that at most
2k − 1 nodes of the binary tree are marked. Let xk be the number of marked
nodes in a tree, where k processors access the root. The splitter properties
imply the following recursive equations:

xk ≤ xi + xk−i−1 + 1, (i ≥ 0) (13.1)

xk ≤ xi + xk−i + 1, (i > 0) (13.2)

Equation (13.1) holds if a process stops in the splitter; otherwise, Equation
(13.2) holds.



13.3. STORE & COLLECT 117

left

right

Figure 13.2: 5 × 5 Splitter Matrix

We prove the claim by induction; note that it trivially holds for k = 1. For
the induction step, assume the claim is true for j < k, that is, xj ≤ 2j − 1.
Then we can rewrite Equation (13.1):

xk ≤ (2i − 1) + (2(k − i − 1) − 1) + 1 ≤ 2k − 1

and Equation (13.2) becomes:

xk ≤ (2i − 1) + (2(k − i) − 1) + 1 ≤ 2k − 1.

Remark:

• The step complexities of Algorithm 50 are very good. Clearly, the step
complexity of the collect operation is asymptotically optimal. In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n−1. The space complexity of Algorithm 50
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse collect step complexity.

13.3.4 Splitter Matrix

Instead of arranging splitters in a binary tree, we arrange n2 splitters in an n×n
matrix as shown in Figure 13.2. The algorithm is analogous to Algorithm 50.
The matrix is entered at the top left. If a processor receives left, it next visits
the splitter in the next row of the same column. If a processor receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n2). The following theorem gives bounds on
the step complexities of store and collect.



118 CHAPTER 13. SHARED MEMORY

Theorem 13.9. Let k be the number of participating processes. The step com-
plexity of the first store of a processor pi is O(k), the step complexity of every
additional store of pi is O(1), and the step complexity of collect is O(k2).

Proof. Let the top row be row 0 and the left-most column be column 0. Let xi

be the number of processors entering a splitter in row i. By induction on i, we
show that xi ≤ k − i. Clearly, x0 ≤ k. Let us therefore consider the case i > 0.
Let j be the largest column such that at least one processor visits the splitter
in row i − 1 and column j. By the properties of splitters, not all processors
entering the splitter in row i − 1 and column j obtain left. Therefore, not all
processors entering a splitter in row i−1 move on to row i. Because at most one
processors stays in every row, we get that xi ≤ k − i. Similarly, the number of
processors entering column j is at most k − j. Hence, every processors stops at
the latest in row k−1 and column k−1 and the number of marked splitters is at
most O(k2). Thus, the step complexity of collect is at most O(k2). Because
the longest path in the splitter matrix is 2k, the step complexity of store is
O(k).

Remarks:

• With a slightly more complicated argument, it is possible to show that
the number of processors entering the splitter in row i and column j is
at most k − i − j. Hence, it suffices to only allocate the upper left half
(including the diagonal) of the n × n matrix of splitters.

• The binary tree algorithm can be made space efficient by using a random-
ized version of a splitter. Whenever returning left or right, a randomized
splitter returns left or right with probability 1/2. With high probability,
it then suffices to allocate a binary tree of depth O(log n).

• Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n2) space complexity.




