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Sensor Networks = Distributed Algorithms?

• Reloaded
Distributed (message passing) algorithms– Distributed (message passing) algorithms

– Message complexity Æ Support for energy efficiency
– Time complexity Æ Support for dynamics

• Revolutions
WirelessÆ Interference issuesÆ Not standard message passing– Wireless Æ Interference issues Æ Not standard message passing, 
but new types of distributed algorithms

– Wireless Æ New types of connectivity/interference graphs?

• Finally an application that can’t live without state-of-the-art 
distributed graph algorithms?!g p g
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Clustering etcClustering etc.
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Rating

• Area maturity

First steps                                                         Text book

• Practical importance

No apps Mission critical

Th ti l i t

No apps                                                     Mission critical

• Theoretical importance

Not really                                                          Must have
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Overview

• Motivation
D i ti S t• Dominating Set

• Some algorithms
• Model discussionModel discussion
• Some more algorithms
• Models reloaded
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Motivation

• In theory clustering is the solution to almost any problem in ad hoc 
and sensor networks It improves almost any algorithm e g in dataand sensor networks. It improves almost any algorithm, e.g. in data 
gathering it selects cluster heads which do the work while other 
nodes can save energy by sleeping. Here, however, we motivate 
l t i ith ticlustering with routing:

• There are thousands of routing algorithms…There are thousands of routing algorithms…
• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…

• Flooding is key component of (many) proposed algorithms, including 
most prominent ones (AODV DSR)most prominent ones (AODV, DSR)

• At least flooding should be efficient
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Finding a Destination by Flooding
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Finding a Destination Efficiently
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Backbone

• Idea: Some nodes become backbone nodes (gateways). Each node 
can access and be accessed by at least one backbone nodecan access and be accessed by at least one backbone node. 

• Routing:g
1. If source is not a

gateway, transmit
message to gatewaymessage to gateway

2. Gateway acts as
proxy source and
routes message on
backbone to gateway
of destination.

3. Transmission gateway
to destination.
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(Connected) Dominating Set

• A Dominating Set DS is a subset of nodes such that each node is 
either in DS or has a neighbor in DSeither in DS or has a neighbor in DS.

• A Connected Dominating Set CDS is a connected DS, that is, there g
is a path between any two nodes in CDS that does not use nodes 
that are not in CDS.

• A CDS is a good choice
for a backbone. 

• It might be favorable to
have few nodes in thehave few nodes in the 
CDS. This is known as the
Minimum CDS problem
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Formal Problem Definition: M(C)DS

• Input: We are given an (arbitrary) undirected graph. 

• Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.( )

• Problems
– M(C)DS is NP-hard
– Find a (C)DS that is “close” to minimum (approximation)
– The solution must be local (global solutions are impractical for– The solution must be local (global solutions are impractical for 

mobile ad-hoc network) – topology of graph “far away” should 
not influence decision who belongs to (C)DS
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Other useful structures

• Maximal Independent Set (MIS)

• Maximum Independent Set (MaxIS)

• (∆+1) or O(∆) Coloring

• (Connected) Domatic Partition
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Greedy Algorithm for Dominating Sets

• Idea: Greedily choose “good” nodes into the dominating set.

• Black nodes are in the DS
• Grey nodes are neighbors of nodes in the DSGrey nodes are neighbors of nodes in the DS
• White nodes are not yet dominated, initially all nodes are white.

• Algorithm: Greedily choose a node that colors most white nodes.

O h th t thi i l Δ i ti if Δ i th• One can show that this gives a log Δ approximation, if Δ is the 
maximum node degree of the graph. (The proof is similar to the 
“Tree Growing” proof on the following slides.) 

• One can also show that there is no polynomial algorithm with better 
performance unless P≈NP.
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CDS: The “too simple tree growing” algorithm

• Idea: start with the root, and then greedily choose a neighbor of the 
tree that dominates as many as possible new nodestree that dominates as many as possible new nodes

• Black nodes are in the CDS
• Grey nodes are neighbors of nodes in the CDS
• White nodes are not yet dominated, initially all nodes are white.

• Start: Choose a node with maximum degree, and make it the root of 
the CDS, that is, color it black (and its white neighbors grey).the CDS, that is, color it black (and its white neighbors grey).

• Step: Choose a grey node with a maximum number of white 
neighbors and color it black (and its white neighbors grey).
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Example of the “too simple tree growing” algorithm

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

u u u

tree growing: start                        …                         Minimum CDS

v v v
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Tree Growing Algorithm

• Idea: Don’t scan one but two nodes!

• Alternative step: Choose a grey node and its white neighbor node 
with a maximum sum of white neighbors and color both black (and g (
their white neighbors grey).
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Analysis of the tree growing algorithm

• Theorem: The tree growing algorithm finds a connected set of size 
|CDS| ≤ 2(1+H(Δ)) · |DS ||CDS| ≤ 2(1+H(Δ)) · |DSOPT|. 

• DSOPT is a (not connected) minimum dominating setOPT ( ) g
• Δ is the maximum node degree in the graph
• H is the harmonic function with H(n) ≈ log(n)+0.7

• In other words, the connected dominating set of the tree growing 
algorithm is at most a O(log(Δ)) factor worse than an optimumalgorithm is at most a O(log(Δ)) factor worse than an optimum 
minimum dominating set (which is NP-hard to compute).

• With a lower bound argument (reduction to set cover) one can show 
that a better approximation factor is impossible, unless P≈NP.
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Proof Sketch

• The proof is done with amortized analysis. 

• Let Su be the set of nodes dominated by u ∈ DSOPT, or u itself. If a 
node is dominated by more than one node, we put it in one of the y p
sets.

W h th d i th h f h d l bl k I• We charge the nodes in the graph for each node we color black. In 
particular we charge all the newly colored grey nodes. Since we 
color a node grey at most once, it is charged at most once.

• We show that the total charge on the vertices in an Su is at most 
2(1+H(Δ)) for any u2(1+H(Δ)), for any u.
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Charge on Su

• Initially |Su| = u0.
Wh l d f S ll thi t• Whenever we color some nodes of Su, we call this a step.

• The number of white nodes in Su after step i is ui.
• After step k there are no more white nodes in Su.After step k there are no more white nodes in Su.

• In the first step u0 – u1 nodes are colored u
(grey or black). Each vertex gets a charge of 
at most 2/(u0 – u1).

• After the first step, node u becomes eligible to be colored (as 
part of a pair with one of the grey nodes in Su). If u is not 
chosen in step i (with a potential to paint u nodes grey) thenchosen in step i (with a potential to paint ui nodes grey), then 
we have found a better (pair of) node. That is, the charge to 
any of the new grey nodes in step i in Su is at most 2/ui. 
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Adding up the charges in Su
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Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically 
optimal unless P≈NP And even the constants are smalloptimal unless P≈NP. And even the constants are small.

• Are we happy?ppy

• Not really. How do we implement this algorithm in a real (dynamic) 
t k? H d fi t h th b t / hit i fnetwork? How do we figure out where the best grey/white pair of 

nodes is? How slow is this algorithm in a distributed setting?

• We need a fully distributed algorithm. Nodes should only consider 
local information. 
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The Marking Algorithm

• Idea: The connected dominating set CDS consists of the nodes that 
have two neighbors that are not neighboringhave two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)p g ( )
2. Each node u transmits N(u), and receives N(v) from all its neighbors
3. If node u has two neighbors v,w and w is not in N(v) (and since the 

h i di t d i t i N( )) th k it lf b i i thgraph is undirected v is not in N(w)), then u marks itself being in the 
set CDS.

+ Completely local; only exchange N(u) with all neighbors
+ Each node sends only 1 message, and receives at most Δ
+ Messages have size O(Δ)
• Is the marking algorithm really producing a connected dominating 

set? How good is the set?
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Example for the Marking Algorithm

[J Wu][J. Wu]
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Correctness of Marking Algorithm

• We assume that the input graph G is connected but not complete. 

• Note: If G was complete then constructing a CDS would not make 
sense. Note that in a complete graph, no node would be marked.p g p

• We show: 

The set of marked nodes CDS is
a) a dominating set) g
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS
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Proof of a) dominating set

• Proof: Assume for the sake of contradiction that node u is a node 
that is not in the dominating set and also not dominated Since nothat is not in the dominating set, and also not dominated. Since no 
neighbor of u is in the dominating set, the nodes N+(u) := u ∪ N(u) 
form:

• a complete graph 
– if there are two nodes in N(u) that are not connected u must be in theif there are two nodes in N(u) that are not connected, u must be in the 

dominating set by definition
• no node v ∈ N(u) has a neighbor outside N(u) 

l b d fi iti th d i i th d i ti t– or, also by definition, the node v is in the dominating set

• Since the graph G is connected it only consists of the completeSince the graph G is connected it only consists of the complete 
graph N+(u). We precluded this in the assumptions, therefore we 
have a contradiction
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Proof of b) connected, c) shortest path in CDS

• Proof: Let p be any shortest path between the two nodes u and v, 
with u v ∈ CDSwith u,v ∈ CDS.

• Assume for the sake of contradiction that there is a node w on this 
shortest path that is not in the connected dominating set.

w
vu

• Then the two neighbors of w must be connected, which gives us a 
shorter path. This is a contradiction.
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Improved Marking Algorithm

• If neighbors with larger ID are connected and cover all other 
neighbors then don’t join CDS else join CDSneighbors, then don t join CDS, else join CDS

9 2

5

6

2

8

5

1
4

7
3
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Correctness of Improved Marking Algorithm

• Theorem: Algorithm computes a CDS S

P f (b i d ti f d ID )• Proof (by induction of node IDs):
– assume that initially all nodes are in S
– look at nodes u in increasing ID order and remove from S if higher-ID g g

neighbors of u are connected
– S remains a DS at all times: (assume that u is removed from S)

u

higher-ID
i hb

lower-ID
i b neighborsneigbors

higher-ID neighbors
cover lower-ID neighbors

– S remains connected:
replace connection v-u-v’ by v-n1,…,nk-v’ (ni: higher-ID neighbors of u)
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Quality of the (Improved) Marking Algorithm

• Given an Euclidean chain of n homogeneous nodes
Th t i i f h d i h th t it i t d t• The transmission range of each node is such that it is connected to 
the k left and right neighbors, the id’s of the nodes are ascending.

• An optimal algorithm (and also the tree growing algorithm) puts 
every k’th node into the CDS Thus |CDS | n/k; with k = n/c forevery k’th node into the CDS. Thus |CDSOPT| ≈ n/k; with k = n/c for 
some positive constant c we have |CDSOPT| = O(1).

• The marking algorithm (also the improved version) does mark all the 
nodes (except the k leftmost and/or rightmost ones). Thus 
|CDS | = n – k; with k = n/c we have |CDS | = Ω(n)|CDSMarking| = n – k; with k = n/c we have |CDSMarking| = Ω(n).

• The worst-case quality of the marking algorithm is worst-case! ☺
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“k-local” Algorithm: Overview

Input:
Local Graph

Fractional
Dominating Set

Dominating 
Set

Connected
Dominating Set

0.2
0.5

0.2
0

Local Graph Dominating Set Set Dominating Set

0.80

0.2

0.3

0.1
0.3

0.5

Phase C:
Connect DS 
by “tree” of 

Phase B:
Probabilistic
algorithm

Phase A:
Distributed
linear program y

“bridges”
gp g

rel. high degree 
gives high value
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Phase A is a Distributed Linear Program

• Nodes 1, …, n: Each node u has variable xu with xu ≥ 0
S f l i h i hb h d t l t 1 (l l)• Sum of x-values in each neighborhood at least 1 (local)

• Minimize sum of all x-values (global)

0.2
0.5

0.2

00.3
0

Linear Program

0.80

0.2 0.1
0.3

0.5

0.5+0.3+0.3+0.2+0.2+0 = 1.5 ≥ 1 Adjacency matrix
with 1’s in diagonal

• Linear Programs can be solved optimally in polynomial time
• But not in a distributed fashion! That’s what we need here…
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Phase A Algorithm
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Result after Phase A

• Distributed Approximation for Linear Program
I t d f th ti l l * t d d h (α) ith• Instead of the optimal values xi at nodes, nodes have xi

(α), with

• The value of α depends on the number of rounds k (the locality)

• The analysis is rather intricate… ☺
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Phase B Algorithm

Each node applies the following algorithm:

1 Calculate (= maximum degree of neighbors in distance 2)1. Calculate (  maximum degree of neighbors in distance 2)

2. Become a dominator (i.e. go to the dominating set) with probability

3. Send status (dominator or not) to all neighbors

From phase A Highest degree in distance 2

4. If no neighbor is a dominator, become a dominator yourself
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Result after Phase B

• Randomized rounding technique 

• Expected number of nodes joining the dominating set in step 2 is 
bounded by α log(Δ+1) · |DSOPT|.y g( ) | OPT|

• Expected number of nodes joining the dominating set in step 4 is 
b d d b |DS |bounded by |DSOPT|.

Theorem:

• Phase C Æ essentially the same result for CDS
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Results

• First time/approximation tradeoff. First algorithm which achieves a 
non trivial approximation ratio in constant time (even for UDG!)non-trivial approximation ratio in constant time (even for UDG!)

• Improved versionp
– O(log2Δ / ε4) time for a (1+ε)-approximation of phase A with 

logarithmic sized messages.
A i d d li d di t ib t d d i d di– An improved and generalized distributed randomized rounding
technique for phase B (constant time, logarithmic approximation)

– Works for quite general linear programs.q g p g

• Is it any good…?
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Lower Bound for Dominating Sets: Intuition…

• Two graphs (m << n). Optimal dominating sets are marked red.

complete n n n

…
n-1 m m

m
nn

|DSOPT| = 2.
|DSOPT| = m+1|DSOPT|  m+1.



Lower Bound for Dominating Sets: Intuition…

• In local algorithms, nodes must decide only using local knowledge.
I th l d tl th i hb h d• In the example green nodes see exactly the same neighborhood.

…
n-1 m

m
n

• So these green nodes must decide the same way!

n



Lower Bound for Dominating Sets: Intuition…

• But however they decide, one way will be devastating (with n = m2)!

complete n n n

…
n-1 m m

m
nn

|DSOPT| = 2.
|DS | ≥

|DSOPT| = m+1.
|DSOPT without green| ≥ m. |DSOPT with green| > n



The Lower Bound

• Lower bound
M d l I t k/ h G ( d ) h d– Model: In a network/graph G (nodes = processors), each node 
can exchange a message with all its neighbors for k rounds. 
After k rounds, node needs to decide.

– We construct the graph such that there are nodes that see the 
same neighborhood up to distance k. We show that node ID’s do 
not help, and using Yao’s principle also randomization does not.not help, and using Yao s principle also randomization does not. 

– Results: Many problems (vertex cover, dominating set, 
/k2matching, etc.) can only be approximated Ω(nc/k2 / k) and/or 

Ω(Δ1/k / k).
– It follows that a polylogarithmic dominating set approximation (orIt follows that a polylogarithmic dominating set approximation (or 

maximal independent set, etc.) needs at least Ω(log Δ / loglog Δ)
and/or Ω((log n / loglog n)1/2) time. 
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Graph Used in Dominating Set Lower Bound

• The example is for k = 3.
All d i f t i l bi tit h• All edges are in fact special bipartite graphs
with large enough girth. δ2 δ1 δ0 δ3 δ2 δ0

δ2 δ0δ3 δ1 δ0 δ3 δ0δ2δ3δ2 δ1 δ0

δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ1δ3 δ0
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Better and faster algorithm

• Assume that graph is a 
unit disk graph (UDG)unit disk graph (UDG)

v

1

u

• Assume that nodes know• Assume that nodes know 
their positions (GPS)
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Then…
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Grid Algorithm

1. Beacon your position

2. If, in your virtual grid cell, you are the node closest to the center of 
the cell, then join the DS, else do not join.j j

3. That’s it.

• 1 transmission per node O(1) approximation• 1 transmission per node, O(1) approximation.

• If you have mobility, then simply “loop” through algorithm, as fast as y y y g g
your application/mobility wants you to.
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Example: Comparison of Two Algorithms for Dominating Set

Algorithm 1 Algorithm 2

• Algorithm computes DS • Algorithm computes DS

• k2+O(1) transmissions/node
• O(ΔO(1)/k log Δ) approximation

• 1 transmission/node
• O(1) approximation

• Quite complex!
• Performance OK

• Easy!
P f t!• Performance OK • Performance great!

• Better than lower bound!!

The model determines the distributed
complexity of a problem
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Algorithms seen so far... all suck!!
qu

al
ity Marking Dreadful

Qualityq

√n

r

y
Lower bound prohibits

general graph
algorithms; geometric

be
tte

r algorithms; geometric
structure of networks
needs to be exploited!  

log

loglog U li tiloglog

Centralized
Algorithm too slow

Unrealistic
Model

tx / node

O(1)

O(1) O(log*) O(log)

Grid

O(n)

Tree Growing
Algorithm, too slow

tx / nodeO(1) O(log ) O(log)
better

O(n)



Let’s talk about models…

• General Graph • UDG & GPS

• Captures obstacles
• Captures directional radios

• UDG is not realistic
• GPS not always availableCaptures directional radios

• Often too pessimistic
GPS not always available
– Indoors

• 2D Æ 3D?
• Often too optimistic

too pessimistic too optimistictoo pessimistic too optimistic

Let‘s look at models in 
between these extremes!
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Why are models needed?

• Formal models help us understanding a problem

• Formal proofs of correctness and efficiency
• Common basis to compare resultsCommon basis to compare results
• Unfortunately, for ad hoc and sensor networks, a myriad of models 

exist, most of them make sense in some way or another. On the 
t f lid l k t f l t d d lnext few slides we look at a few selected models
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Unit Disk Graph (UDG)

• Classic computational geometry model, special case of disk graphs

• All nodes are points in the plane, 
two nodes are connected iff (if and (
only if) their distance is at most 1, 
that is {u,v} ∈ E ⇔ |u,v| ≤ 1

+ Very simple, allows for strong analysis
– Not realistic: “If you gave me $100 for each paper written with the y g p p

unit disk assumption, I still could not buy a radio that is unit disk!”
– Particularly bad in obstructed environments (walls, hills, etc.)

Natural extension: 3D UDG• Natural extension: 3D UDG
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Quasi Unit Disk Graph (UDG)

• Two radii, 1 and ρ, with ρ ≤ 1
| | ≤ Ù { } ∈ E• |u,v| ≤ ρÙ {u,v} ∈ E

• 1 < |u,v| Ù {u,v} ∈ E
• ρ < |u,v| ≤ 1Ù it depends!ρ  |u,v| ≤ 1 it depends!

• … on an adversary
• … on probabilistic model
• … 

+ Si l l bl+ Simple, analyzable
+ More realistic than UDG
– Still bad in obstructedStill bad in obstructed 

environments (walls, hills, etc.)
• Natural extension: 3D QUDG
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Bounded Independence Graph (BIG)

• How realistic is QUDG?
u and v can be close but not adjacent– u and v can be close but not adjacent

– model requires very small ρ
in obstructed environments (walls)

• However: in practice, neighbors are often also neighboringHowever: in practice, neighbors are often also neighboring

• Solution: BIG Model
– Bounded independence graph
– Size of any independent set grows 

polynomially with hop distance rp y y p
– e.g. O(r2) or O(r3) 
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Unit Ball Graph (UBG)

• ∃ metric (V,d) with constant doubling dimension.

• Metric: Each edge has a distance d, with 
1. d(u,v) ≥ 0 (non-negativity)( , ) ≥ ( g y)
2. d(u,v) = 0 iff u = v (identity of indiscernibles)
3. d(u,v) = d(v,u) (symmetry)
4 d(u w) ≤ d(u v) + d(v w) (triangle inequality)4. d(u,w) ≤ d(u,v) + d(v,w) (triangle inequality)

• Doubling dimension: log(#balls of radius r/2 to cover ball of radius r)g g( )
– Constant: you only need a constant number of balls of half the radius

• Connectivity graph is same as UDG:• Connectivity graph is same as UDG:
such that:  d(u,v) ≤ 1 : (u,v) ∈ E
such that: d(u,v) > 1  : (u,v) ∈ E



Connectivity Models: Overview

General
Graph

UDG

too pessimistic too optimistic

UDG

Quasi
UDG

Bounded 
Independence

Unit Ball
Graph

d

1



Models are related

GG

BIG
• BIG is special case of general graph, BIG ⊆ GG

BIG
• UBG ⊆ BIG because the size of the independent 

sets of any UBG is polynomially bounded

UBG

• QUDG(constant ρ) ⊆ UBG

QUDG

• QUDG(constant ρ) ⊆ UBG

UDG
• QUDG(ρ=1) = UDG
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Beyond Connectivity: Protocol Model (PM)

• For lower layer protocols, a model needs to be specific about
interference A simplest interference model is an extention of theinterference. A simplest interference model is an extention of the
UDG. In the protocol model, a transmission by a node in at most
distance 1 is received iff there is no conflicting transmission by a 
node in distance at most R with R ≥ 1 sometimes just R 2node in distance at most R, with R ≥ 1, sometimes just R = 2.

+ Easy to explainEasy to explain
– Inherits all major drawbacks from the UDG model
– Does not easily allow for designing 

distributed algorithms
– Lots of interfering transmissions just 

outside the interference radius R dooutside the interference radius R do 
not sum up.

• Can be extended with the same
extensions as UDG e g QUDG
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Hop Interference (HI)

• An often-used interference model is hop-interference. Here a UDG 
is given Two nodes can communicate directly iff they are adjacentis given. Two nodes can communicate directly iff they are adjacent, 
and if there is no concurrent sender in the k-hop neighborhood of 
the receiver (in the UDG). Sometimes k=2.

• Special case of the protocol model, 
inheriting all its drawbacksinheriting all its drawbacks

+ Simple
+ Allows for distributed algorithms
– A node can be close but not

produce any interference (see pic)
• Can be extended with the same• Can be extended with the same

extensions as UDG, e.g. QUDG

Algorithms for Sensor Networks   – Roger Wattenhofer   2/56



Models Beyond Graphs

• Clients A and B want to send (max. rate x kb/s)
• Assume there is a single frequency
• What total throughput („spatial reuse“) can be achieved...? 

10m40m 20m

A B AP1 AP2

10m40m 20m

Total throughput at most: x kb/sg p

no spatial reuse seems possible…In graph-based
models…
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Signal-to-Interference-Plus-Noise Ratio (SINR, Physical M.)

• Communication theorists study complex fading and signal-to-noise-
plus-interference (SINR)-based models

• Simplest case:
Æ packets can be decoded if SINR is larger than β at receiver

Power level 
f d

Received signal power from sender

Minimum signal to

of sender u Path-loss exponent

Minimum signal-to-
interference ratio

Noise

Distance between
two nodesReceived signal power from 

all other nodes (=interference)
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SINR Example

A sends to AP2, B sends to AP1 Æ (max. rate x kb/s)

1m

A i l f ( d f d di t h i !)

4m 2m

• Assume a single frequency (and no fancy decoding techniques!)
• Let α=3, β=3, and N=10nW
• Set the transmission powers as follows PB= -15 dBm and PA= 1 dBmSet the transmission powers as follows PB  15 dBm and PA  1 dBm

SINR of A at AP2: 

SINR of B at AP1: 

A total throughput of 2x kb/s is possible !
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SINR Discussion

+ In contrast to other low-layer models such as PM the SINR model 
allows for interference that does sum up This is certainly closer toallows for interference that does sum up. This is certainly closer to 
reality. However, SINR is not reality. In reality, e.g., competing 
transmissions may even cancel themselves, and produce less 
i t f I th t th SINR d l i th litinterference. In that sense the SINR model is worse than reality.

– SINR is complicated, hard to analyzeSINR is complicated, hard to analyze
– Similarly as PM, SINR does not really allow for distributed algorithms
– Despite being complicated, it is a total simplification of reality. If we 

remove the “I” from the SINR model, we have a UDG, which we 
know is not correct. Also, in reality, e.g. the signal fluctuates over 
time. Some of these issues are captures by more complicated fading y g
channel models.
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More on SINR

• Often there is more than a single threshold β, that decides whether 
reception is possible or not In many networks a higher S/N ratioreception is possible or not. In many networks, a higher S/N ratio 
allows for more advanced modulation and coding techniques, 
allowing for higher throughput (e.g. Wireless LAN)

• However, even more is possible: For example, assume that a 
receiver is receiving two transmissions, transmission T1 being muchreceiver is receiving two transmissions, transmission T1 being much 
stronger than transmission T2. Then T2 has a terrible S/N ratio. 
However, we might be able to subtract the strong T1 from the total 
signal and with T – T = T and hence also get Tsignal, and with  T – T1 = T2, and hence also get T2.

• These are just two examples of how to get more than you expect.j g y
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Overview of some models

• Try to proof correctness in an as “high” as possible modelTry to proof correctness in an as high  as possible model
• For efficiency, a more optimistic (“lower”) model might be fine
• Lower bounds should be proved in low models
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The “Largest-ID” Algorithm

• All nodes have unique IDs, chosen at random.

• Algorithm for each node:
1. Send ID to all neighborsg
2. Tell node with largest ID in neighborhood that it has to join the DS

• Algorithm computes a DS in 2 rounds (extremely local!)

6
7

4

6
1

92

8

10

53
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“Largest ID” Algorithm, Analysis I

• To simplify analysis: assume graph is UDG
(same analysis works for UBG based on doubling metric)(same analysis works for UBG based on doubling metric)

• We look at a disk S of diameter 1:
SNodes inside S have

distance at most 1.
th f li

Diameter: 1

→ they form a clique

How many nodes in S
are selected for the DS?are selected for the DS?
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“Largest ID” Algorithm, Analysis II

• Nodes which select nodes in S are in disk of radius 3/2 which
can be covered by S and 20 other disks  Si of diameter 1
(UBG: number of small disks depends on doubling dimension)(UBG: number of small disks depends on doubling dimension)

S
1 11
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“Largest ID” Algorithm: Analysis III

• How many nodes in S are chosen by nodes in a disk Si?

# f d i S # f d i S• x = # of nodes in S, y = # of nodes in Si:

• A node u∈S is only chosen by a node in Si ifA node u∈S is only chosen by a node in Si if 
(all nodes in Si see each other).

• The probability for this is: 

• Therefore the expected number of nodes in S chosen by nodes in• Therefore, the expected number of nodes in S chosen by nodes in 
Si is at most:

Because at most y nodes in S canBecause at most y nodes in Si can
choose nodes in S
and because of linearity of expectation.
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“Largest ID” Algorithm, Analysis IV

• From x≤n and y≤n, it follows that:

• Hence, in expectation the DS contains at most              nodes
per disk with diameter 1.p

• An optimal algorithm needs to choose at least 1 node in the disk 
ith di 1 d dwith radius 1 around any node.

• This disk can be covered by a constant (9) number of disks ofThis disk can be covered by a constant (9) number of disks of 
diameter 1.

• The algorithm chooses at most                  times more disks than an 
optimal one
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“Largest ID” Algorithm, Remarks

• For typical settings, the “Largest ID” algorithm produces very good
dominating sets (also for non UDGs)dominating sets (also for non-UDGs)

• There are UDGs where the “Largest ID” algorithm computes ang g p
-approximation (analysis is tight).

complete
b h Optimal DS: size 2sub-graph

nodes

Optimal DS: size 2

“Largest ID” alg:

• bottom nodes choose• bottom nodes choose 
top nodes with 
probability≈1/2

• 1 node every 2nd group

complete

• 1 node every 2nd group
nodes
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Iterative “Largest ID” Algorithm

• Assume that nodes know the distances to their neighbors:

all nodes are active;
for i := k to 1 do
∀ act nodes: select act node with largest ID in dist ≤ 1/2i;∀ act. nodes: select act. node with largest ID in dist. ≤ 1/2i;
selected nodes remain active

od;
DS = set of active nodes

• Set of active nodes is always a DS (computing CDS also possible)• Set of active nodes is always a DS (computing CDS also possible)
• Number of rounds: k
• Approximation ratio n(1/2k)

• For k=O(loglog n), approximation ratio = O(1)

Algorithms for Sensor Networks   – Roger Wattenhofer   2/69



Iterative “Largest ID” Algorithm, Remarks

• Possible to do everything in O(1) rounds
(messages get larger local computations more complicated)(messages get larger, local computations more complicated)

• If we slightly change the algorithm such that largest radius is 1/4:g y g g g
– Sufficient to know IDs of all neighbors, distances to neighbors, and 

distances between adjacent neighbors
– Every node can then locally simulate relevant part of algorithm to findEvery node can then locally simulate relevant part of algorithm to find 

out whether or not to join DS

UBG w/ distances: O(1) approximation in O(1) rounds
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Maximal Independent Set I

• Maximal Independent Set (MIS):
(non extendable set of pair wise non adjacent nodes)(non-extendable set of pair-wise non-adjacent nodes)

• An MIS is also a dominating set:
– assume that there is a node v which is not dominated– assume that there is a node v which is not dominated
– v∉MIS, (u,v)∈E → u∉MIS
– add v to MIS
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Maximal Independent Set II

• Lemma:

On bounded independence graphs: |MIS| ≤ O(1)·|DSOPT|

• Proof:Proof:
1. Assign every MIS node to an adjacent node of DSOPT

2. u∈DSOPT has at most f(1) neighbors v∈MIS
3. At most f(1) MIS nodes assigned to every node of DSOPT

Æ |MIS| ≤ f(1)·|DSOPT|Æ |MIS| ≤ f(1) |DSOPT|

• Recently a lot of progress to compute MIS on bounded
independece graphs. Indeed the best known algorithm only needs
O(log* n) time! This algorithm also gives coloring and CDS!
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MIS (DS) Æ CDS

MIS gives a dominating set.
But it is not connected.

Connect any two MIS nodes 
which can be connected by 
one additional nodeone additional node.

Connect unconnected MIS nodes 
hi h b b twhich can be conn. by two 

additional nodes.

This gives a CDS!

#2-hop connectors≤f(2)·|MIS|
#3-hop connectors≤2f(3)·|MIS|

|CDS| = O(|MIS|)
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Some other interesting structures from graph theory

• We have already seen
(Connected) Dominating Set– (Connected) Dominating Set

– Maximal Independent Set

• Maximum Independent Set (MaxIS)
– An independent set with maximal cardinalty

Essentiall impossible“ to comp te nless P NP– Essentially „impossible“ to compute unless P ≈ NP

• (∆+1)- or O(∆)-Coloring( ) ( ) g
– Can be used for MAC layer
– A MIS algorithm can be misused to compute a coloring

• (Connected) Domatic Partition
– Is to dominating sets what coloring is to independent sets
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I would use one of these two algorithms...
qu

al
ity Marking

q

√n

r

Largest ID

be
tte

r

log

loglogloglog

tx / node

O(1)

O(1) O(log*) O(log)

Grid

O(n)

Tree GrowingBest MIS

tx / nodeO(1) O(log ) O(log)
better

O(n)



A Theory of “Locality”?

• Ad hoc and sensor networks

• The largest network in the world?!?

• Managing organizations? Society?!?



A Simple “Localized” Algorithm

• Classic greedy algorithm:

• “Always choose node with most non-dominated neighbors.”
• The solution is a log-approximation (which is asymptoticallyThe solution is a log approximation (which is asymptotically 

optimal, unless P ≈ NP).

• Distributed version:

1 Wait until higher-degree (same degree: higher-ID) neighbors have1. Wait until higher-degree (same degree: higher-ID) neighbors have 
decided not to join dominating set.

2. Join dominating set and tell neighbors.

• Problem: This algorithm can have a linear waiting chain. Too slow!
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Are Localized/Local Algorithms Practical?!?

• Localized algorithm: Causality chain, butterfly effect 

• Local algorithm: Synchronous communication rounds
– Quite high demand to MAC layerQ g y
– In reality messages get lost, due to fading, noise, and interference
– In reality not all neighbors receive a message (hidden terminal problem)

In realit nodes might crash and restart (shabb po er s ppl )– In reality nodes might crash and restart (shabby power supply) 

• Smells like self-stabilization
– Messages might get lost, duplicated, or corrupted
– Node memory/state might get corrupted (RAM only)

However ROM (program initialization random seed) is safe– However, ROM (program, initialization, random seed) is safe
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How to turn any local into a self-stabilizing algorithm

• Local algorithm: • Self-stabilizing algorithm:

• Initialize (local) variables
• Phase

C f

• Simply keep transmitting 
<Out0,Out1,Out2, …> in one 
single message (For many local– Compute message from variables

– Transmit message
– Receive messages from neighbors

single message. (For many local 
algorithms, this message can be 
encoded to save space.)

– Recompute variables
– Decision? If not Æ go to next phase • And keep checking whether your 

memory is still ok.
Receive Variables Transmit

• It works! Adversarial memory 
corruptions are local only.

Receive Variables Transmit
- Init Out0
In1 Phase1 Out1

• [Awerbuch, Varghese, FOCS 91]
In2 Phase2 Out2
… … …
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Algorithm Classes

Global Algorithm   For some problems we don’t even
understand the non-distributed case  

Distributed Algorithm “Reiceive msg X Æ Transmit msg Y”
Every global algo can be distributed y g g

Local   Localized Unstructured

+ Node can only 
communicate with 
neighbors k times.

+ Often simple
– Nodes can wait for 

neighbor actions

+ Implement MAC 
layer yourself; you 
control everythingg

+ Strict time bounds
– Synchronous model 

g
– Often linear chain 

of causality

y g
– Often complicated

– Argumentation 
overhead
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Another Model Dimension

General
Graph

UDG
GPS

UDG
No GPS

too pessimistic too optimistic

Graph GPSNo GPS

Quasi
UDG

Bounded 
Independence

Unit Ball
Graphp p

Message 
Passing
M d l

Physical Signal
P ti

Radio Network

too “tough” too simplistic

ModelsPropagation Model

Unstructured Radio 
Network Model

Algorithms for Sensor Networks   – Roger Wattenhofer   2/81



Clustering for Unstructured Radio Networks

• “Big Bang” (deployment) of a sensor and/or ad-hoc network:
Nodes wake up asynchronously (very late maybe)– Nodes wake up asynchronously (very late, maybe)

– Neighbors unknown
– Hidden terminal problem
– No global clock
– No established MAC protocol
– No reliable collision detectionNo reliable collision detection 
– Limited knowledge of the number of nodes or degree of network.

• We have randomized algorithms that compute DS (or MIS) in 
polylog(n) time even under these harsh circumstances, where n is 
an upper bound on the number of nodes in the system.pp y
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Unstructured Radio Network Model 

• Multi-Hop
• No collision detection

– Not even at the sender!
• No knowledge about (the number of) neighbors
• Asynchronous Wake Up• Asynchronous Wake-Up

– Nodes are not woken up by messages !
• Unit Disk Graph (UDG) to model wireless multi-hop networkp ( ) p

– Two nodes can communicate iff Euclidean distance is at most 1
• Upper bound n for number of nodes in network is known 

Thi i d t Ω( / l ) l b d– This is necessary due to Ω(n / log n) lower bound
[Jurdzinski, Stachowiak, ISAAC 2002]
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Unstructured Radio Network Model

• Can MDS and MIS be solved efficiently in such a harsh model?

There is a MIS algorithmThere is a MIS algorithm
with running time

O(log2n) with high probability. 

• And there is a matching lower bound.
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Summary

• Sensor networks are an excellent application for distributed 
algorithmsalgorithms

• We need to study new network topologiesy p g
– Network models between geometry and graph theory (BIG, UBG)
– Interference models such as SINR

• We need to study new algorithmic paradigms
– Distributed Æ Localized Æ Local Æ Self-Stabilizing Æ Unstructured
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Thank You!Thank You!
Questions & Comments?
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